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Features analysis is an important task which can significantly affect the performance of automatic bacteria colony picking.
Unstructured environments also affect the automatic colony screening. This paper presents a novel approach for adaptive colony
segmentation in unstructured environments by treating the detected peaks of intensity histograms as a morphological feature of
images. In order to avoid disturbing peaks, an entropy based mean shift filter is introduced to smooth images as a preprocessing
step. The relevance and importance of these features can be determined in an improved support vector machine classifier using
unascertained least square estimation. Experimental results show that the proposed unascertained least square support vector
machine (ULSSVM) has better recognition accuracy than the other state-of-the-art techniques, and its training process takes less
time than most of the traditional approaches presented in this paper.

1. Introduction

Bacteria colony isolation [1] is a labor intensive task over the
past decades. Manual bacteria colony picking is tedious and
experience dependent. Colony screening is in unstructured
environments due to different agarmediums and cultivations.
Figure 1 is an example of Erythrosin bacteria colony sitting
on agar. An automatic colony picking system can be used
to make this process consistent and reliable with less time
consumption. Researchers worldwide are currently seeking
fast and reliablemethods for high throughput colony picking.
To achieve this, we need to make sure high quality colony
illumination and image segmentation are the critical stages
of a colony picking system. Currently, there are three major
illumination techniques used for image acquisition: (1) drop-
in bright-field illumination, (2) back-projective bright-field
illumination, and (3) suspended dark-field illumination.
Figure 2 shows the different imaging quality based on the
three techniques introduced above. Suspended dark-filed
illumination based approaches can be used to reduce the
influence of lights. In this circumstance, colony agar plates
are placed in a suspended dark-field environment. Using

reflected and refractive lights, we can obtain volumetric
structures of colonies with good image quality. However, the
suspended dark-filed illumination based approaches could
achieve less satisfactory quality of images than the other two
approaches, due to a similar color caused by the crowded-
ness of colonies. Image segmentation approaches such as
thresholding [2], region growing [3], watershed [4], and
mean shift [5] are commonly used in medical image analysis.
Each of these classical methods has its own strengths and
weaknesses. For example, a thresholding method is fast but
requires the systematic parameters to be changed for different
environments. Region growing methods are more robust
than the thresholding methods but lack sufficient efficiency.
The colony picking systems available on the market have a
number of specific requirements in order to achieve good
segmentation performance, for example, setting the region of
interests, controlling the extent of cluttering, andmaintaining
appropriate light conditions.

In this paper, we deploy an intensity histogram based
morphological features extraction algorithm, which con-
tributes to colony analysis. The proposed method employs
a peak-searching method in a standard intensity histogram.
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Figure 1: Erythrosin bacteria colony on agar.

Afterwards, to achieve correct colony feature classification,
we propose an entropy basedmean shift algorithm to smooth
the image as a preprocess stage. Finally, we introduce an
improved approach for feature selection using an unascer-
tained least square support vector machine (ULSSVM) clas-
sifier. To our knowledge, this is the first attempt to use the
unascertained attributes of the detected features for the pur-
pose of classification. We evaluate the proposed approach on
a large dataset of colony images. Based on these experiments,
we show that our approach can efficiently deliver correct
classification results.

2. Proposed Approach

In the smoothing process of image, it is very important for a
nonlinear filter to keep the fringe detail of an image during
the process. Optimization techniques have been popularly
used in image processing. This is driven by the performance
need as the target of an application. However, it is very
difficult to obtain an optimal solution (stopping criterion)
for individual applications. More details can be found in
[6–9]. Mean shift has proven to be appliance effective tool
for image processing because of its nonparametric property.
Smoothing by mean shift algorithm has been reported in the
literature. For example, in [10], Zhao and Xi introducedmean
shift as a smooth filter for processing YIQ color images and
compared it with Wiener filter. In [11], Han and Sohn used
mean shift combined with a sigma filter in an illumination
and color compensation system. In literature [12], Sahba and
Venetsanopoulos applied mean shift to reserve fringe detail
and detect breast mass. These results are promising but the
computational speed of mean shift is unexpectedly slow.

