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Introduction
Clustering is one of the most widely used techniques for data 
analysis having applications in almost every field like statistics, 
computer science, biology, social sciences, psychology, etc. People 
attempt to get a first impression of their data by trying to iden-
tify groups having similar behavior. Finding tight clusters, ie, well 
separated and compact, is very important. Commonly used clus-
tering algorithms include k-means, Partition Around Medoids 
(PAM), Clustering LARge Applications (CLARA), Balanced 
Iterative Reducing and Clustering using Hierarchies (BIRCH), 
Density Based Spatial Clustering of Applications with Noise 
(DBSCAN), Wave-Cluster, and Expectation-Maximization 
(EM).1 Compared with these traditional algorithms, a promis-
ing alternative is to use spectral methods for clustering.

Clustering algorithms that use spectral properties are widely 
used because of their accuracy (we get more tight clusters) and 
easy implementation (these algorithms can be solved efficiently 
by using standard linear algebra methods).2 However, when the 
input data are very large, they become inefficient; computa-
tional complexity of O n( )3 , where n is the size of the input 
data. Hence, considerable research has been done to reduce this 
complexity without affecting the accuracy of the underlying 
algorithm.

One such method is sampling that can reduce the input size. 
Samples should be selected in a manner such that they repre-
sent the whole dataset uniformly. Many techniques exist for 
sampling like random sampling, stratified sampling, matrix 
factorization, vector quantization (VQ), pivotal sampling, the 
strip method, the mean method, the second derivative method, 
etc.3,4 Among these, VQ5 is commonly used and is easy to 

implement because it provides the reduced data in a single scan 
of elements.

Clustering of whole genome sequences (WGSs)—a sequence 
made from a combination of 4 nucleotides: A (Adenine), T 
(Thymine), G (Guanine), and C (Cytosine)6—is useful in devel-
oping better species of plants, eg, disease resistant and drought 
resistant. Here, the traditional methods for clustering, eg, 
Un-weighted Pair Graph Method with Arithmetic mean 
(UPGMA)7 and Neighbor Joining (NJ),7 which are currently 
used by plant biologists, do not provide the level of accuracy 
needed and are also not the most efficient methods because of 
their high computational complexity ( ( ))O n3 .

In this article, we use the spectral clustering (SC) algorithm 
(for accuracy) along with VQ (for efficiency) for clustering sin-
gle nucleotide polymorphism (SNP—the variation in the 
nucleotide that occurs at a specific position across sequences) 
data obtained from the WGSs of plants. Although this combi-
nation of SC and VQ is not new,5 the novelty of our work is 
using the 2 for clustering SNP data.

Next, we present literature regarding usage of SC and VQ in 
the field of plant genome, and the novelty of our approach. 
Spectral clustering can be performed in 2 ways: recursive and 
non-recursive. Bouaziz et al8 in 2012 used this method in a 
recursive way for genetic studies. However, we use a common 
non-recursive way,2,9 because it is simpler and cheaper. It also 
gives tight and compact clusters.

The construction of the similarity matrix is the most 
important part of the SC algorithm. This can be done either 
by using basic techniques10-13 like cosine similarity, pairwise 
distance, Jukes Cantor, and alignment score, or by using 
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advanced techniques14 like identity-by-state, allele sharing 
distance, SNP edit distance, covariance, normalized covariance, 
and coancestry.

Li et al15 in 2010 used SC for clustering gene sequences 
(which are a subset of WGSs) where they constructed the simi-
larity matrix by cosine similarity. We use the earlier mentioned 
basic techniques besides cosine similarity because they capture 
the similarity between the SNP sequences in a better way. We 
do not use advanced techniques because they are more involved 
(and also not needed since basic work well).

Zhang et al16 in 2011 used VQ to reduce the number of 
genome sequences of influenza A virus for better visualization 
of phylogenetic trees, which are an essential step in earlier 
mentioned clustering algorithms of UPGMA and NJ. They 
used the neural gas method as the basis of their sampling.

