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Abstract
Background  Major depressive disorder (MDD) affects millions of people worldwide. While the exact pathogenesis is yet 
to be elucidated, the role of neuro-immune signaling has recently emerged. Despite major advances in pharmacotherapy, 
antidepressant use is marred by limited efficacy and potential side effects. Cannabidiol (CBD), a phytocannabinoid, exerts 
antidepressant-like effects in experimental animals. This study investigated the impact of CBD on sickness behavior (SB), a 
measure of depressive-like response, and neuro-immune changes induced by lipopolysaccharides (LPS) in mice.
Methods  Socially isolated rodents were administered with LPS to trigger SB. and treated with CBD or its vehicle. Animals 
were submitted to forced swimming test, to evaluate depressive-like behavior, and to open field test, to evaluate locomotory 
activity. Immediately after behavioral analyses, animals were euthanized and had their hypothalamus, prefrontal cortex and 
hippocampus dissected, to proceed neurotrophins and cytokines analyses. ELISA was used to detect IL-1β, BDNF and NGF; 
and cytometric beads array to measure IL-2, IL-4, IL-6, IFN-γ, TNF-α and IL-10 levels.
Results  CBD effectively prevented SB-induced changes in the forced swim test without altering spontaneous locomotion. 
This phytocannabinoid also partially reversed LPS-evoked IL-6 increase in both the hypothalamus and hippocampus. In 
addition, CBD prevented endotoxin-induced increase in BDNF and NGF levels in the hippocampus of SB animals.
Conclusions  Apparently, CBD prevents both behavioral and neuro-immunological changes associated with LPS-induced 
SB, which reinforces its potential use as an antidepressant which modulates neuroinflammation. This opens up potentially 
new therapeutic avenues in MDD.

Keywords  Cannabidiol · Cytokines · Forced swim test · Lipopolysaccharide · Neurotrophic factor · Sickness behavior

Introduction

Major depressive disorder (MDD) is one of the most fre-
quent psychiatric disorders [1]. It affects over 322 million 
people of all ages, and is the leading cause of disability 
worldwide [2]. According to the World Health Organization 

[3, 4], MDD is one of the most damaging diseases of the 
society, since it decreases the quality of life, increases the 
use of health services and consumes enormous public health 
costs [5]. Roughly half of the patients do not experience 
complete remission following initial treatment. Of these, 
30–50% do not respond to any treatment at all [4, 6–9].
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Several inflammatory mediators may represent biomark-
ers for MDD, such as C reactive protein, interleukin (IL)-1β, 
IL-2 and IL-6, interferon (IFN)-γ and tumor necrosis factor 
(TNF) [10–12], most of them being increased in patients 
with MDD [13, 14]. Administration of lipopolysaccha-
ride (LPS), a component of the bacterial cell wall and an 
important activator of the innate immune response, is used 
to understand the role of the inflammation in the pathogen-
esis of the MDD [15, 16]. LPS administration can induce 
both sickness behavior (SB) and depressive-like behavior in 
humans and rodents [16]. Both models are capable of mim-
icking behavioral alterations present in the MDD, such as 
melancholic lethargy, social disinterest and anhedonia [16, 
17]. Importantly, the main difference between these models 
is the time, once sickness behavior appears 2 to 6 h post-
LPS, and the depressive-like behavior appears 24 h post-
LPS [17].

Among several compounds under investigation as novel 
treatment options for MDD, cannabidiol (CBD) has received 
particular attention. CBD is a phytocannabinoid, a natural 
compound extracted from Cannabis sativa which, in contrast 
with the major phytocannabinoid, delta-9-tertrahydrocan-
nabinol (THC), has no psychotomimetic or other deleterious 
effects [18–20]. Whereas THC acts mainly as an agonist at 
the cannabinoid receptors CB1 and CB2, CBD seems to exert 
multiple effects in the brain, indirectly facilitating the endo-
cannabinoid (eCB) system [21–23] and activating serotonin 
(5-HT) 1A receptors [24, 25].

In the eCB system, CBD has low affinity for the CB1 
agonist site [22] and greater affinity for the antagonist site 
[23], acting as a negative allosteric modulator, decreasing 
the binding of agonists such as Δ9-THC or 2-AG [21]. CBD 
acts as an inverse agonist with low affinity to CB2, although 
this mechanism may not represent a pharmacological rel-
evance [23]. In addition, CBD also acts as an antagonist of 
the orphan receptor coupled to the G 55 protein (GPR55), 
an allosteric modulator of the opioid mu and delta receptors, 
an agonist of the transient receptors of the cation channel 
subfamily V (TRPV1) [26] and an agonist of the activated 
peroxisome proliferating gamma receptor (PPARγ) [27]. 
Finally, CBD also exerts modulation of neurotransmission 
by AEA, since it is an inhibitor of the AEA transporter and 
the FAAH enzyme [26], and by adenosine, since CBD inhib-
its the reuptake of this neurotransmitter [28]. Although these 
are possible mechanisms mediated by CBD, the pharmacol-
ogy of CBD is complex, due to the other target and to the 
sites of action in the brain (see reviews: [27, 29, 30]).

