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A dynamic coarse-grained model of microalgal growth considering light availability

and temperature under discontinuous bioprocess operation was parameterized using

experimental data from 15 batch cultivations ofNannochloropsis granulata in a pilot-scale

tubular photobioreactor. The methodology applied consists of a consecutive two-step

model parameter estimation using pooled, clustered and reorganized data to obtain

initial estimates and multi-experiment fitting to obtain the final estimates, which are:

maximum specific growth rate µmax =1.56 d−1, specific photon half-saturation constant

KS,ph =1.89 molph gX
−1 d−1, specific photon maintenance coefficient mph =0.346

molph gX
−1 d−1 and the cardinal temperatures Tmin =2.3◦ C, Topt =27.93◦ C and

Tmax =32.59◦ C. Biomass productivity prediction proved highly accurate, expressed by

the mean absolute percent error MAPE=7.2%. Model-based numerical optimization

of biomass productivity for repeated discontinuous operation with respect to the

process parameters cultivation cycle time, inoculation biomass concentration and

temperature yielded productivity gains of up to 35%. This optimization points to best

performance under continuous operation. The approach successfully applied here to

small pilot-scale confirms an earlier one to lab-scale, indicating its transferability to larger

scale tubular photobioreactors.

Keywords: microalgal cultivation, coarse-grained modeling, light limitation, temperature, biomass productivity

optimization, Nannochloropsis

1. INTRODUCTION

Microalgae as a phylogenetically non-related group of organisms are adapted to a wide
variety of inhabited ecosystems (Hoffmann, 2010; Guarnieri and Pienkos, 2014). The mostly
photosynthetically active organisms produce a number of substances, such as carotenoids and
fatty acids, that are specific to primary producers. A number of them, such as ketocarotenoids
(e.g., astaxanthin) or long-chain ω-3 fatty acids (e.g., eicosapentaenoic acid, C20:5, EPA), are of
commercial interest to the food and feed industry (Posten, 2012; Minhas et al., 2016).

In comparison to plants, microalgae are in general structurally less complex and show
higher area productivities (Derwenskus et al., 2018). Their gross biochemical composition can
be influenced without genetic modifications (Gu et al., 2012; Draaisma et al., 2013). These
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specific characteristics cause growing interest in autotrophic
biotechnological production processes based on microalgae.
Their products are of particular interest to markets such as
aquaculture, nutraceuticals and cosmetics (Khan et al., 2018;
Malcata, 2018). This is accompanied by worldwide growing
research efforts (Endres et al., 2018; Garrido-Cardenas et al.,
2018; Lippi et al., 2018).

The commercial interest in the genus Nannochloropsis has
risen since they accumulate high lipid contents per cell,
high EPA contents and show comparatively high biomass
productivities (Gouveia and Oliveira, 2009; Bartley et al., 2014).
This eustigmatophyte has a rather small cell size of 2, . . . , 4µm;
cells are free-floating and easy to ingest by zooplankton and
fish larvae, representing a major reason for its extensive use in
aquaculture. As other microalgae, Nannochloropsis spp. contain
variable contents of proteins (24, . . . , 52%), lipids (16, . . . , 50%),
EPA (3, . . . , 5%), and carotenoids (0.4, . . . , 0.6%) (Chua and
Schenk, 2017; Hulatt et al., 2017; Neumann et al., 2018). The
biochemical composition shifts as a result of cellular adaptation
to changing environmental conditions, such as light intensity,
temperature, pH value and nutrient availability (Braun et al.,
2014; Poliner et al., 2019). The cellular behavior influenced by
these abiotic stimuli has been described forNannochloropsis spp.;
in particular effects on growth and biochemical composition
have been reported (Pal et al., 2011; Wagenen et al., 2012;
Wahidin et al., 2013). Here, the applied photobioreactor system
sets specific conditions for the culture, e.g., with respect to photon
availability (Schediwy et al., 2019).

Tubular photobioreactors are an important type among closed
photobioreactor systems used for the phototrophic production
of microalgal biomass worldwide (Takache et al., 2009; Grewe
and Griehl, 2013; Karemore et al., 2015; Olaizola and Grewe,
2019). Biomass productivity and hence space-time yield (often
referred to as volumetric yield) of a photoautotrophic bioprocess
are influenced by many abiotic factors, which also change during
the course of the day as well as throughout the cultivation cycle
(Bernard et al., 2016). Light availability can vary by orders of
magnitude along with biomass concentration, layer thickness and
external light intensity and is therefore difficult to control, e. g. in
outdoor discontinuous bioprocesses. Temperature can also vary
in a wide range of 2, . . . , 30◦ C (Zittelli et al., 1999; Ras et al., 2013),
in particular at larger scale, while pH is easier to control even in
industrial applications.

The work presented here employs a dynamic coarse-
grained model to describe the light and temperature dependent
specific microalgal growth rate within a pilot-scale tubular
photobioreactor in order to finally predict biomass growth
and optimize biomass productivity. Within the model used,
light-limited growth is described depending on the specific
light availability rate qph. A similar approach has already
been successfully applied to optimize steady-state biomass
productivity within a lab-scale tubular photobioreactor under
turbidostatic operation (Weise et al., 2019). The present work
extends this approach to dynamic microalgal growth within
discontinuous processes. While under turbidostatic operation
qph can be controlled well, under discontinuous operation it
can only be kept within reasonable ranges. This is investigated

here for a repeated batch process, with the inoculation biomass
concentration cX,0 and the cultivation cycle time tcyc as process
parameters that can be influenced during operation.