We use VQ as well, but in a different sense. We use 
k-medoids as the basis of our sampling instead of the neural gas 
method. This is because it is easy to find the medoids of the 
kind of data we have.

In the next section, we describe our Vector Quantized 
Spectral Clustering (VQSC) algorithm in detail. In the subse-
quent section (“Discussion” section), we test our algorithm on 
SNP sequences obtained from a standard plant database 
(Soybean). Here, we also compare our results with currently 
used methods of clustering SNP data (mentioned above). 
Experiments show that VQSC performs better than these 2 
popular existing techniques in terms of cluster quality (average 
improvement of 21% over UPGMA and 24% over NJ) as well 
as time complexity (order of magnitude faster than both 
UPGMA and NJ) Further, we also discuss application of our 
technique to other plants, e.g., Wheat, Rice, Maize etc.

The VQSC Algorithm
The SC algorithm uses the concept of similarity graph to construct 
the similarity matrix (or the weighted adjacency matrix) that in 
turn is used to construct the Laplacian matrix (either normalized or 
non-normalized).9 Then, the eigenvectors corresponding to the 
first k smallest eigenvalues (where k is the number of clusters to be 
formed) of the Laplacian matrix are used to cluster the data.

As mentioned earlier, construction of the similarity matrix is 
significant in this algorithm because better the quality of this 
matrix, better is the accuracy of the SC algorithm. The Laplacian 
matrix obtained from the above-mentioned similarity matrix is 
also important because the eigenvectors of this matrix are used 
for clustering. A detailed description of the similarity matrix, the 
Laplacian matrix, and the SC algorithm is given by Ulrike von 
Luxburg,9 Binkiewicz et al,17 and Arias-Castro et al.18

In this article, for constructing the similarity matrix, we 
compare every character in one SNP sequence with every char-
acter in other SNP sequences. This represents how much one 
sequence is different from another sequence. The dissimilarity 
D i j( , )  between any 2 SNP sequences Xi  and X j  is defined 
as the number of positions at which Xi  and X j  differ. The 
similarity value is calculated as

		  S i j l seq D i j( , ) ( ) ( , )= − 	 (1)

where l seq( )  is the length of the SNP sequence. This value is 
normalized and used as the similarity value for ( , )i j  index. We 
also use other similarity measures like pairwise distance,11 
Jukes Cantor,12 and alignment score13 to construct the similar-
ity matrix. Results show that the quality of clusters is sensitive 
to the quality of the similarity matrix used.

As mentioned earlier, we use VQ to compress the original 
data into a small set of representative data entities. The goal 
now is to minimize the difference between the original and this 
representative set.

Although the standard VQ algorithm uses k-means, we 
achieve this minimized difference by using the k-medoids 
algorithm. This is because, as discussed earlier, data here are in 
the form of sequences of strings of A, T, G, and C characters 
and mean of these data does not exist. On the other hand, 
k-medoids provide us with representative sequences from the 
set of given sequences itself.

Following is the algorithm for our VQSC:
Input: n SNP sequences { }xi  for i n= …1, , ; k number of 

representative sequences to be selected; and m number of clus-
ters to be formed.

Output: clustered SNP sequences.

1.	 Perform k-medoids as follows:
(a) Compute medoids y yk1, ,…  as the k representative 
sequences.
(b) Build a correspondence table to associate each xi  
with the nearest medoid y j .

2.	 Run the SC algorithm on y yk1, ,…  to obtain cluster 
indexes Cl ; l m= …1, ,  for each of y j .

3.	 Recover the cluster membership for each xi by looking 
up the correspondence table.

Discussion
We use SNP data of 31 Soybean sequences, which are taken 
from the database as follows:19 http://chibba.pgml.uga.edu/
snphylo/. These data contain 6 289 747 SNPs. As this is a 
raw data, we use SNPhylo software19 to remove low-quality 
data. Specifically, false SNPs are removed and we get 31 
SNP sequences each of length 4847. (This software also 
constructs a phylogenetic tree as used by other standard 
genome clustering algorithms.) Please refer to Figure 1 of 
Lee et al,19 which shows the flowchart of SNPhylo pipeline, 
which is a commonly used standard procedure. Finally, these 
sequences are used to obtain the similarities among each 
other leading to the construction of the similarity matrix, 
which is an input to our VQSC algorithm.