The eCB system is affected in depressive disorders, since 
depressed patients present decreased serum levels of eCBs 
and increased expression of CB1 in the prefrontal cortex 
in post mortem studies [12, 31]. There are still few stud-
ies with the use of CBD in patients with MDD or in ani-
mal models. CBD reduced immobility in forced swim test 

(FST) in Swiss mice, an effect that was mediated by the 
5-HT1A receptor [32]. Moreover, CBD reduced in vivo syn-
thesis of IFN-γ in lymph node and serum concentration of 
TNF in LPS-exposed mice [33], as well as reduced IL-6, 
TNF, COX-2 and iNOS in a hypoxic–ischemic model [34], 
which was mediated by adenosine A2A receptors. However, 
in other conditions, CBD may also reveal pro-inflamma-
tory effects. CBD enhanced the pulmonary inflammation 
induced by LPS, by increasing the mRNA production of 
some cytokines, such as TNF and IL-6 [35]. Besides, a C. 
sativa fraction enriched with CBD increased the expression 
of IL-6, IL-8 and CCL2 in macrophages treated with phor-
bol-12-myristate-13-acetate, a fraction enriched with CBD 
increased the expression of IL-6, IL-8 and CCL2 [36]. In 
addition, the drug also increased IFN-γ and IL-2 production 
in splenocytes depending on the magnitude of the stimulus 
[37]. CBD also demonstrates a pro-inflammatory effect in 
epithelial cells, monocytes, and fibroblasts, by increasing 
the levels of inflammatory mediators such as IFN-γ, IL-1β, 
IL-6, IL-8 and MCP-1 [38]. Finally, CBD also increased 
IL-6 levels in rats with persistent inflammatory pain [39].

Inflammation is a key component in MDD pathophysiol-
ogy, and there are behavioral and biochemical similarities 
between this disorder and the SB model. Thus, a drug that 
affects both neurotransmitters and inflammatory pathways 
may be suitable for the treatment of this condition. In this 
sense, CBD may act not only in the cannabinoid system, but 
also modulate the production of inflammatory mediators. 
However, as described above, this drug reveals paradoxical 
effects depending on the model of inflammation. Therefore, 
it is important to evaluate the effect of CBD on behavioral 
and biochemical alterations in a model of SB induced by 
LPS administration.

Materials and methods

Drugs

Cannabidiol (THC Pharm GmbH, Frankfurt, Germany) was 
homogenized on the day of the experiment in 5% Tween® 
80 in saline (0.9% NaCl). LPS (Sigma, E. coli 0111:B4) 
0.83 mg/ml was prepared immediately before administration 
in sodium chloride 0.9%. The volume of 10 ml/kg of the 
drugs were used to inject in the animals. Thus, the doses of 
CBD used in the present experiment were 30, 10 and 3 mg/
kg. The dose of LPS was 0.83 mg/kg. The CBD doses were 
chosen according to the studies of Zanelati et al. [32], since 
this group has also investigated the properties of CBD in 
another animal model of depression. Furthermore, the LPS 
dose was chosen according to O’Connor et al. and Wickens 
et al. [40, 41].
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Animals

Experiments were conducted using C57Bl/6J male mice 
(8–12 weeks of age) obtained from Bioterism Center of 
Institute of Biological Sciences/UFMG. Animals were kept 
in PIV cages (5 animals per cage before the isolating period), 
under controlled room temperature (25 °C) and 12 h:12 h 
light–dark cycle, with free access to food and water. All the 
procedures used in this study were institutionally approved 
under protocol number 78/2014 (approval date: May 26, 
2015) by the Ethic Committee on Animal Use of Federal 
University of Minas Gerais.

Behavioral tests

Sickness behavior model

SB is a set of psychological and behavioral changes asso-
ciated with a febrile and neuroendocrine response to an 
infectious challenge [42, 43] and has great similarities with 
depressive disorder changes [43]. The main changes are 
lethargy, loss of concentration, social disinterest, anhedo-
nia, drowsiness, anorexia and weight loss [43]. To induce 
SB, 10–12-week-old animals were submitted to social isola-
tion for 10 days, in individual cages. While isolated, animals 
were also kept under controlled room temperature (25 °C) 
under 12 h:12 h light–dark cycle, with free access to food 
and water. After this period, animals received an i.p. injec-
tion with vehicle or drug (CBD 30 mg/kg) in the left iliac 
fossa and 1 h later an i.p. injection of 0.9% saline or LPS 
(Sigma, E. coli 0.83 mg/kg) in the right iliac fossa. LPS 
was prepared immediately before administration in sodium 
chloride 0.9% [44]. The reason for administering CBD 1 h 
before LPS is that we analysed SB 6 h after LPS injection, 
a time frame that would hamper a post treatment to evaluate 
the therapeutic effect of the drug.

The treatment schedule used was based on previous stud-
ies that reported the relation between the sickness behavior 
induced by the LPS and the increase in the inflammatory 
cytokines levels. Cytokines, such as TNF and IL-6, which 
mediate the development of sickness behavior, are increased 
2 h after LPS administration, reaching maximum concentra-
tion within 6 h [17, 40, 45].