The current work additionally includes temperature
dependencies into the model. Therefore, the empirical Cardinal
Temperature Model with Inflexion (CTMI), first introduced
by Lobry et al. (1991), is employed. The CTMI was already
successfully applied to describe microbial and microalgal
temperature dependencies (Rosso et al., 1993; Bernard and
Rémond, 2012; Barbera et al., 2019).

Therefore, the following growth kinetics model for the
description of both dependencies, i. e. for light and temperature,
was also used here (Equation 1) (Bernard and Rémond, 2012):

µ(qph,T) =µopt(qph) · φ(T) (1)

µopt(qph) [d
−1] (Equation 2) represents the optimum

specific growth rate for a specific light availability rate
qph [molph gX

−1 d−1] at the strain-specific optimum temperature
Topt [

◦ C], whilst φ(T) [-] (Equations 5 to 7) describes the
influence of the temperature T [◦ C] on the optimum specific
growth rate.

µopt(qph) = µmax

qph−mph

qph−mph + KS,ph

∣

∣

∣

∣

Topt

(2)

Equation (2) relies on aMonod-like function in whichµmax [d
−1]

and KS,ph [molph gX
−1 d−1] are the maximum specific growth

rate and the specific half-saturation constant for photon
availability, respectively. The specific photon maintenance
coefficient mph [molph gX

−1 d−1] represents the light energy
used for purposes other than biomass synthesis (Pirt, 1986).
This kinetics describes the experimentally observed saturation
of the growth rate when light availability increases within
the investigated range (Darvehei et al., 2018). Regarding
Nannochloropsis spp., the literature reports maximum specific
growth ratesµmax in the range of 0.86, . . . , 1.6 d

−1 (Sandnes et al.,
2005; Spolaore et al., 2006). Specific photon availability rates
qph are often found in the range of 0.25, . . . , 2.2molph gX

−1 d−1

(under lit conditions; flat panel photobioreactors) (Zijffers et al.,
2010; Kandilian et al., 2014; Janssen et al., 2018).

The biomass-specific photon availability rate qph (Equation 4)
is calculated from process and geometrical characteristics, in
particular from the biomass concentration cX [gXm

−3], the

light intensity at the reactor surface I0 [molphm
−2 d−1], the

illuminated reactor projection surface A [m2] and the total
reactor liquid volume VL [m

3]. The underlying relationships
have been successfully applied and demonstrated in several
publications (Bernard, 2011; Kliphuis et al., 2011; Blanken
et al., 2016). Equation (4) applies only to light-limited growth
conditions and was originally developed considering flat-panel
photobioreactors (Schediwy et al., 2019). Therefore, the tubular
reactor compartment is considered to be a flat-panel equivalent
with an average light path length l∅ (Equation 3). Since VL has to
be equal in both assumptions, the illuminated reactor projection
surface is used for qph calculation in Equation (4).
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l∅(r) =
π r

2
(3)

qph(cX) =
1

VL · cX

c
∑

z=1

I0,z · Az (4)

Within Equation (4) qph [molph gX
−1 d−1] is calculated using the

light intensity at the reactor surface I0 [molphm
−2 d−1] of an

individual reactor compartment multiplied by the illuminated
reactor projection surface A [m2] of the respective compartment
(z = 1, . . . , c) summarized over all compartments c, related to
the total reactor liquid volume VL [m

3] and the biomass
concentration cX [gXm

−3] (Equation 4).
The temperature dependency φ(T) (within Equation 1) is

described using the CTMI (Equations 5-7):

φ(T) =







0 for T < Tmin

φ̂(T) for Tmin < T < Tmax

0 for T > Tmax

(5)

with

φ̂(T) (6)

=
(T − Tmax)(T − Tmin)

2

(Topt − Tmin)[(Topt − Tmin)(T − Topt)− (Topt − Tmax)(Topt + Tmin − 2T)]

and

Topt >
Tmin + Tmax

2
(7)

Outside Tmin and Tmax [
◦ C], which represent the minimum

and maximum temperature of the growth range, no growth
is assumed (Equation 5). In order to obtain the inflected
asymmetric shape of the CTMI, Topt values need to be closer
to Tmax as to Tmin (Equation 7). Bernard and Rémond (2012)
verified both the above model properties (Equations 5, 7), which
are necessary for a successful model application in this context.
Optimum growth temperatures are stated in the literature within
a range of 20, . . . , 29 ◦ C (Sukenik, 1991; Bartley et al., 2015;
Abirami et al., 2017). However, to the best of our knowledge,
no optimum growth temperature for N. granulata has been
published yet.

Model parameter estimation was carried out in two
consecutive steps: Initial parameter estimates were generated
in a first step from pooled, clustered and reorganized data of
the process. These initial estimates were then used in a second
step for the final parameter estimation based on the original
experimental time series data.

Based on the parameterized model, a numerical optimization
regarding the biomass productivity Pr was carried out
with respect to the process parameters inoculation biomass
concentration cX,0, cultivation cycle time tcyc and temperature
T. Also, suggestions are provided with respect to the transfer of
the proposed approach to other tubular photobioreactors under
repeated discontinuous operation.

2. MATERIALS AND METHODS

2.1. Cultivation Conditions
The strain of Nannochloropsis granulata (Karlson et al., 1996)
used in this study was previously isolated and its identity
confirmed by 18s rDNA analysis carried out by SAG Göttingen.
All experiments were performed using sterile brackish water
medium with a salinity of 19 psu, a nitrate concentration of
12 mM and a phosphate concentration of 0.3 mM provided
by Prof. Otto Pulz, IGV GmbH, Nuthetal, Germany. The
composition of the artificial brackish water medium 1/2 ES1
(Enriched Seawater): NaCl 243.0mM, MgSO4 · 7H2O 29.3mM,
NaNO3 16.5mM, MgCl2 · 6H2O 12.7mM, CaCl2 · 2H2O
5.4mM, KCl 5.3mM, K2HPO4 · 3H2O 0.8mM, FeSO4 · 7H2O
43.18µM, MnCl2 · 4H2O 2.02µM, ZnSO4 · 7H2O 0.30µM,
CuCl2 · 2H2O 0.23µM, H3BO4 0.16µM, NaMoO4 · 2H2O
0.09µM and CoCl2 · 6H2O0.08µM.