Entropy is a measure of complexity. We can also use
entropy to inspect system uncertainty. Low entropy images
have very little contrast and large runs of pixels with the same
value. An image that is perfectly flat will have entropy of zero.
Consequently, they can be compressed to a relatively small
size. On the other hand, high entropy images have a great
deal of contrast from one pixel to the next and consequently
have more details than low entropy images. Entropy has
been applied in pattern recognition, object tracking, and
image segmentation, for example, [13–15], where entropy has
been used as a termination criterion. As mentioned in the
first section, the proposed feature based colony classification
approach begins with entropy based mean shift filter, and

it is followed by applying intensity histogram analysis to
the filtered images. The characteristic peaks’ coefficients
retrieved from intensity histograms are then applied to colony
classification within the framework of unascertained least
square support vector machine.

2.1. Entropy Based Mean Shift Filter. The following is the idea
of a standard mean shift approach [16]. Let 𝑥𝑗 be a numerical
sample of 𝑛 in a 𝑑-dimensional space. The basic mean shift is
defined as

𝑀ℎ (𝑥) =
1

𝑘
∑
𝑥𝑖∈𝑔ℎ

(𝑥𝑖 − 𝑥) , (1)

where 𝑔ℎ is a window based on the center 𝑥 and radius ℎ. 𝑘 is
the sample set number in 𝑔ℎ. (𝑥𝑖 − 𝑥) is the relative offset of
center 𝑥.

Equation (1) is a monotonic form and less effective in a
practical application. A Kernel based mean shift algorithm is
described as follows:

𝑀ℎ (𝑥) =
∑
𝑛
𝑖=1𝑄 ((𝑥𝑖 − 𝑥) /ℎ) 𝛼 (𝑥𝑖 − 𝑥)

∑
𝑛
𝑖=1 𝑄 ((𝑥𝑖 − 𝑥) /ℎ) 𝛼 (𝑥𝑖)

, (2)

where 𝛼(𝑥) is the self-impact factor and 𝑄(𝑥) is a kernel
function.

In a color image with 𝑛 × 𝑛 pixels, each pixel corresponds
to a 5-dimension vector 𝑅5 (𝑅, 𝐺, 𝐵,𝑋, 𝑌). Due to the inde-
pendence of space and color information, the kernel function
is obtained in

𝑄𝑔𝑠𝑔𝑟 (𝑥) =
1
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) , (3)

where 𝑥𝑠 is the spatial position of a pixel; 𝑥𝑟 is the color
information of a pixel; 𝑔𝑠 is a spatial window based on the
center 𝑥 and radius 𝑠;𝑔𝑟 is a color window based on the center
𝑥 and radius 𝑟.

Let 𝑞(𝑥𝑡) be the gray value probability of the outcome 𝑥𝑡,
𝑘 = 1, . . . 𝑛.𝐴 is an image with log2(0) = 0; log2(1/𝑞(𝑥𝑡)) is
called the surprisal of the outcome 𝑥𝑡. Entropy is defined as

𝐹 (𝑋) ≡

2𝑛

∑
𝑡=1

𝑞 (𝑥𝑡) log2 (
1

𝑞 (𝑥𝑡)
) = −

2𝑛

∑
𝑡=1

𝑞 (𝑥𝑡) log2𝑞 (𝑥𝑡) .

(4)

Entropy is determined based on the pixels distribution in
an image, which is influenced by two factors: foreground
and background or called noise. The uncertainty of entropy
is dominated by the noise’s variance. Entropy can be used
to measure the homogeneity of an image area: the more
homogeneous image, the less the entropy values. In practice,
when we work with images, due to the noise, entropy cannot
decrease to zero but it can reach a stable value. Thus, entropy
can be applied as a stopping criterion for amean shift iteration
(Algorithm 1).

2.2. Model of Peak Searching in Intensity Histogram. Intensity
histogram is an important feature of images and can be
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Figure 2: Three illumination technologies.