Forced swim test

Animals received an i.p. injection with vehicle or CBD 
(30 mg/kg) in the left iliac fossa and 1 h later an i.p. injec-
tion of 0.9% saline or LPS (0.83 mg/kg) in the right iliac 
fossa. Six hours after saline and LPS injection, animals were 
submitted to a forced swim test (FST). The test was recorded 
for 6 min. The forced swim apparatus was 200 mm height 
and 180 mm diameter. Apparatus was filled until 150 mm 

height with water at 25 °C [46]. Experiments were recorded 
and analyzed by a blind experimenter. The last 4 min of the 
test were used to analyse the immobility time.

Open field test

An independent group of animals received an i.p. injec-
tion with vehicle or drug (CBD 30 mg/kg) in the left iliac 
fossa and 1 h later an i.p. injection of 0.9% saline or LPS 
(0.83 mg/Kg) in the right iliac fossa. Six hours after saline 
and LPS injection, animals were introduced in the center of 
the open field and left to explore the apparatus for 5 min. 
The open field apparatus had 30 cm diameter. Experiments 
were recorded and analyzed by a blind experimenter. The 
total distance travelled was calculated with the ANY-maze 
software version 4.99.

Analyses of neurotrophins and cytokine

Immediately after the behavioral test, animals were eutha-
nized by cervical dislocation, and had their hypothalamus 
(HT), prefrontal cortex (PFC) and hippocampus (HP) dis-
sected. Tissues from animals submitted to the FTS were 
homogenized in 200 µl of a buffer containing protease 
inhibitors [NaCl (0.4 M); Tween 20 (0.05%); Bovine Serum 
Albumin (BSA) (0.5%); phenylmethylsulfonyl fluoride 
(PMSF) (0.1 mM); benzethonium chloride (0.1 mM); EDTA 
(10 mM); aprotinin (20 IU) in PBS]. Total proteins were 
measured by Bradford method.

Enzyme Linked Immunosorbent Assay (ELISA) was used 
to measure IL-1β, BDNF and NGF (kits DuoSet® R&D Sys-
tems), in accordance with the procedures described by the 
manufacturer. Briefly, 100 µl solution containing 1× PBS 
and an appropriate concentration of the specific capture 
antibody were added to a 96-well plate, which remained in 
contact with the plate for 18 h at 4 °C. Subsequently, plates 
were washed 4 times with a washing buffer in a plate washer 
(BioTek™ ELx50™ Microplate Strip Washer). The plate 
was incubated with a blocking solution (1% BSA in PBS) 
for 2 h, washed 4 times and the cytokine standards in known 
concentrations and samples were added to the reaction, fol-
lowed by 18 h of incubation at 4 °C. The plate was washed 
again and incubated with 100 µl of the detection antibody 
for 2 h. Afterwards, a new series of washes and a solution 
containing streptavidin linked to peroxidase was added to 
the plate. After 30 min of incubation at room temperature, 
the plate was washed again and the substrate buffer con-
taining ortho-phenylenediamine (OPD—Sigma) and H2O2 
(Merck) was added. The reaction was stopped with 50 µl of 
hydrochloric acid at a concentration of 1 M. The OPD oxida-
tion product was detected by colorimetry in an ELISA plate 
reader at a wavelength of 490 nm (BioTek™ ELx 800™ 
Absorbance Reader).
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Cytometric Bead Array (CBA) mouse (Th1/Th2/Th17, 
BD) was used to detect IL-2, IL-4, IL-6, IFN-γ, TNF-α and 
IL-10, as previously described [44]. Briefly, after prepar-
ing the capture spheres using the kit reagents, 25 µl of the 
supernatant of the preparations were added to 25 µl of solu-
tion containing capture spheres in a 96-well plate and incu-
bated protected from light for 2 h. After incubation, the plate 
was centrifuged for 5 min at 200 g and its supernatant was 
aspirated and discarded. One hundred µl of washing buffer 
was added to the plate and it was submitted to 2 cycles of 
5 min of centrifugation at 200 g. One hundred µl of wash 
buffer was added and mixed for 2 min at 1100 rpm. This 
content was transferred to 15 ml conical polypropylene tubes 
for reading by the BD FACSCanto® cytometer with laser 
reading capacity for 488, 532, 633 or 635 nm ranges and 
capable of distinguishing fluorescence between 576, 660 and 
> 680 nm. All the procedures followed the manufacturer’s 
instructions.

Statistical analysis

Statistical analysis was performed using the statistical soft-
ware GraphPad Prism 8.0 and Statistic. Data were submit-
ted to the Kolmogorov–Smirnov test for normality evalua-
tion and Grubbs’ test and ESD method for identification of 
extreme values. Data were analyzed by one-way analysis 
of variance (ANOVA) or two-way ANOVA, if applicable, 
followed by Bonferroni test for variables with parametric 
distribution. Data are presented as the mean ± standard 
error of the mean (SEM). The level of significance was set 
at p < 0.05.