Both, nitrate and phosphate concentrations were measured
using ready-to-use cuvette test kits (nitrate: WTW 252073;
phosphate: WTW 252075, Xylem Analytics Germany, Weilheim,
Germany) after centrifugation of samples at 4, 500 ∗ g for 20
min. Cell-free supernatant was diluted with double distilled
water 1:100 for nitrate and 1:10 for phosphate analysis according
to the manufacturer’s instructions. Absorbance values and ion
concentrations were determined in a photoLab® 6100 VIS
Photometer (Xylem Analytics Germany, Weilheim, Germany).
Nitrate and phosphate were added manually on demand from
sterile stock solutions of NaNO3 (300 g l−1) and KH2PO4

(100 g l−1) if values fell below 50% of the initial medium
concentrations (cNO−

3
= 1,021mg l−1, cPO−3

4
= 98mg l−1).

Maintenance cultures of N. granulata were kept in cell
culture flasks at 14 ◦ C and 50µmolphm

−2 s−1 light intensity
(12 h light/12 h dark).

Preculturing was carried out in 1.7 l double jacked glass bubble
columns (height to diameter ratio of 4), temperated at 22 ◦ C and
aerated at 0.1 vvm with a 2% CO2 to air ratio (v/v). Precultures
where illuminated using fluorescent tubes (Philips Cool White,
36W, eight tubes per column, horizontally arranged). The light
intensities at the inner surfaces of the columns were on average
249µmolphm

−2 s−1, measured by a spherical micro quantum
sensor (US-SQS, Walz GmbH & Co KG, Ulm, Germany).
During preculture, illumination was provided to the columns
continuously for 24 h.

The 30 l photobioreactor was inoculated using precultures
from four individual bubble columns which were originally
inoculated by the same maintenance culture.

2.2. Experimental Set-Up
The experimental work carried out within this study was
conducted using a 30 l pilot-scale tubular photobioreactor
(PBR30, IGV GmbH, Nuthetal, Germany) consisting of a
compartmented glass tube (borosilicate glass, inner diameter
of 39.6mm) and a stainless steel system vessel (see Figure 1).
Illumination was provided permanently over 24 h to the glass
tube of the reactor by fluorescent tubes (OSRAM Cool White,
L 18W/840) and five LED panels placed along the length of the
compartmented glass tube (Figure 1). The LED panels had a
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FIGURE 1 | Tubular photobioreactor system PBR30 [IGV Institut für Getreideverarbeitung GmbH, Nuthetal, Germany]; Position of the LED array, the fluorescent lamps

and the illuminated tubular reactor part; ⋆ I0 measuring positions (see also Table 1); (A): Side view; (B): Top view; (C): Representation of four modeled compartments

in y/z-direction (referring to Figure 1A), I0(yizj) - surface light intensity of the respective compartment, yi - ith position in y-direction, zj - jth position in z-direction.
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TABLE 1 | Upper part: Light intensity at the reactor surface of the compartments

used within the modeling approach, ⋆ Measuring positions (compare Figure 1A);

Center part: Reactor-specific and strain-specific constants; Lower part: Set

parameter constraints.

Light intensity at the reactor compartments surface

I0 [µmolph m
−2 s−1]

z-direction (depth)

⋆ 1 2 3 4

5 606 230 210 28

4 762 323 286 26

y-direction (height) 3 735 392 342 29

2 836 360 298 21

1 731 320 185 19

Reactor-specific and strain-specific constants

Constant Value Unit

r 0.020 m

A 1.269 m2

VL 0.030 m3

c 20 -

Set parameter constraints

Parameter Constraint Unit

Lower Upper

µmax 1.0 3.8a d−1

KS,ph 0 1.9 molph gX
−1 d−1

mph 0 0.32b molph gX
−1 d−1

Tmin −5 19* ◦ C

Topt −5** 50** ◦ C

Tmax 32* 50 ◦ C

*For explanation see Section 2.6.2 Search Range.

**Provided the model’s properties are fulfilled (Equations 5, 7).
a Sorokin and Krauss (1958); bZijffers et al. (2010).

spectral composition consisting of 95% red light (λ= 660 nm)
and 5% blue light (λ= 440 nm).

The illumination profile of the reactor’s tubular glass part was
recorded at 140 measuring positions (indicated by ⋆ in Figure 1

and Table 1) at 7 positions in x-direction (width), 5 positions
in y-direction (height) and 4 positions in z-direction (depth).
All measurements were carried out using the US-SQS described
above. Since only minor variations in the light intensities in x-
direction were observed (Figure 1B), values in this direction were
averaged (see Table 1). The resulting 20 I0 values refer to their
position in y/z-direction as indicated in Figure 1A. These values
were used as surface light intensities of the respective reactor
compartments within the modeling approach.

The pH value was controlled by the injection of pure CO2 at
the intake side of the circulation pump using a limit controller
(set-point pH 7.25; manipulated variable: solenoid-controlled

valve; switch-point: pH 7.25; pH hysteresis: 0.05; on-delay: 5 s).
The temperature was controlled using a cooling water circuit
supplied by a water bath (F12, JulaboGmbH, Seelbach, Germany)
and connected to the double jacket of the system vessel (limit
comparator; hysteresis: 1 K). The circulation pump frequency
was set to 35.7Hz resulting in a suspension flow velocity of
0.72m s−1 in the glass tubes.