Here, we first discuss the computational complexity of our 
and other standard algorithms (for SNP clustering). Next, we 
describe the criteria used to check the goodness of generated 
clusters, termed as validation metrics. Furthermore, we give our 

http://chibba.pgml.uga.edu/snphylo/
http://chibba.pgml.uga.edu/snphylo/
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results. Finally, we give concluding remarks and discuss future 
work.

Computational complexity

As mentioned in the “Introduction” section, complexities of the 
standard SC, UPGMA, and NJ algorithms are all ( ( ))O n3 , 
where n is the size of the input data. This makes these algo-
rithms computationally less efficient. However, the use of VQ 
sampling with SC reduces the complexity of VQSC to 
O k n kt( )3 2+ , where k is the number of representative samples 
chosen via k-medoids in VQ, and t is the number of iterations 
taken by VQ. Here, the first term ( )k3  comes from SC, and the 
second term ( )n kt2  comes from VQ. Application of VQ to 
UPGMA and NJ also leads to a comparable reduction in their 
complexity.

Validation metrics

There are various metrics available for validation of clustering 
algorithms. These include1,20 Cluster Accuracy (CA), 
Normalized Mutual Information (NMI), Adjusted Rand Index 
(ARI), Compactness (CP), Separation (SP), Davis-Bouldin 
Index (DB), and Silhouette Value. For using the first 3 metrics, 
we should have prior knowledge of cluster labels. However, 
here we do not have ideal clustering results. Hence, we cannot 
use any of these validation metrics. Rest of the techniques do 
not have this requirement, and hence can be used for valida-
tion. We use Silhouette Value, which is usually used for valida-
tion of genome data.21

Silhouette Value is a measure of how similar an object is  
to its own cluster (intra-cluster similarity) compared with  
other clusters (inter-cluster similarity).19 For any cluster 
C l m ll ( ; )= =1 1to say , let a i( )  be the average distance 
between the ith  data point and all other points in cluster C1, 
and let b i( ) be the average distance between the ith data  
point in cluster C1  and all other points in clusters 
C l m ll ( )!= =1 1to and . Thus, Silhouette Value is given as

s i
b i a i
a i b i( ) = ( ) − ( )
( ) ( )max{ , }

Here, a i( )  and b i( )  signify the intra-cluster and the inter-
cluster similarities, respectively. Silhouette Value lies between 
−1 and 1, and average over all the data points is computed. A 
positive value indicates that the clusters are well separated from 
each other, and a negative value indicates that the clusters are 
overlapping.

Results
We first present the results of SC, UPGMA, and NJ without 
VQ. These data are given in Table 1. Column 1 gives the num-
ber of clusters chosen. As 2 to n/2 clusters, where n is the num-
ber of input data points, are commonly used in literature, we 
follow this. Hence, we provide results from 2 to 16 clusters (for 
us n = 31, and hence, n/2 = 15.5 ≈ 16). Columns 2 to 5 refer to 
the Silhouette Values of the SC algorithm with 4 different 
similarity measures discussed earlier. Columns 6 and 7 give the 
Silhouette Values for UPGMA and NJ. As evident (high-
lighted in bold), SC with alignment score gives the best results 
for all the clusters.

The percentage improvement in SC (using alignment score 
as the similarity measure) in comparison with UPGMA and 
NJ is given in Table 2. We can observe from this table that the 
average improvement in SC over UPGMA is around 34% and 
over NJ is around 37%, which is considered to be a substantial 
improvement.