Let 𝑥𝑖 𝑖 = 1, . . . , 𝑛 be the input image. Let 𝑂𝑖 𝑖 = 1, . . . , 𝑛 be the filtered image. Pixel 𝑝 ∈ 𝑥𝑖, 𝑝 = (𝑅, 𝐺, 𝐵, 𝑥, 𝑦) ∈ R5.
Let ent.0 be the entropy initial value, ent.1 be the next iteration of ent.0, and ent.2 be the next value of ent.1.
Let erras be the absolute value of the difference between the first two iterations. Let edset be the
thresholding as iterations stopping criteria. Our algorithm comprises the steps listed below:
(1) Initialize ℎ = 1, 𝑦ℎ,1 = 𝑝ℎ, 𝑒𝑛𝑡.2 = 1, 𝑒𝑟𝑟𝑎𝑠 = 1, 𝑒𝑑𝑠𝑒𝑡 = 0.
(2) While 𝑒𝑟𝑟𝑎𝑠 > 𝑒𝑑𝑠𝑒𝑡, then

(2.1) Filtering image based on mean shift. Store the image in 𝑂[𝐾].
(2.2) Calculating entropy from the 𝑂[𝐾] and store the image in 𝑒𝑛𝑡.1.
(2.3) Entropy is used to calculate the absolute difference which is obtained in the previous step; 𝑒𝑟𝑟𝑎𝑠 = |𝑒𝑛𝑡.1 − 𝑒𝑛𝑡.2|.
(2.4) Update the parameters; 𝑒𝑛𝑡.2 = 𝑒𝑛𝑡.1 and 𝑂[𝑘+1] = 𝑂[𝑘].
(2.5) Calculate the mean shift which is carried out until entropy convergence.

(3) Store 𝑍𝑖 which is calculated 𝑍𝑖 = (𝑥
𝑠
𝑖 , 𝑦
𝑟
𝑖,𝑐), here𝑥

𝑠
𝑖 is the spatial information and 𝑦𝑟𝑖,𝑐 is the color range information.

Algorithm 1: Entropy based mean shift filtering algorithm.

regarded as the approximate expression of a density function
of image intensities. It shows the frequency of an intensity
appearing in an image. An intensity histogram is described
in

𝐺𝑖 =

𝑀

∑
𝑚=1

𝑁

∑
𝑛=1

𝑃 (𝑖, 𝑚, 𝑛) , (5)

where 𝑀 and 𝑁 represent the total numbers of rows and
columns, respectively, and𝐺𝑖 represents the appearance times
of intensity 𝑖, and 𝑃(𝑖, 𝑚, 𝑛) is described as follows:

𝑃 (𝑖, 𝑚, 𝑛) = {
1 𝑃 (𝑚, 𝑛) = 𝑖

0 𝑃 (𝑚, 𝑛) ̸= 𝑖,
(6)

where 𝑃(𝑚, 𝑛) is the intensity value of point (𝑚, 𝑛). As the
sizes of different images may be different, to avoid the impact
of image size, we normalize each image according to the
following equation:

𝐺
󸀠
𝑖 =

𝐺𝑖

𝑇
, (7)

where 𝐺󸀠𝑖 is a normalization value and 𝑇 represents the total
amount of the pixels of an image. Figure 1 shows an example
of bacteria colony and its intensity histogram using (5), (6),
and (7).

In Figure 1, the entire image can be divided into two
main zones: culturemediumzone and colony zone, according
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(1) Obtain Δ𝐺󸀠𝑖 from the image transformed based on Meanshift algorithm, and using a second order differentiation described in (8).
(2) Find the highest peak from the entire curve.
(3) Adaptively select a defined threshold: The threshold used to obtain the global peak is determined by both the Maximum

and the minimum peaks (threshold = (max (peak) −min (peak))/8).
If two peaks are detected, continue. If two peaks are found, jump to Step 6.

Repeat
(4) Increase the threshold, from ((max (peak) −min (peak))/8) to ((max (peak) – min (peak))/4).
Until
(5) Stop if finding two characteristic peaks.
(6) End

Algorithm 2: The proposed adaptive quickly peaks detection.
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Figure 3: Normalised intensity histogram.

to the contrast and density of the image. In Figure 3, there
are two peaks, which represent high frequency values of the
corresponding intensities. The difference between the gray
levels of the two peaks is 133, and the difference between
the two intensity frequencies of the two peaks is 0.39. The
intensity histogram mathematical model will be introduced
in the following sections.