Results

CBD prevented SB‑induced changes in the FST

We first performed a dose–response curve to evaluate the 
CBD effects in basal immobility time. In the absence of 
LPS, CBD (3, 10 and 30 mg/kg) did not change the immo-
bility time in FST [data not shown; n = 8]. Since none of the 
tested doses changed this behavior, the 30 mg/kg dose was 
chosen to be tested in animals treated with LPS, based on 
previously published data that evaluated the antidepressant/
anxiolytic-like effects of CBD [32, 47–49].

Regarding the immobility time, two-way ANOVA 
revealed a significant effect of LPS (F1,48 = 30.95; 
p < 0.0001), a significant effect of CBD treatment 
(F1,48 = 9.394; p = 0.0036), as well as a significant 
LPS × CBD interaction (F1,48 = 15.57; p = 0.0003). Post-
hoc analysis showed that LPS significantly increased the 
immobility time, which was prevented by the treatment with 

CBD 30 mg/kg (Fig. 1A). CBD per se did not influence the 
immobility time.

In the open field test, two-way ANOVA indicated a signif-
icant effect of LPS (F1,36 = 38.13; p < 0.0001), with no signif-
icant effect of CBD treatment (F1,36 = 0.01898; p = 0.8912) 
and no significant LPS × CBD interaction (F1,36 = 0.002392; 
p = 0.9613). Post-hoc analysis showed that LPS decreased 
locomotor activity. However, CBD pretreatment did not 
influence the total travelled distance induced by LPS. There 
was no influence of CBD treatment in the total travelled 
distance in the absence of LPS (Fig. 1B).

CBD induced varied effects on cytokines levels

We performed a dose–response curve to evaluate the CBD 
effects in cytokines levels in the hypothalamus, PFC and 
hippocampus from naïve animals (Supplementary Table 1). 
One-way ANOVA followed by Bonferroni post-hoc test 
showed that the lower dose of CBD (3 mg/kg) increased the 
IL-1β, IFN-γ, IL-4 and IL-6 levels in the PFC (p < 0.05).

Fig. 1   Effect of CBD treatment on sickness behavior and locomo-
tion. Effect of CBD (30  mg/kg, i.p.) and LPS (0.83  mg/kg, i.p.) in 
the forced swim test (FST). Bar graphs of immobility time from 
saline + vehicle (n = 13), saline + CBD (n = 13), LPS + vehicle 
(n = 13) and LPS + CBD (n = 13) groups and representative image of 
the FST (A). Effect of CBD (30 mg/kg, i.p.) and LPS (0.83 mg/kg, 
i.p.) in the open field test (OFT) and representative image of the OFT. 
Bar graphs of total distance travelled from saline + vehicle (n = 10), 
saline + CBD (n = 10), LPS + vehicle (n = 10) and LPS + CBD 
(n = 10) groups (B). Results are expressed as mean ± SEM. 
***p < 0.001 and ****p < 0.0001 (Two-way ANOVA followed by the 
Bonferroni). N = 10–13 in each group
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Fig. 2   Effect of CBD treatment in brain cytokines. Effect of CBD 
(30  mg/kg, i.p.) and LPS (0.83  mg/kg, i.p.) on the levels of brain 
cytokines. Bar graphs of IL-1β (A–C), IFN-γ (D–F), IL-2 (G–I), 
IL-4 (J–L), IL-6 (M–O), IL-10 (P–R) TNF-α (S–U) in the hip-

pocampus, PFC and hypothalamus, respectively. Results are 
expressed as mean ± SEM. *p < 0.05 and **p < 0.01. (Two-way 
ANOVA followed by the Bonferroni test). N = 6–8 in each group
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Afterward, we evaluated the cytokines levels from ani-
mals treated with LPS (0.83 mg/kg) and CBD (30 mg/
kg). In the hippocampus, two-way ANOVA showed a sig-
nificant LPS × CBD interaction for IL-1β and IFN-γ lev-
els (p < 0.05) (Fig. 2A, D; Table 1), and a strong tendency 
towards LPS × CBD interaction for TNF-α and IL-2 lev-
els (p = 0.0544 and p = 0.0505, respectively) (Fig. 2G, S; 

Table 1). These results demonstrate that CBD has opposite 
effects in the animals treated with saline + CBD in com-
parison with the animals treated with LPS + CBD, since 
CBD pretreatment increased these cytokines levels in the 
saline-treated animals, but decreased their levels in LPS-
treated animals, suggesting an anti-inflammatory effect in 
this region. 