2.3. Experimental and Modeling Approach
The experimental data used within this work was collected
from altogether 15 cultivations which were carried out as a
series of discontinuous (batch) bioprocesses in order to avert
the lag phase at the start of the individual experiments (see
Figure 2). Cultures were harvested partially by draining parts of
the suspension and replacing it by fresh, steam sterilized medium
(Figure 2). The experiments were designed to be conducted at
constant illumination at the reactor surface I0 but by varying
the inoculation biomass concentrations cX,0, the cultivation cycle
times tcyc and the cultivation temperatures T (see Table 2-
lower part and Figures 5A,B). Temperature variations during the
cultivations, however, resulted from a limited cooling capacity of
the reactor system under strongly differing ambient conditions.

In order to carry out the modeling, the photobioreactor
was subdivided into 20 glass tube compartments of equal size
(z = 1, . . . , 20). Light intensity at the respective compartment
surface was mapped as shown in Table 1 and remained constant
during each individual experiment and across the experiments.

As described by Weise et al. (2019), I0 is considered to be a
sum parameter for the light field description at the respective
compartment surface. According to Equation (4) only light
absorption is taken into account. Due to the actual reactor
features (see Figure 1C), the light field is considered to illuminate
the compartment yizj from only one side with equal intensity.
In addition, because of the particular reactor arrangement, as
shown in Figure 1C, each physical compartment is represented
by two modeled compartments. The resulting photon fluxes (i.e.,
light intensity multiplied by surface area) within the modeled
compartments were added and then related to the total biomass
concentration and the reactor volume (see Equation 4).

2.4. Data Collection
During the experiments a number of variables were determined
on-line and off-line. The on-line values of the optical density
at near-infrared ODNIR, the pH and the temperature T were
continuously measured and recorded by a 6-channel writer
(JUMOLogoscreen 500 cf, Fulda, Germany). The sampling of the
off-line values was carried out daily in the morning. The biomass
concentration cX was determined as salt-free dry cell weight.
Samples for the dry cell weight determination were homogenized,
an aliquot of 10ml was taken, centrifuged in pre-weighted glass
tubes at 4.500 ∗ g for 20min; the resulting supernatant was
discarded and the biomass pellet resuspended in 9ml deionized
water; this washing step was carried out twice. The pellets were
dried at 105 ◦ C for 24 h and weighed after cooling in a desiccator
for 45min. Measurements were carried out in duplicate.

The original experimental time series data are available as
Supplementary Material.
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FIGURE 2 | View of experimental process data: Experiments No. 05-07 as part of a series of repeated discontinuous cultivations; experiments are separated by

partial harvest and medium refill; ODNIR, raw sensor signal ODNIR (black); cX, correlated biomass concentration (green); T, suspension temperature (red); pH,

suspension pH value (blue).

TABLE 2 | Experimental and modeling results: Upper part: Initial �1, �2, and final estimates �f (mean values and jackknife 95% confidence intervals (CI), if applicable);

Lower part: Experimental values and model predictions, cX/ODNIR correlation parameters.

Estimates �1 �2 �f

Lower CI Mean Upper CI σ Unit

µmax 2.33 1.76 1.54 1.56 1.59 0.17 d−1

KS,ph 3.00 2.27 1.84 1.89 1.93 0.31 molph gX
−1 d−1

mph 0.32 0.29 0.344 0.346 0.347 0.010 molph gX
−1 d−1

Tmin 12.7 0.0 1.9 2.3 2.8 2.9 ◦ C

Topt 27.1 28.4 27.88 27.93 27.99 0.37 ◦ C

Tmax 34.0 32.4 32.53 32.59 32.66 0.42 ◦ C

Data set Experimental values Model prediction results and errors cX/ODNIR correlation parameters

j tcyc,j cX ,0,j Prdata,j Prmodel,j (M)APEj a b R2

�1 �2 �f �1 �2 �f

[d] [gX l−1] [gX l−1 d−1] [gX l−1 d−1] [%] [gX l−1AU−1] [gX l−1] [-]

01 3.4 0.89 0.36 0.31 0.32 0.32 12.7 9.7 10.3 0.100 -1.241 1

02 3.4 0.74 0.36 0.31 0.33 0.32 12.4 8.5 9.1 0.092 -1.067 1

03 3.0 0.78 0.38 0.39 0.37 0.37 0.6 3.7 3.9 0.114 -1.816 1

04 2.9 1.03 0.34 0.34 0.34 0.34 1.8 1.8 1.7 0.108 -1.719 1

05 3.5 0.81 0.35 0.36 0.35 0.35 2.1 0.2 0.2 0.111 -1.864 1

06 7.0 0.27 0.29 0.28 0.29 0.29 2.0 1.9 0.5 0.101 -1.650 0.99

07 2.0 0.53 0.34 0.33 0.34 0.33 3.9 1.9 3.3 0.136 -2.965 0.97

08 3.7 0.81 0.34 0.29 0.31 0.31 14.5 7.4 8.4 0.101 -1.058 1

09 0.7 0.98 0.25 0.29 0.32 0.31 12.2 26.1 23.6 0.225 -3.992 1

10 3.4 0.63 0.38 0.37 0.34 0.33 3.9 9.6 13.3 0.094 -1.071 1

11 2.7 0.96 0.28 0.30 0.32 0.32 8.9 17.4 16.1 0.095 -0.985 1

12 7.0 0.46 0.31 0.31 0.31 0.30 0.9 0.7 1.7 0.094 -0.796 0.99

13 7.0 0.48 0.29 0.33 0.32 0.32 14.2 9.7 8.7 0.090 -0.723 0.99

14 7.0 0.43 0.32 0.37 0.34 0.34 15.0 7.7 5.6 0.103 -1.278 0.98

15 6.2 0.66 0.34 0.37 0.34 0.34 7.2 1.0 1.8 0.103 -1.310 0.98

∅ 0.33 0.33 0.33 0.33 7.5 7.2 7.2
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2.5. Numerical Calculations
All computations were performed using the programming
language python (version 3.6.5) and the additional packages
astropy (version 3.0.4), numpy (version 1.15.0), pandas