The peaks and valleys shown in Figure 3 can be obtained
using the second-order derivative.Themethod to find a peak
or a valley is described in

Δ𝐺
󸀠
𝑖 =

{{

{{

{

1 𝐺
󸀠
𝑖 − 𝐺󸀠𝑖+1 < −𝐻

0
󵄨󵄨󵄨󵄨󵄨
𝐺󸀠𝑖 − 𝐺󸀠𝑖+1

󵄨󵄨󵄨󵄨󵄨
< 𝐻

−1 𝐺󸀠𝑖 − 𝐺󸀠𝑖+1 > 𝐻,

(8)

where 𝐻 refers to a positive threshold which is set accord-
ing to a specific image to reduce inaccuracy because of
infinitesimal disturbance. Δ𝐺󸀠𝑖 represents the tendency of the
histogram curve at the point where the intensity equals 𝑖.
Δ𝐺󸀠𝑖 = 1means that the curve ascends, Δ𝐺󸀠𝑖 = −1means that
the curve descends, and Δ𝐺󸀠𝑖 = 0means that the curve is flat.
Therefore, 1(0 ⋅ ⋅ ⋅ 0) − 1 indicates the peak of the curve, and
−1(0 ⋅ ⋅ ⋅ 0)1 refers to the valley of the curve. In Figure 3, the
peaks have been extracted according to themethod described
above.

Through the experiments, it is found that most of the
intensity histogram curves change from double-peak to
multipeak due to different bacteria colony in different illumi-
nation conditions. It is possible to obtain multiple local peaks

or valleys in case the boundary of the intensity histogram
is not smooth. The proposed peaks searching algorithm is
shown in Algorithm 2.

3. Unascertained Least Square Support
Vector Machine

Support vectormachines (SVM) have beenwell studied in the
machine learning field, which was proposed by Vapnik [17].
The performance of SVM has been verified in many applica-
tions, such as handwriting recognition [18], face recognition
[19], and medical pattern matching [20]. But the training
speed of SVM is too slow and this hinders its applications.
Different from the classical support vectormachinemethods,
the least squares support vectormachines (LSSVM) proposed
by Suykens and Vandewalle [21] were to change the form
of the original convex quadratic optimization problem into
a linear optimization problem and they effectively enhance
the training speed. But it is hard to classify some uncertain
information. Based on LSSVM and unascertained mathe-
matical models, we propose the ULSSVM algorithm. For
unascertained information, we can use unascertained num-
ber [22] and unascertained programming [23] to describe our
algorithm. Please see below for a summary of these theories.

Theorem 1. [𝛼, 𝛽], 𝛼 = 𝑥1 < 𝑥2 < ⋅ ⋅ ⋅ , 𝑥𝑛 = 𝛽, if function
𝑓(𝑥) satisfies

𝑓 (𝑥) = {
𝜙𝑖 𝑥 = 𝑥𝑖, 𝑖 = 1, . . . , 𝑙

0 𝑥 ̸= 𝑥𝑖, 𝑥 ∈ [𝛼, 𝛽] ,

s.t.
𝑙

∑
𝑖=1

𝜙𝑖 = 𝜙, 0 < 𝜙𝑖 ≤ 1 (𝑖 = 1, . . . , 𝑙) ,

(9)

where [𝛼, 𝛽] and 𝑓(𝑥) form 𝑙 order unascertained numbers
and are set as [[𝛼, 𝛽], 𝑓(𝑥)]. 𝜙 is the main reliability. [𝛼, 𝛽]
is the value range. 𝑓(𝑥) is the main reliability distribution
density function. {𝑥𝑖} is a possible value sequence of the
unascertained numbers. {𝜙𝑖} is a confidence value sequence of
the unascertained numbers.
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Theorem 2. Setting the unascertained number 𝑎 = [[𝛼1, 𝛼𝑛],