Fig. 2   (continued)
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Table 1   CBD effect on LPS-induced changes on cytokines and neurotrophic factors

Statistical differences are emphasized in bold font
CBD (30 mg/kg, i.p.) effect on LPS-induced (0.83 mg/kg, i.p.) changes on cytokines levels
N = 5–8 in each group
V vehicle, S saline, HT hypothalamus, PFC prefrontal cortex, HC hippocampus, CBD cannabidiol, LPS lipopolysaccharide, SB sickness behavior

Cytokine Region Cytokine concentration (pg/mg of total protein) ANOVA

V + S CBD 30 + S V + LPS CBD 30 + LPS Interaction treatment 
vs. SB factor

Treatment factor (V 
or CBD 30)

SB factor (S or 
LPS)

IL-1β HT 11.6 ± 3.6 15.3 ± 5.1 14.6 ± 1.8 18.2 ± 5.2 F1,22 = 0.0003595
p = 0.9850

F1,22 = 0.7617
p = 0.3922

F1,22 = 0.4755
p = 0.4977

PFC 19.6 ± 4.3 41.25 ± 4.1 26.7 ± 1.9 31.7 ± 6.3 F1,23 = 3.411
p = 0.0777

F1,23 = 8.831
p = 0.0068

F1,23 = 0.08075 
p = 0.7788

HC 8.3 ± 2.0 16.9 ± 4.8 12.2 ± 1.7 4.7 ± 0.5 F1,22 = 7.489
p = 0.0120

F1,22 = 0.04633
p = 0.8316

F1,22 = 1.970
p = 0.1744

IFN-γ (×10–3) HT 7.9 ± 2.0 12.8 ± 5.0 8.4 ± 2.8 15.4 ± 1.7 F1,23 = 2.264;
p = 0.1460

F1,23 = 2.909
p = 0.1015

F1,23 = 2.805
p = 0.1075

PFC 25.2 ± 10.0 36.5 ± 8.9 29.5 ± 9.9 63.9 ± 4.9 F1,26 = 1.672
p = 0.2073

F1,26 = 6.600
p = 0.0163

F1,26 = 3.173
p = 0.0866

HC 14.9 ± 3.0 27.0 ± 5.0 20.7 ± 5.1 13.7 ± 2.9 F1,24 = 4.755
p = 0.0392

F1,24 = 0.3421
p = 0.5641

F1,24 = 0.7467
p = 0.3961

IL-2 (×10–3) HT 30.9 ± 8.8 27.0 ± 8.2 40.3 ± 8.7 24.2 ± 3.0 F1,24 = 0.5944
p = 0.4483

F1,24 = 1.579
p = 0.2210

F1,24 = 0.1698
p = 0.6839

PFC 36.8 ± 3.7 50.3 ± 8.0 36.4 ± 6.3 37.2 ± 8.5 F1,24 = 0.8669
p = 0.3611

F1,24 = 1.104
p = 0.3038

F1,24 = 0.9785
p = 0.3324

HC 13.9 ± 2.0 22.0 ± 4.4 18.0 ± 2.2 13.7 ± 3.4 F1,23 = 4.261
p = 0.0505

F1,23 = 0.3792
p = 0.5441

F1,23 = 0.5203
p = 0.4780

IL-4 (×10–3) HT 15.1 ± 3.4 11.4 ± 2.8 18.8 ± 2.2 26.8 ± 3.8 F1,21 = 3.172
p = 0.0894

F1,21 = 0.3790
p = 0.5448

F1,21 = 8.575
p = 0.0080

PFC 25.9 ± 8.8 89.2 ± 13.9 59.0 ± 11.0 73.9 ± 5.2 F1,22 = 4.595
p = 0.0434

F1,22 = 11.81
p = 0.0024

F1,22 = 0.6046
p = 0.4451

HC 26.1 ± 3.3 17.9 ± 5.2 29.6 ± 3.9 23.4 ± 23.4 F1,21 = 0.05642
p = 0.8145

F1,21 = 1.179
p = 0.2900

F1,21 = 3.010
p = 0.0974

IL-6 (×10–3) HT 16.0 ± 5.4 3.2 ± 1.1 785.8 ± 266.2 519.9 ± 109.1 F1,25 = 0.6174
p = 0.4394

F1,25 = 0.7486
p = 0.3951

F1,25 = 15.96
p = 0.0005

PFC 26.7 ± 8.1 43.9 ± 7.9 1548 ± 503.6 713.0 ± 240.4 F1,23 = 2.267
p = 0.1458

F1,23 = 2.087
p = 0.1620

F1,23 = 14.97
p = 0.0008

HC 15.2 ± 3.4 10.5 ± 2.7 340.8 ± 104.9 143.8 ± 34.9 F1,23 = 2.779
p = 0.1091

F1,23 = 3.053
p = 0.0939

F1,23 = 15.82
p = 0.0006

IL-10 (×10–3) HT 192.2 ± 54.9 69.6 ± 18.5 187.8 ± 68.3 244.3 ± 58.0 F1,25 = 3.451
p = 0.0750

F1,25 = 0.4699
p = 0.4994

F1,25 = 3.139
p = 0.0886

PFC 260.0 ± 44.5 134.7 ± 26.8 136.4 ± 28.2 91.4 ± 19.5 F1,24 = 1.600
p = 0.2181

F1,24 = 7.160
p = 0.0132

F1,24 = 6.882
p = 0.0149

HC 95.3 ± 27.4 60.8 ± 12.6 39.0 ± 7.3 56.9 ± 13.3 F1,27 = 2.330
p = 0.1385

F1,27 = 0.2361
p = 0.6309

F1,27 = 3.082
p = 0.0905

TNF-α (×10–3) HT 34.2 ± 11.0 68.6 ± 26.4 69.6 ± 15.0 62.0 ± 4.8 F1,25 = 1.664
p = 0.2089