(version 0.23.4), SALib (version 1.3.8), scipy (version 1.1.0), and
seaborn (version 0.9.0).

2.5.1. Biomass Concentration
cX [gX l

−1] was calculated from on-line ODNIR [AU] values using

a linear correlation. Parameters a [gX l
−1AU−1] and b [gX l

−1]
(see Table 2-lower part) have been estimated from off-line cX
measurements for each individual experiments (original data
not shown).

2.5.2. Averaged Approximated Growth Rate
The calculation of the averaged approximated growth rate
µ̄1 [d−1] is carried out using the approximation of the
ordinary differential equation of the biomass concentration
for discontinuous bioprocesses (Equation 8). At first, the
approximated growth rate µ1(t) [d

−1] is calculated employing
the central difference approximation (Equation 9), which is
subsequently smoothed using a moving average (Equation 10),
where n is the total number of data points i between t− 1 h and
t + 1 h. The employed central difference approximation linearizes
the growth between the two observations and is therefore only
applicable for small 1 t (here: 1 t = 2 h).

1 cX

1 t
=µ1 · cX (8)

µ1(t) =
cX(t + 1 h) − cX(t − 1 h)

2 h · cX(t)
(9)

µ̄1(t) =
1

n

n=it+1 h
∑

it−1 h

µ1(i) (10)

2.5.3. Biomass Productivity
The experimental biomass productivity for the respective
experiment j was calculated as volumetric yield using the
following Equation (11) (data point i, i= 0, n).

Prj =
cX,i=n,j − cX,i=0,j

ti=n,j − ti=0,j
(11)

2.5.4. Model Validation by MAPE
The criterion used to evaluate the model’s accuracy was the
Mean Absolute Percent Error (MAPE) (Equation 12) (Mayer
and Butler, 1993). It is calculated based on measured and
modeled productivities considering all experiments (j= 1, . . . ,m).
When only a single experiment is considered (m= 1), MAPE is
expressed as APE (Absolute Percent Error).

MAPE =
100

m

m
∑

j=1

(

|Prmeas,j − Prmodel,j|

|Prmeas,j|

)

(12)

2.6. Parameter Estimation and Model
Analysis
In order to parameterize the developed model, a parameter
estimation procedure was carried out in two consecutive steps:
The initial parameter estimation, following the methodology
proposed by Bernard and Rémond (2012), was applied in a first
step to generate initial parameter estimates which were then, in
a second step, used as starting values for the final parameter
estimation. Both stages of the consecutive parameter estimation
were carried out using the same experimental (time series) data.

The initial parameter estimation (section 2.6.3) allows to
efficiently screen through a wide parameter search range (see
section 2.6.2) by fitting the growth kinetics directly to the
reorganized data sets (see section 2.6.1). This was carried out in
particular with respect to the temperature modeling in order for
the unknown cardinal temperatures to converge. Since, however,
the reorganization includes approximation and averaging of µ̄1

as well as clustering and selection, the returned results are
potentially imprecise.

Therefore, the final parameter estimation (section 2.6.4)
was carried out by fitting the model output to the original
experimental time series data sets, employing the above
mentioned initial estimates as starting values.

Based on the model, parameterized this way, the numerical
biomass productivity optimization (section 2.6.6) was carried out
with respect to the process parameters cX,0, tcyc, and T that are to
be applied to the process.

2.6.1. Data Set Reorganization
In order to carry out the initial parameter estimation procedure
described in the following section, a pooling, reorganization,
clustering, and selection of the data was performed:

• Calculating the averaged approximated growth rates µ̄1 ,i,j

(according to Equation 10) for the ith data point of the jth

experiment (j= 1, . . . , 15).

• Concatenating data sets for qph,i,j, µ̄1 ,i,j and Ti,j from all 15
experiments into a new single data set.

• Reassigning the newly formed entries for µ̄1 ,i and Ti that
share the same qph value to a new kth data set which
corresponds to this particular qph value (k= 1, . . . , s).

• Sorting each data set k obtained by its Ti,k values (for identical
Ti,k values, corresponding µ̄1 ,i,k values were averaged).

• Clustering the entire qph range into 10 equidistant clusters;
assigning each data set k to its respective cluster.

• Selecting one data set per qph cluster that covers the widest
individual Tk range (k= 1, . . . , 10).

The data sets (k= 1, . . . , 10) reorganized this way were then
applied in the first part of the parameter estimation procedure.

2.6.2. Search Range
An adequate search range for the parameter estimation
procedure was determined based on reasonable assumptions.
In particular, the temperature range was constrained to
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-5.0, . . . , 50.0◦ C, based on the assumption that growth outside
this range is not possible for the genus Nannochloropsis.

• Tmin ranges from −5.0◦ C (lower bound) to the lowest
temperature for which experimental data is available
(upper bound).

• Topt ranges from −5.0◦ C (lower bound) to 50.0 ◦ C (upper
bound), as long as the model’s properties are fulfilled (see
Equations 5, 7).