Next, we discuss the results for the same 3 clustering algo-
rithms with VQ. Vector quantization can be performed in 2 
ways: either we can reduce the length of each sequence or we 
can reduce the number of sequences. In this work, we reduce 
the number of sequences to reduce complexity. Results for 
these experiments are given in Table 3 (structure of which is 
similar to that of Table 2). From this table, we see a similar pat-
tern, ie, our VQSC algorithm with alignment score is the best 
(highlighted in bold).

We also compare VQSC with Vector Quantized 
Un-weighted Pair Graph Method with Arithmetic mean 
(VQUPGMA) and Vector Quantized Neighbor Joining 
(VQNJ). The data for this is given in Table 4. Again, we observe 
substantial improvement by using VQSC. The average per-
centage improvement in VQSC over VQUPGMA is around 
28% and over VQNJ it is around 347%.

Next, we calculate the loss of accuracy incurred because of 
sampling in the proposed SC algorithm (with alignment score 
as the similarity measure). For this, we compare the relevant 
SC and VQSC data from Tables 1 and 3, respectively. This loss 
for the different number of clusters chosen is listed in Table 5. 
We can observe from these data that the average of the loss of 
accuracy comes around 11%, which is considered acceptable 
because we are still better than the existing best algorithms 
(UPGMA and NJ; please see Table 7 and the accompanying 
discussion below).

We further validate the quality of these clusters using tools 
used by biologists at Indian Institute of Soybean Research. 
Here, we compare cluster formation for SC and VQSC for the 

Figure 1.  Cluster formation for SC and VQSC with alignment score and m = 11. SC indicates spectral clustering; VQSC, Vector Quantized Spectral 

Clustering.
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different number of clusters. As above, we use the data corre-
sponding to alignment score as the similarity measure because 
that gives the best results.

We do this comparison in 2 ways. For 2 cases (m = 11 and 
12), we diagrammatically identify the sequences that are 
wrongly clustered by VQSC as compared with SC (in Figures 
1 and 2). For all other values of m, we give the number of 
sequences wrongly clustered by VQSC as compared with SC 
(in Table 6). This 2-way strategy comprehensively depicts the 
goodness of VQSC without taking too much space.

In Figures 1 and 2, the x-axis lists the 31 sequences and the 
y-axis refers to the clustering algorithms used. The Silhouette 
Values from Tables 1 and 3 are given on the right. The different 
colors denote the different clusters, and the colored boxes sig-
nify which cluster each sequence belongs to. From Figure 1, we 
observe that our VQSC algorithm does not cluster sequences 
W08, W11, and C01 (ie, only 3 out of 31) in their respective 
clusters when compared with SC. Similar behavior can be 
observed from Figure 2. Sequences W05, C01, and C19 (again 
only 3 out of 31) are not correctly clustered by VQSC when 
compared with SC.

As evident from Table 6, on an average only 4 out of 31 
(about 13%) sequences are wrongly clustered by VQSC as 
compared with SC. This is considered acceptable because, as 
earlier, we are still better than the existing best algorithms 
(please see Table 7 and the accompanying discussion below). 
(The outlier case of m = 8 needs further analysis and experi-
mentation with more data.) To sum up, by using VQSC, we get 

Table 1.  Silhouette Values for different clustering algorithms without VQ.

No. of 
clusters

SC UPGMA NJ

Our similarity S(i, j) 
from equation (1)