F1,25 = 0.6782
p = 0.4180

F1,25 = 0.7777
p = 0.3862

PFC 70.7 ± 21.6 93.9 ± 15.4 60.0 ± 7.8 89.0 ± 9.6 F1,23 = 0.03078
p = 0.8623

F1,23 = 2.543
p = 0.1244

F1,23 = 0.2359
p = 0.6318

HC 33.0 ± 6.2 40.6 ± 7.2 42.5 ± 4.9 26.4 ± 5.1 F1,25 = 4.074
p = 0.0544

F1,25 = 0.5236
p = 0.4760

F1,25 = 0.1496
p = 0.7022

Neurotrophin Region Neurotrophin concentration (pg/mg of total protein) ANOVA

V + S CBD 30 + S V + LPS CBD 30 + LPS Interaction treatment 
vs. SB factor

Treatment factor 
(V or CBD 30)

SB factor (S or LPS)

BDNF PFC 22.7 ± 3.4 28.5 ± 4.3 20.6 ± 1.7 29.0 ± 4.7 F1,19 = 0.1273 F1,19 = 3.884 F1,19 = 0.05384
p = 0.7252 p = 0.0635 p = 0.8190

HC 9.9 ± 1.9 13.2 ± 2.5 15.0 ± 1.2 8.1 ± 1.7 F1,16 = 7.340
p = 0.0155

F1,16 = 0.8593
p = 0.3677

F1,16 = 0.0003656
p = 0.9850

NGF PFC 26.4 ± 4.3 39.6 ± 6.4 25.4 ± 3.1 34.5 ± 5.1 F1,18 = 0.6539
p = 0.4293

F1, 18 = 7.428
p = 0.0139

F1,18 = 0.06861
p = 0.7964

HC 10.2 ± 2.0 16.8 ± 2.7 23.6 ± 2.7 11.9 ± 1.8 F1,17 = 14.60
p = 0.0014

F1,17 = 1.140
p = 0.3006

F1,17 = 3.114
p = 0.0956
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However, in the PFC, two-way ANOVA followed by 
Bonferroni post-hoc test indicated that CBD pretreatment 
induced an increase in IL-1β levels without LPS stimulus 
and in IFN-γ levels with LPS stimulus (p < 0.05) (Fig. 2B, 
E; Table 1). Furthermore, two-way ANOVA showed a sig-
nificant CBD effect and also a significant LPS × CBD inter-
action in the IL-4 levels, and Bonferroni post-hoc test indi-
cated that CBD pretreatment increased the IL-4 levels in 
the saline-treated animals (p = 0.0037) (Fig. 2K; Table 1), 
but had no effect in LPS-treated animals. Besides, regarding 
the IL-10 levels, two-way ANOVA followed by Bonferroni 
post-hoc test indicated both CBD and LPS effects, where 
both treatments decreased the IL-10 levels in this region 
(Fig. 2Q; Table 1).

In the hypothalamus, two-way ANOVA indicated a 
significant LPS effect in the IL-4 levels, and the post-hoc 
test showed a difference between the saline + CBD and 

LPS + CBD groups (p = 0.0164), demonstrating that ani-
mals treated with LPS + CBD presented an increase in the 
IL-4 levels, in comparison with the animals treated with 
saline + CBD (Fig. 2L; Table 1).

Finally, two-way ANOVA followed by Bonferroni post 
hoc indicated that LPS significantly increased the IL-6 levels 
in all regions evaluated (Fig. 2M–O; Table 1). Importantly, 
CBD partially reduced the levels of this cytokine, since the 
group treated with the cannabinoid did not differ either from 
LPS or saline groups. There were no significant changes in 
the other cytokines levels evaluated (Table 1).

CBD reduced BDNF and prevented the increase in NGF 
levels in LPS-treated animals. First, we performed the dos-
age of BDNF and NGF levels in animals in which we per-
formed the dose-response curve to evaluate the CBD effects 
in these neurotrophin levels. All the data of the BDNF and 
NGF levels in the PFC and hippocampus of animals treated 

Fig. 3   Effect of CBD treatment in brain neurotrophic factors. Evalua-
tion of CBD (30 mg/kg, i.p.) and LPS (0.83 mg/kg, i.p.) on the levels 
of brain neurotrophin levels. Bar graphs of BDNF (A, B) and NGF 

(C, D) in the hippocampus and in PFC, respectively. Results are 
expressed as mean ± SEM. *p < 0.05 (two-way ANOVA followed by 
the Bonferroni test). N = 5–6 in each group
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with CBD (3, 10 and 30 mg/kg) are described in Supple-
mentary Table 1. One-way ANOVA followed by Bonferroni 
post-hoc showed that the lowest level of CBD (3 mg/kg) 
increased the levels of both neurotrophins in the PFC.