• Tmax ranges from the highest temperature for which
experimental data is available (lower bound) to 50.0 ◦ C
(upper bound).

• µmax ranges from the highest µ̄1 value obtained from the
experiments (lower bound) to the highest µmax value reported
for microalgae (upper bound; see Table 1-lower part).

• KS,ph ranges from 0 (lower bound) to the highest qph value
obtained from the experiments (upper bound).

• mph ranges from 0 (lower bound) to the highest mph

value reported in the literature (upper bound; see
Table 1-lower part).

2.6.3. Initial Parameter Estimation
Each data set k, reorganized as described above, contains growth
rate values µ̄1,i,k at temperatures Ti,k. Bernard and Rémond
(2012) published a strategy that consists in the following:
Identifying s + 3 parameters µopt,1, µopt,2, . . . , µopt,s, Tmin, Topt,
Tmax (here s= 10, for the 10 cluster data sets) vectorised as
θT , where the parameter µopt,k is the optimum growth rate at
the optimum temperature Topt for the kth data set. Following
their strategy, the underlying key assumption is that the cardinal
temperatures (Tmin, Topt, Tmax) are common to all the data sets,
whilst µopt,k is constant within the respective data set due to
constant experimental lighting conditions qph,k. The unknown
s+3 parameter values were estimated in a first step byminimizing
the optimization criterion J(θT) (Equation 13) (Bernard and
Rémond, 2012). Within a second step, the remaining model
parameters µmax, KS,ph and mph (vectorised as θqph ) were
estimated in a similar way (Equation 14). Both, Equations (13)
and (14), were minimized with respect to the respective θ

resulting in the minimum optimization criterion value J(�) for
the optimum parameter vector � according to Equation (15).

J(θT) =

s
∑

k=1

n
∑

i=1

(

µ̄1,i,k − µopt,k · φ(Ti,k,Tmin,Topt,Tmax)
)2

(13)

J(θqph) =

s
∑

k=1

(

µopt,k − µopt(qph,k,µmax,KS,ph,mph)
∣

∣

Topt

)2

(14)

J(�) =min
θ

J(θ) (15)

The downhill-simplex method (Nelder-Mead method)
used for the model parameter estimation procedure
(scipy.optimize.fmin) was started from every possible

parameter value combination within the search ranges described
above. The T range was screened stepwise by 1T = 5 ◦ C,
resulting in 70 initializations that match the model’s properties
(Equations 5, 7). The ranges for µmax, KS,ph and mph were
screened using 10 equidistant values along each axis, resulting in
1,000 initializations. The method was set to perform a maximum
of 200 iterations for each initialization. Computations were
carried out using the standard settings of the above package
regarding the convergence criteria of the method.

2.6.4. Final Parameter Estimation
Since the initial parameter estimation described above can
provide results which are potentially imprecise due to the
approximation and averaging of µ̄1, the reorganization and
clustering of the data sets k as well as the split parameter
estimation of θT and θqph , a second and final parameter
estimation step was carried out. Based on the ordinary differential
equation of the biomass concentration for discontinuous
bioprocesses (Equation 16), the original experimental time
series data sets j (j= 1, . . . , 15) were simulated using the
initial parameter estimates. Numerical integration was carried
out employing the Euler method. The time series of cX
were simulated for the i discrete time points ti,j and their
corresponding temperatures Ti,j.

d cX

d t
=µ(qph,T) · cX (16)

The objective of this final parameter estimation was to identify
the m + 6 parameters cX,0,1, cX,0,2,. . . , cX,0,m, µmax, KS,ph, mph,
Tmin, Topt, Tmax (here m= 15, for the 15 experiments) vectorised
as θf, where the parameter cX,0,j is the inoculation biomass
concentration cX,0 for the jth data set. The optimum parameter
values were estimated by minimizing the optimization criterion
J(θf) (Equation 17). The final optimum parameter vector �f

(according to Equation 18) was determined in analogy to the
initial parameter estimation as described above.

J(θf) =

m
∑

j=1

n
∑

i=1

(

cX,meas − cX,pred
)2

(17)

with

cX,meas = cX,data,i,j

cX,pred = cX,model,i,j(qph,i,j,Ti,j, cX,0,j,µmax,KS,ph,mph,Tmin,

Topt,Tmax)

J(�f) =min
θ

J(θf) (18)

The Nelder-Mead method was also employed for this
second step of the model parameter estimation procedure
(scipy.optimize.fmin). The initially estimated parameter
vectors were now used as start parameter vectors. The method
was set to carry out a maximum of 200 iterations for each
initialization. Again, the standard settings of the above package
were used with respect to the convergence criteria.
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Since the values of the parameters Tmin and Tmax to
be estimated were expected to lie outside the experimental
data range and to account for the relatively small
number of experiments, the Delete-2-Jackknife analysis
(astropy.stats.jackknife_stats) was used to indicate the 95%
confidence interval of the identified parameters of the vector �f

(Efron and Tibshirani, 1993; Duchesne and MacGregor, 2001).
Jackknife re-sampling was carried out by bootstrapping two
respective data sets (experiments) from the data at a time.

2.6.5. Parameter Sensitivity Analysis
A variance-based sensitivity analysis according to Sobol
(2001) was performed using the SALib.analyze.sobol in
order to investigate the model’s parameter sensitivities more
deeply. This sensitivity analysis was done with respect to the
biomass productivity as the main focus of this study. Within
Equation (19), M represents the model output depending on
the process parameters cX,0, tcyc and T as well as the model
parameter vector θ (Zhang et al., 2017) consisting of µmax, KS,ph,
mph, Tmin, Topt, and Tmax.