𝑓(𝑦)], 𝑏 = [[𝛽1, 𝛽𝑚], 𝑘(𝑥)],

𝑓 (𝑦) = {
𝜙𝑖, 𝑦 = 𝑦𝑖, 𝑖 = 1, . . . , 𝑙

0, 𝑦 ̸= 𝑦𝑖, 𝑦 ∈ [𝑦1, 𝑦𝑙] ,
(10)

𝑙

∑
𝑖=1

𝜙𝑖 = 𝜙, 0 < 𝜙𝑖 ≤ 1 (𝑖 = 1, . . . , 𝑙) , (11)

𝑘 (𝑥) = {
𝛾𝑗, 𝑥 = 𝑥𝑗, 𝑗 = 1, . . . , 𝑝

0, 𝑥 ̸= 𝑥𝑗, 𝑥 ∈ [𝑥1, 𝑥𝑝] ,
(12)

𝑃

∑
𝑗=1

𝛾𝑗 = 𝛾, 0 < 𝛾𝑗 ≤ 1 (𝑗 = 1, . . . , 𝑝) . (13)

One calls inequalities 𝑎 ≤ 𝑏, 𝑏 ≤ 𝑎 unascertained events.

Theorem3. One calls the following programing as an unascer-
tained constraint programing:

max 𝑓

s.t. 𝐶𝑟 {𝑓 (𝑋, 𝑎) ≥ 𝑓} ≥ 𝛾

𝐶𝑟 {𝑔𝑗 (𝑋, 𝑏𝑗) ≤ 0, 𝑗 = 1, . . . , 𝑝} ≥ 𝜙,

(14)

where 𝑋 is a decision vector and 𝑎, 𝑏𝑗 (𝑗 = 1, . . . , 𝑝) are
unascertained parameter vectors.𝑓(𝑋, 𝑎) is the target function.
𝑔𝑗(𝑋, 𝑏𝑗) is a constraint function. 𝜙, 𝛾 (𝜙, 𝛾 ∈ (0, 1]) are confi-
dence levels of the constraint and target function. 𝐶𝑟{⋅} is a
credible degree of the unascertained events.

Based on the preliminary knowledge mentioned above, if
the SVM training data obtains unascertained information, we
can transform the unascertained information into unascer-
tained number

𝑎 = [[𝑥1, 𝑥𝑛] , 𝑓 (𝑥)] ,

𝑓 (𝑥) = {
𝜙𝑗 𝑥 = 𝑥𝑗, 𝑗 = 1, . . . , 𝑙

0 𝑥 ̸= 𝑥𝑗, 𝑥 ∈ [𝑥1, 𝑥𝑙] .

(15)

The training set is defined in

𝐾 = {(𝑦1, 𝑎1) , (𝑦2, 𝑎2) , . . . , (𝑦𝑙, 𝑎𝑙)} , (16)

where 𝑦𝑖 ∈ 𝑅𝑙, 𝑎𝑖 is an unascertained number, (𝑦𝑖, 𝑎𝑖) (𝑖 =

1, . . . , 𝑙) is an unascertained training point, and 𝐾 is an
unascertained training set.

The objective function can be minimized as follows:

min
𝜛,𝑏,𝜉

𝐽 (𝑤, 𝜉) =
1

2
‖𝑤‖
2
+
1

2
𝛾

𝑛

∑
𝑖=1

𝜉
2
𝑖 ,

s.t. 𝐴 𝑖 [𝑤
𝑇
𝜙 (𝑥𝑖) + 𝑏] = 1 − 𝜉𝑖, 𝑖 = 1, . . . 𝑛.

(17)

We then define a Lagrange function as

𝐿 (𝑤, 𝑏, 𝜉, 𝛼) =
1

2
‖𝑤‖
2
+
1

2
𝛾

𝑛

∑
𝑖=1

𝜉
2
𝑖

−

𝑛

∑
𝑖=1

𝛼𝑖 {𝐴 𝑖 [𝑤
𝑇
𝜙 (𝑥𝑖) + 𝑏] − 1 + 𝜉𝑖} .