Afterward, we evaluated the neurotrophin levels in brain 
regions from animals treated with both LPS (0.83 mg/
kg) and CBD (30 mg/kg). In the hippocampus, two-way 
ANOVA showed a significant interaction between LPS x 
CBD for BDNF and NGF levels (p = 0.0155 and p = 0.0014, 
respectively), (Fig. 3A and C) and a significative restorement 
of NGF levels in LPS-injected animals treated with CBD 
(p = 0.0153) Besides, in the PFC, two-way ANOVA signifi-
cantly showed that the CBD treatment has an influence on 
NGF levels (p = 0.0139) (Fig. 3B).

Discussion

Despite the major health and socioeconomic impacts asso-
ciated with the MDD, its pathophysiology remains poorly 
understood [50–52]. In addition, a number of patients remain 
refractory to the pharmacological treatments [4, 6–9]. Thus, 
there is a demand for new treatments for MDD. In the pre-
sent study, we demonstrated that CBD revealed antidepres-
sant-like effects that may be associated with the alterations 
in the levels of inflammatory and neurotrophic factors.

The literature describes several behavioral tests to study 
depressive-like behavior in animal models, such as FST, tail 
suspension test and sucrose preference test [53]. The FST is 
the most commonly used assay, and due its high predictive 
validity, the FST is also used to investigate potentially new 
antidepressants [54, 55]. However, although FST is widely 
used as a model to evaluate depressive-like behavior, from 
a broader perspective, this model may be used to evaluate 
stress coping, that is present in different behavioral disorders 
[56].

Herein, we observed an increased immobility time in ani-
mals submitted to LPS injection, which was prevented by 
CBD 30 mg/kg. This result corroborates its potential as an 
antidepressant agent, and strengthens the hypothesis that the 
drug might reverse the depressive-like behavior, once it has 
been previously reported that this dose of the cannabinoid 
also prevented the depressive-like behavior in the tail sus-
pension and sucrose preference tests induced by LPS [57]. 
Besides, CBD also presented antidepressant-like effects in 
either naïve [26, 32, 58] or disease animal models, such as 
learned helplessness model and olfactory bulbectomy mod-
els [47, 59]. We submitted the animals to the OF test, since 
mobility reduction is an acute well-established characteristic 
of LPS administration, and is also associated with the pro-
longed immobility time in the forced swimming [60–62]. 
Despite observing the previously reported changes in mobil-
ity, CBD did not influence the total distance travelled in both 

saline and LPS treated animals. Florensa-Zanuy et al. also 
found no effect in CBD 30 mg/kg pretreatment in the open 
field in the depression model induced by LPS [57].

The LPS-induced SB model is a validated and widely 
used inflammatory model of depression, in which the activa-
tion of the immune system, with the recruitment of different 
leukocytes and induction of cytokines synthesis, are associ-
ated with the behavioral changes. Similarly, MDD is also 
characterized by an increased production and interaction of 
several cytokines simultaneously [63, 64].

Here, we found that CBD showed different effects 
depending on the brain region. In the brain, the main source 
of cytokines is the microglia, which present a heterogeneous 
population, with differences in cell number, molecular signa-
ture and functionality [65, 66]. Furthermore, it is well known 
that the neurons also present subpopulations along the brain, 
which releases different neurotransmitters and, consequently, 
induce different microglial responses to stimuli [67]. For 
example, the microglia population from the hippocampus, 
an area characterized as a neurogenic zone, is different in 
number and functionality of the microglia from the other 
areas [65], and the importance of regional differences in 
microglia have also been reported in the SB model. CD11 
and CX3CR1, two microglial markers, were increased in the 
hippocampus of animals treated with LPS in comparison 
with the controls, but no difference was found in the frontal 
cortex [68]. There was an increase in hippocampal IL-1β 
levels following a peripheral E. coli administration, but no 
difference in other regions such as the PFC and the hypothal-
amus [69]. Taken together, these differences might explain 
the differences found in the CBD effects in the cytokines 
levels between all regions evaluated in our study.

Although CBD increased pro-inflammatory cytokines 
both in the hippocampus and PFC of saline-treated animals, 
and also in the PFC from animals treated with CBD 3 mg/
kg, it is important to evaluate the magnitude of this increase. 
For example, LPS and monophosphoryl lipid A (MPLA) are 
both capable of binding TLR4 and inducing proinflamma-
tory cytokines release [70]. However, due to the difference 
in the magnitude of the cytokines levels [70], MPLA and 
LPS induce different effects in the brain, since MPLA can 
present neuroprotective effects in different conditions, while 
LPS does not [71, 72]. Finally, it is worth noting that IL-4 
was also increased by CBD in saline-treated mice. This is 
an important observation, since despite may having anti- 
and proinflammatory effects [73, 74], different studies have 
shown that this IL-4 modulates microglia activity and has 
neuroprotective effects [75–77].