Pairwise distance11 Jukes Cantor12 Alignment score13

2 0.2012 0.2012 0.2590 0.3169 0.1831 0.2206

3 0.1987 0.1722 0.2440 0.2845 0.2002 0.2258

4 0.2053 0.2037 0.2621 0.3241 0.2546 0.2192

5 0.2488 0.2421 0.3017 0.3528 0.2791 0.2488

6 0.2771 0.2771 0.3214 0.3886 0.2389 0.2771

7 0.2990 0.3231 0.3414 0.3882 0.2612 0.2736

8 0.3451 0.3451 0.3811 0.4007 0.2906 0.2874

9 0.3490 0.3140 0.3785 0.4130 0.3112 0.3031

10 0.3522 0.3507 0.3771 0.4464 0.3430 0.2966

11 0.3687 0.3681 0.4045 0.4589 0.3831 0.3476

12 0.3799 0.4046 0.4258 0.5031 0.4089 0.3569

13 0.4329 0.3948 0.4611 0.5375 0.4153 0.3829

14 0.4470 0.4527 0.4646 0.5415 0.4610 0.4403

15 0.4481 0.4590 0.5093 0.5701 0.4881 0.4366

16 0.5014 0.5134 0.5301 0.5917 0.5139 0.4665

Abbreviations: NJ, Neighbor Joining; SC, spectral clustering; UPGMA, Un-weighted Pair Graph Method with Arithmetic mean; VQ, vector quantization.
Bold values indicate that SC with alignment score works best.

Table 2.  Comparison of SC with UPGMA and NJ.

No. of clusters Percentage improvement in SC

Over UPGMA Over NJ

2 73.07 43.65

3 42.11 26.00

4 27.30 47.86

5 26.41 41.80

6 62.66 40.24

7 48.62 41.89

8 37.89 39.42

9 32.71 36.26

10 30.15 50.51

11 19.79 32.02

12 23.04 40.96

13 29.42 40.38

14 17.46 22.98

15 16.80 30.58

16 15.14 26.84

Average 33.50 37.43

Abbreviations: NJ, Neighbor Joining; SC, spectral clustering; UPGMA, Un-
weighted Pair Graph Method with Arithmetic mean.
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Table 3.  Silhouette Values for different clustering algorithms with VQ.

No. of 
clusters

VQSC VQUPGMA VQNJ

Our similarity 
S(i, j) from 
equation (1)

Pairwise 
distance11

Jukes Cantor12 Alignment 
score13

2 0.2012 0.2012 0.2590 0.3169 0.1835 0.0128

3 0.2002 0.2002 0.2474 0.2876 0.2002 0.0427

4 0.2159 0.2181 0.2610 0.3052 0.2192 0.0752

5 0.2211 0.2488 0.2887 0.3232 0.2488 0.0827

6 0.2639 0.2528 0.2922 0.3046 0.2532 0.0476

7 0.2446 0.2184 0.2867 0.3259 0.2604 0.0821

8 0.2727 0.2718 0.3189 0.2935 0.2752 0.1195

9 0.2861 0.3209 0.2890 0.4004 0.2886 0.1506

10 0.3361 0.2429 0.3561 0.3726 0.3264 0.1523

11 0.3035 0.2877 0.3672 0.4594 0.3456 0.2273

12 0.3299 0.3783 0.4078 0.4743 0.3650 0.2513

13 0.4268 0.4184 0.3811 0.4843 0.4216 0.3002

14 0.4128 0.4251 0.4450 0.4966 0.4111 0.3465

15 0.4560 0.4592 0.4796 0.5334 0.4592 0.3552

16 0.4552 0.4434 0.4587 0.5004 0.4434 0.4434

Abbreviations: VQ, vector quantization; VQNJ, Vector Quantized Neighbor Joining; VQSC, Vector Quantized Spectral Clustering; VQUPGMA, Vector Quantized  
Un-weighted Pair Graph Method with Arithmetic mean.
Bold values indicate that VQSC with alignment score works best.

Table 4.  Comparison of VQSC with VQUPGMA and VQNJ.

No. of 
clusters

Percentage improvement in VQSC

Over VQUPGMA Over VQNJ

2 72.70 2375.78

3 43.66 573.54

4 39.23 305.85

5 29.90 290.81

6 20.30 539.92

7 25.15 296.95

8 6.65 145.61

9 38.74 165.87

10 14.15 144.65

11 32.93 102.11

12 29.95 88.74

13 14.87 61.33

14 20.80 43.32

15 16.16 50.17

16 12.86 12.86

Average 27.87 346.50

Abbreviation: VQNJ, Vector Quantized Neighbor Joining; VQSC, Vector 
Quantized Spectral Clustering; VQUPGMA, Vector Quantized Un-weighted Pair 
Graph Method with Arithmetic mean.