(18)

According to the KKT condition,

𝜕𝐿

𝜕𝑤
= 0 󳨐⇒ 𝑤 =

𝑛

∑
𝑖=1

𝛼𝑖𝐴 𝑖𝜑 (𝑥𝑖) ,

𝜕𝐿

𝜕𝑏
= 0 󳨐⇒

𝑛

∑
𝑖=1

𝛼𝑖𝐴 𝑖 = 0,

𝜕𝐿

𝜕𝜉𝑖
= 0 󳨐⇒ 𝛼𝑖 = 𝛾𝜉𝑖,

𝜕𝐿

𝜕𝛼𝑖
= 0 󳨐⇒ 𝐴 𝑖 [𝑤

𝑇
𝜙 (𝑥𝑖) + 𝑏] − 1 + 𝜉𝑖 = 0.

(19)

Equation (19) can turn into the following matrix problem:

[
[
[

[

𝐿 0 0 −𝑍𝑇

0 0 0 −𝑌𝑇

0 0 𝛾𝐼 −𝐿

𝑍 𝑌 𝐿 0

]
]
]

]

[
[
[

[

𝜛

𝑏

𝜉

𝛼

]
]
]

]

=
[
[
[

[

0

0

0

𝐿

]
]
]

]

, (20)

where 𝑍 = [𝜑(𝑥1)
𝑇
𝑦1, 𝜑(𝑥2)

𝑇
𝑦2, . . . 𝜑(𝑥𝑛)

𝑇
𝑦𝑛]
𝑇, 𝑌 = [𝑦1,

𝑦2, . . . , 𝑦𝑛], 𝐿 = [1, 1, . . . , 1]
𝑇, 𝜉 = [𝜉1, 𝜉2, . . . , 𝜉𝑛], and 𝛼 =

[𝛼1, 𝛼2, . . . , 𝛼𝑛].
We eliminate 𝑤 and 𝜉 and then get the following equa-

tions:

[

[

0 −𝑌
𝑇

𝑌 Ω +
1

𝛾
𝐼
]

]

[
𝑏

𝛼
] = [

0

𝐿
] , (21)

whereΩ = 𝑍𝑍
𝑇,

Ω𝑘𝑙 = 𝑦𝑘𝑦𝑙𝜙(𝑥𝑘)
𝑇
𝜙 (𝑥𝑙) = 𝑦𝑘𝑦𝑙𝜓 (𝑥𝑘, 𝑥𝑙) , (22)

where Ω(⋅) is a kernel function and satisfies the Mercer
theorem.

A set of linear equations will be solved instead of a
QP problem. Finally, we can obtain the following optimal
classification function:

𝑓 (𝑥) = sign(
𝑙

∑
𝑖=1

𝐴 𝑖𝛼
∗
𝑖 (𝑥 ⋅ 𝑥𝑖) + 𝑏

∗
) , (23)

where 𝛼∗𝑖 is the optimal solutions and corresponding bias 𝑏∗.
𝐴 𝑖 is an unascertained set.

4. Experimental Results

The proposed algorithm is evaluated on colony image
databases which are captured using a Basler CCD sensor.The
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Figure 4: Energy spectrum at different stages.

Table 1: The filtering performance of three filtering algorithms.

Performance
comparison

MSE
𝛼 = 0.1 𝛼 = 0.3 𝛼 = 0.5

Median filter 38.541 47.259 85.3254
Fuzzy filter 36.573 49.694 82.3651
Mean shift filter 33.258 40.258 79.6938

images are resized to be 640 × 480. The used computer is of
a 3.2 G CPU running Windows 7 with a 4G memory. The
first three experiments have been carried out using the colony
images to analyze the feasibility and efficiency of the proposed
algorithm with MATLAB 7.2. The last experiment is carried
out to demonstrate the segmentation effect and performed
with Visual Studio 2010.