Regarding the effects on the neurotrophic factors, CBD 
showed the same pattern of response in both the hippocam-
pus and in the PFC. As discussed above, microglia pre-
sents subpopulations along the different brain areas [65]. 
In the hippocampus, these cells are an important source of 
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neurotrophic factors that contribute to neurogenesis [78]. 
Interestingly, it has been shown that LPS activates microglia 
and induces neurotrophic factors release [62, 79–82]. How-
ever, in our model, CBD pretreatment might have prevented 
LPS-induced microglia activation, which could explain why 
the cannabinoid prevented the increase of the evaluated neu-
rotrophic factors and cytokines levels in the hippocampus. 
Besides, a previous report showed that CBD, at the dose 
of 30 mg/kg, presented an antidepressant-like effect in tail 
suspension test and decreased the neurogenesis [83].

In our model, LPS increased NGF in the hippocampus, 
an effect that was prevented by CBD. Although studies that 
evaluated the effect of CBD on NGF are scarce, it is pos-
sible that the prevention of cytokines production, such as 
IL-6, could reduce the production of this neurotrophic factor 
[84]. However, this point should be further investigated in 
future studies.

The present study indicates IL-6 as an important bio-
chemical mediator for the behavioral findings, since it 
is increased in animals submitted to the MDD model. 
Although CBD failed to completely prevent this increase, 
the cytokine levels in SB group also do not differ from con-
trol levels. As previously discussed, IL-6 plays a critical 
role as a modulator and amplifier of inflammatory signal-
ing, stimulating cytokine synthesis and recruitment of cells 
involved in the immune response [85]. Moreover, both 
the intrathecal administration of high doses of IL-6 and 
the increased expression of its receptors induce increased 
immobility time in FST [86]. Florensa-Zanuy et al. also 
pretreated the animals with CBD 30 mg/kg and induced a 
depressive-like behavior by LPS 0.83 mg/kg administration. 
Similarly, they found an increase in IL-6 levels in the brain, 
as well in the plasma. However, in their work, CBD pretreat-
ment prevented this increase [57]. The discrepancies in this 
result could be explained by the different timepoint of the 
cytokines analysis. In fact, the peak of IL-6 levels occurs 
3 h after the LPS injection [16]. In this sense, we evaluated 
the IL-6 levels closer of the peak than Florensa-Zanuy et al., 
which could mask the CBD effect. Therefore, it is possible to 
assume that IL-6 is involved in the depressive-like behavior, 
which was observed herein.

Several inflammatory mediators are possibly changed 
in MDD, as previously reported [10, 11]. Furthermore, the 
increase in cytokines levels [13, 14] was correlated with 
the severity of the disorder [11], while the treatment with 
the classical SSRI antidepressants reduced their levels [87]. 
Although CBD has a multifactorial molecular profile, the 
CBD’s mechanism of action in MDD context is not well 
elucidate yet [88]. Most studies focused on the involvement 
of the 5-HT pathway in the antidepressant-like effects of 
CBD [25, 32, 59, 89]. Here, we showed the possibility of 
the involvement of the CBD’s anti-inflammatory properties 

in its antidepressant-like effects. In this sense, other CBD’s 
molecular targets such as PPARγ, TRP receptors and GPR55 
could also has a relevant role in the neuroprotective effects 
of CBD, since these targets acts in inflammatory pathways 
[90]. For example, PPARγ participates of the modulation of 
NF-κB, inhibiting some cytokines such as IL-6, IL-1β and 
TNF-α [91]. On the other hand, GPR55 KO mice present 
an increase in IL-4, IL-10, and IFN-γ levels [92]. In fact, 
Florensa-Zanuy et al. [57] demonstrated that CBD 30 mg/kg 
pretreatment decreased IL-6 in the brain of LPS-stimulated 
mice, as well as reduced PPARγ and NF-κB activation, but 
had no effect in TNF-α levels.

Although there is an intricate crosstalk between PPARγ 
and NF-κB [93, 94], it is difficult to speculate how a drug 
that activates or inhibits these transcription factors may 
alter the production of inflammatory mediators, since other 
pathways may also be affected. In addition, transcription 
factors differently regulate the expression of inflammatory 
mediators depending on the time and condition. For exam-
ple, PPARγ activation may decrease [95, 96] or increase 
[97–99] IL-1β or IL-6 depending on the model. It has been 
shown that PPARγ downregulates IL-6 in the acute phase 
of a model of cerebral ischemia, but not later, since this 
cytokine has either protective or deleterious roles in this 
condition [100]. Thus, the effect of CBD on cytokines 
should not be interpreted as a sole modulation of PPARγ/
NF-κB pathways.

This study has some limitations. Although the results 
were obtained in an inflammatory model of depression, 
MDD is a multifactorial disease. Thus, different animal 
models are required to better understand not only its patho-
physiology, but also the pharmacological effects of CBD. 
In addition, this work did not determine neither the poten-
tial cells responsible for the production of the cytokines, 
nor whether these inflammatory mediators have a periph-
eral or central origin.

In conclusion, CBD prevented the impaired behavior 
induced by an inflammatory stimulus, commonly used to 
evaluate depressive-like and sickness behavior. Moreover, 
CBD differently regulated cytokines and neurotrophins. 
These are important findings, since they extend the previ-
ous findings of the literature that showed antidepressant-
like effects of CBD in other models of depression. The 
mechanisms that mediate these pharmacological effects of 
CBD should be investigated in future studies.
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