The Sobol method is based on the decomposition of the
variance of the model output Var(M) (Equation 20) into
summands of increasing dimensionality (Zhang et al., 2015,
2017).Vari is the partial variance corresponding to the first-order
index of θi of the model output M, while Varij is the partial
variance corresponding to the second-order index of the ith and
jth parameter interaction (Zhang et al., 2015, 2017). k is the
number of model parameters, here k= 6.

M =Prmodel(cX,0, tcyc,T, θ) (19)

Var(M) =

k
∑

i=1

Vari +

k−1
∑

i=1

k
∑

j=i+1

Varij + . . . + Var1,...,k (20)

The sensitivity indices Si and Sij (Equations 21, 22) are calculated
as ratios of the partial variances to the total variance (Zhang
et al., 2015). Total-order indices STi are calculated following
Equation (23) using Var∼i which represents the variation of all
parameters except θi (Homma and Saltelli, 1996; Sobol, 2001;
Zhang et al., 2017). Si quantifies the effect of varying θi alone,
while STi quantifies the effect of varying θi and includes all effects
caused by its interactions with all other model parameters.

First-order index Si =
Vari

Var
(21)

Second-order index Sij =
Varij

Var
(22)

Total-order index STi = Si +
∑

j 6=i

Sij + . . . = 1−
Var∼i

Var
(23)

The Saltelli sampling scheme (SALib.sample.saltelli) was used
to generate model parameter samples of the final model
parameter estimates �f (section 2.6.4) varied by ± 3 σ (see
Table 2-upper part). This scheme generates N · (2k + 2)
samples (here N = 10,000; k= 5). The calculated indices were
classified using thresholds. Indices contributing < 0.01 to the
model output variance are considered “non-sensitive,” while

indices contributing ≥ 0.1 are considered “highly sensitive”
(Tang et al., 2007).

Si and STi also potentially depend on the process parameters.
The experimentally set cX,0 is associated with the present light
availability, while the set T may influence the sensitivity of the
three cardinal temperatures. Therefore, the sensitivity analysis
was carried out for 9 combinations (scenarios) of cX,0 and T
taking into account data corresponding to percentages of the
respective experimental range [20% (“low”), 50% (“medium”),
and 80% (“high”)].

2.6.6. Biomass Productivity Optimization
In order to optimize the biomass productivity Pr with respect
to the described photobioreactor, a numerical optimization
was carried out. The objective was to maximize Pr with
respect to the process parameters cX,0, tcyc, and T. Numerical
integration of Equation (16) was performed using the estimated
model parameters (�f; Table 2-upper part) by employing
lsoda of the ODEPACK (scipy.integrate.odeint). After each
integration, Pr was calculated for the individual iteration
steps using Equation (11). The process parameters cX,0,
tcyc, and T were vectorised as θPr containing all possible
process parameter combinations, while �Pr contains the
optimum process parameter combination with respect to Pr.
The optimum process parameter values were estimated by
minimizing the optimization criterion J(θPr) (Equations 24, 25)
using also the downhill-simplex method (Nelder-Mead method;
scipy.optimize.fmin).With respect to numerical integration and
convergence criteria, standard settings of the above packages
were used.

J(θPr) =− Prmodel(cX,0, tcyc,T) (24)

J(�Pr) =min
θ

J(θPr) (25)

3. RESULTS AND DISCUSSION

The experiments carried out and presented here consisted of a
series of discontinuous (batch) cultivations. Single experiments
were separated by partial harvest of the biomass suspension
and replacement by new medium (see Figure 2). Inoculation
biomass concentrations cX,0 and cultivation cycle times tcyc were
varied between the experiments (see Figure 2 and Table 2-lower
part). Temperature T as well as pH were recorded during the
experiments (see Figures 2, 5A,B). The original experimental
time series data and the reorganized data sets are available as
Supplementary Material.

Light saturation was not observed during the experiments.
The linear accumulation of biomass indicates limited lighting
conditions (Figure 2). The light intensity at the photobioreactor
surface varied between 19 and 836 µmolphm

−2 s−1 (average:

337 µmolphm
−2 s−1; see Table 1-upper part and Figure 1).

These incident light intensities range from low values (100
µmolphm

−2 s−1 Raso et al., 2011) to rather typical values

at lab-scale (700 µmolphm
−2 s−1 Pal et al., 2011; up to 850

µmolphm
−2 s−1 Wagenen et al., 2012) for Nannochloropsis sp.

With respect to the scalability toward outdoor production, higher
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incident light intensities of 1,500 to 2,000 µmolphm
−2 s−1 are

present on sunny days. These however are lowered due to the
vertical arrangement of the glass tubes at industrial scale, the light
absorption by greenhouse parts, etc. Therefore, the comparability
and the transferability of presented model to industrial-scale
outdoor conditions is limited unless further model extensions
regarding higher variability in light and temperature, nightly
biomass losses, etc. are carried out.

The inoculation biomass concentrations within this study
(0.27,. . . , 1.03 gX l

−1) are within a typical range for both,
lab-scale and outdoor production of Nannochloropsis sp. in
tubular photobioreactors (Olofsson et al., 2012; Pfaffinger
et al., 2016; Pereira et al., 2018). The experimental variability
regarding cX,0 is rather high within the investigated small pilot-
scale experiments. However, biomass concentrations throughout
the cultivation cycle time are found to be typical for
large-scale and outdoor production of Nannochloropsis. cX
ranged 0.27,. . . , 2.79 gX l

−1, reflecting usual inoculation and
harvesting biomass concentrations, respectively. To the best
of our knowledge, depending on the climatic zone, biomass
concentrations of Nannochloropsis outdoor cultures within
tubular photobioreactors rarely exceed 3 gX l

−1 (Olofsson et al.,

2012; Benvenuti et al., 2015) and do not exceed 5 gX l
−1 (Zittelli

et al., 1999). Therefore, the cX range observed here is comparable
to larger-scale and outdoor processes.