Table 5.  Loss of accuracy because of sampling in SC.

No. of clusters Percentage loss of accuracy

2 0

3 +1.08

4 –6.19

5 –9.16

6 –27.58

7 –19.12

8 –36.52

9 –3.15

10 –19.81

11 –0.11

12 –6.07

13 –10.98

14 –9.04

15 –6.88

16 –18.25

Average –11.45

Abbreviation: SC, spectral clustering.
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almost the same cluster formation as SC, but at a reduced com-
putational cost.

Finally, we compare results of our efficient and accurate 
algorithm (VQSC using alignment score) with the existing 
best (UPGMA and NJ). Results for this are given in Table 7. 
As evident from this table, our VQSC is on an average 21% 
more accurate than UPGMA and on an average 24% more 
accurate than NJ. As earlier, we also have the added benefit of 
reduced computational complexity for VQSC as compared 
with both UPGMA and NJ.

Concluding Remarks
We present the VQSC algorithm that is a combination of SC 
and VQ sampling for clustering genome sequences of plants. 
We use SC for its accurate clustering and VQ for its accurate 
sample selection. Use of this combination makes our algo-
rithm scalable for large data as well. As building the similar-
ity matrix is critical to the SC algorithm, we exhaustively 
adapt 4 ways to build such a matrix for plant genome data. 

Adapting VQ for these data requires using k-medoids instead 
of traditional k-means for finding representative samples. 
For a sample plant data (Soybean), we compare the perfor-
mance of our VQSC algorithm with other traditional and 
commonly used techniques of UPGMA and NJ. VQSC out-
performs both of these in terms of cluster quality (average 
improvement of 21% over UPGMA and 24% over NJ) and 
computational complexity (order of magnitude faster than 
both UPGMA and NJ).

Future Work
In the future, we plan to extend this work to more number of 
sequences.22 As earlier, here we reduce the number of sequences 
by sampling. However, we could also sample across the length 
of every sequence. As the quality of the similarity matrix has a 
big impact on the quality of clusters, we also intend to adapt 
other ways of constructing this matrix as part of our future 
work.14 Also, we plan to test our algorithm for other genome 

Table 7.  Comparison of VQSC with UPGMA and NJ.

No. of clusters Percentage improvement in VQSC

Over UPGMA Over NJ

2 73.07 43.65

3 43.66 27.37

4 19.87 39.23

5 15.80 29.90

6 27.50 9.92

7 24.77 19.12

8 1.00 2.12

9 28.66 32.10

10 8.63 25.62

11 19.92 32.16

12 15.99 32.89

13 16.61 26.48

14 7.72 12.79

15 9.28 22.17

16 -2.63 7.27

Average 20.66 24.19

Abbreviations: NJ, Neighbor Joining; UPGMA, Un-weighted Pair Graph Method 
with Arithmetic mean; VQSC, Vector Quantized Spectral Clustering.

Table 6. W rongly clustered sequences by VQSC when compared with SC.

No. of clusters No. of sequences wrongly clustered

2 0

3 1

4 4

5 4

6 4

7 4

8 12

9 2

10 5

11 3

12 3

13 5

14 6

15 4

16 4

Average 4.07

Abbreviations: SC, spectral clustering; VQSC, Vector Quantized Spectral 
Clustering.

Figure 2.  Cluster formation for SC and VQSC with alignment score and m = 12. SC indicates spectral clustering; VQSC, Vector Quantized Spectral 

Clustering.
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sequences. For example, genome sequences of wheat,23 rice,24 
and maize25 are also made from the combination of nucleotides 
A, T, G, and C. The only difference between Soybean sequences 
and these sequences is the length of sequences and the num-
bers of SNPs present in them, and both these things do not 
affect our algorithm. In SC, we can easily obtain similarities 
between these new sequences by using any of the measures 
mentioned earlier. Vector quantization can also be applied to 
these sequences without any change because the main aspect of 
VQ, the k-medoids algorithm, is independent of the above-
mentioned changes in sequences.
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