In image denoising, classical low-passing filters can sup-
press high frequency noise [24]. However, it is hard for them
to preserve the edges of images due to the mixture in some
frequency bands. Here, we use energy density spectrums
to illustrate the outcomes of different filters [25, 26]. In
Figure 4(a), this is the energy spectrum of the original image,

where yellow-orange indicates the major energy of symbol
“+” and this area is contaminated by the background noise
(i.e., blue and green areas). Figure 4(b) shows the outcome
of a low-pass filter, where only the central area of the
symbol is kept but the edges of symbol “+” are mixed with
the background. In Figure 4(c), based on mean shift, it is
clear that the central area of the symbol is outstanding and
the edges are also kept. Traditional low-pass filters have
good performance on image smoothing but also affect the
edge details. In Figure 5 we observe that, after 5 iterations,
entropy can reach a stable value, and meanwhile the mean
shift iteration automatically stops. Listeria colony entropy
is different from the other two. Second row in Figure 6 is
Listeria colony. This is because of the cluster colony and agar
color is approximated with colony. Figure 6 shows different
kinds of colony. The first column shows three different
cultures:Microsporumaudouinii, Listeriamonocytogenes, and
Cephalosporin. During the development of cultures, their
biochemical reactions appear to be significantly different.
As a result, the histograms of cultures in drop-in bright-
filed illumination may accompany a number of noisy peaks,
illustrated on the second column. Using mean shift based fil-
tering algorithms, we can remove the irregular backgrounds
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Table 2: The value corresponding to the unascertained information.
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and hence reduce noisy peaks. The result of using mean
shift is shown on the 3rd column. Furthermore, we apply
an adaptive thresholding based peak searching approach in
order to detect two peaks, which indicate the features of
cultures. This results in the 4th column.

The performance of mean shift filtering can be measured
with mean square error (MSE):

MSE =
1

𝐵𝐺

𝐵−1

∑
𝑥=0

𝐺−1

∑
𝑦=0

[(𝐼
󸀠
(𝑥, 𝑦) − 𝐼 (𝑥, 𝑦))

2
] , (24)

where 𝐼󸀠(𝑥, 𝑦) is denoted by the filtered output image and
𝐼(𝑥, 𝑦) is denoted by the original input image; Table 1 shows
the performance of the three kinds of filtering approach.

After extracting the characteristic peaks, we apply the
ULSSVM classifier to the data for classification. We now
evaluate the performance of our ULSSVM classifier against
the classical SVM [27], LSSVM [28], and fuzzy SVM [29]
using 400 colony images, where 150 samples belong to class
1, 50 samples belong to class 2, 100 belong to class 3, and
the remainder belong to class 4. We randomly select 300

Table 3: Classifiers’ experimental results.

Classifier SVM FSVM LSSVM ULSSVM
Accuracy 75.9% 84.6% 73.2% 92.7%
Training speed/s 12.1 s 13.7 s 5.1 s 2.7 s

samples as the training set and the remaining 100 samples are
considered as the testing set. There are 130 samples labeled
as the unascertained numbers, and half of them are set as
training samples. Table 2 shows the values corresponding to
the unascertained information. Table 3 shows the classifica-
tion results. In Table 3, the experimental results demonstrate
that the ULSSVM effectively improves the performance of
classification.

We carry on screening colony using the ULSSVM classi-
fier. Figure 7 shows the interface of colony screening. Figure 8
is adaptive colony segmentation.The segmentation outcomes
of two different colony picking methods are as follows: the
first row shows the colony with homogeneous medium and
its segmentation results using region growing, and the next
two rows show the colony with inhomogeneous medium and
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Figure 6: Colony imaging and morphological feature extract.

Figure 7: Interface of colony screening.
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Figure 8: Adaptive colony segmentation based on morphological features.

the corresponding segmentation results using thresholding.
The first column is original images, the second column is
image process based on our approach, the third column is
the identification results, and the fourth column is the local
zooming of the screening. Meanwhile, we calculate the time
consumption of the colony screen. The process of using the
thresholding method took 2.57 s and the process of using the
region growing method took 8.61 seconds.

5. Conclusions

In this paper, we have deployed an approach to perform
adaptive colony segmentation in unstructured environments
using feature extraction and selection in an intelligence
classifier. We used the intensity histogram peaks as features.
To properly determine the importance of the extracted
features for colony classification, we used an unascertained
theory based LSSVM classification algorithm. Experimental
results show that this new approach had better performance
than other state-of-the-art techniques in terms of accuracy
and speed. This approach works well for adaptive colony
segmentation, whilst optimizing the time consumption of
colony picking.
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