Biomass productivity Pr was calculated for each experiment
according to Equation (11) in order to evaluate the model’s
accuracy expressed as MAPE (see Table 2-lower part) and to use
it for the biomass productivity optimization. The overall context
of this work was to optimize Pr as part of a series of batch
bioprocesses (i.e., repeated batch).

The devised two-stage consecutive parameter estimation
procedure was carried out using the reactor-specific and strain-
specific constants as well as the set parameter constraints shown
in Table 1.

The initial parameter estimation converged to two valid
solutions (�1 and�2,Table 2-upper part) depending on the start
parameter combinations. Both solutions differ only strongly in
the estimated value of Tmin.

Both initial parameter estimation vectors (�1 and �2) were
used as start parameter combinations for the final parameter
estimation. It was performed using the original time series data
sets j (in contrast to the reorganized data sets k). The altogether
six shared model parameters where estimated within multi-
experiment fittings.

The final parameter estimation converged to the solution
�f (Table 2-upper part, Figure 3) initialized from each of
the two initial parameter combinations (�1 and �2). The
φ(T) data shown in Figure 3A was normalized with respect
to the corresponding estimated µopt (Figure 3B) according
to Equation (1).

The estimated values of Tmin and Tmax lie outside the range
19, . . . , 31 ◦ C of available experimental data. Since the range
between the estimated Tmin and the available data is much
wider than the one between the estimated Tmax and the available
data, in particular the Tmin estimation is afflicted with some

FIGURE 3 | Model parameter estimation results: Initial parameter estimation

provides solutions �1 and �2 and final parameter estimation solution �f (see

Table 2–upper part); (A): CTMI estimation φ(T ) vs. T (Equations 5–7); (B):

Estimation µopt(qph) vs. qph (Equation 2).

uncertainty, which is further enforced by the asymmetric shape
of the temperature function φ(T) as can be seen in Figure 3A

showing the CTMI results. This is underlined by the jackknife
95% confidence intervals CI and standard deviations σ of the
estimated parameters (Table 2-upper part). While for all other
parameters the σ values indicate relatively certain parameter
estimations, σ for Tmin is at the same order of magnitude as the
parameter’s value.

The finally estimated cardinal temperatures for N. granulata
(Tmin= 2.3◦ C, Topt= 27.93◦ C, Tmax= 32.59◦ C) lie within the
specified parameter constraint ranges (Table 1) and match
laboratory experience. The CTMI parameters estimated by
Bernard and Rémond (2012) for the related species N. oceanica
(data by Sandnes et al., 2005) showing a good degree of similarity
(Tmin=−0.2◦ C, Topt= 26.7 ◦ C, Tmax= 33.3 ◦ C).

The results obtained here are supported by an optimum
growth temperature range of 20, . . . , 29 ◦ C given in the literature
(Sukenik, 1991; Wagenen et al., 2012; Bartley et al., 2015;
Abirami et al., 2017). Further, Wagenen et al. (2012) reported
only very poor growth below 13.6 ◦ C and above 32.3◦ C for
N. salina. Also, Sukenik (1991) found that Nannochloropsis
spp. failed to grow below 10 ◦ C and above 38 ◦ C. In view
of the fact that the parameter estimation carried out here
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had only rough quantitative specifications with regard to the
cardinal temperatures, the values calculated (Table 2-upper
part) are in strong compliance with the literature. Sandnes
et al. (2005) empirically described a light-dependent optimum
cardinal temperature Topt for N. oceania (Sandnes et al., 2005).
Although this combined effect of light and temperature is
physiologically plausible, the functional relationship of these two
variables was not observed for N. granulata within the own data.

The µopt values for �1 and �2 estimated increase
monotonically with higher qph (Figure 3B). These estimates
are subject to fluctuations but show no inhibition within the
observed qph range. Therefore, a growth kinetics considering
light limitation (Equation 2) without light inhibition was
applied. The qph range observed during the experiments

(0.59, . . . , 1.9molph gX
−1 d−1) is comparable to qph values given

by the literature (0.25, . . . , 2.2molph gX
−1 d−1) (Zijffers et al.,

2010; Kandilian et al., 2014; Janssen et al., 2018). In accordance
with Equation (4) qph is calculated as a mean light availability
rate of the whole culture suspension, considering the total
culture volume VL. However, local light intensities differ due
to light gradients within the culture suspension, which are not
spatially resolved within the model. Despite this aggregation,
the devised model predicts microalgal growth and biomass
productivities precisely. The estimated photon maintenance
coefficient mph= 0.346 molph gX

−1 d−1 is comparable to

values reported for C. sorokiniana: 0.16molph gX
−1 d−1 and

D. tertiolecta: 0.32molph gX
−1 d−1 (Zijffers et al., 2010). Pirt

(1986) reported increasing mph values for photobioreactor
set-ups with lower illuminated/non-illuminated culture volume
ratios, which has to be considered during the transfer to different
photobioreactor set-ups. The growth yield YX,ph [gXmolph

−1],
calculated following, Pirt (1986) as YX,ph=µopt / (qph − mph),

varied 0.45, . . . , 0.73 gXmolph
−1 during the experiments

(based on Figure 3B), which matches the YX,ph range of

0.2, . . . , 2.1 gXmolph
−1 reported in the literature (Zijffers et al.,

2010; Dillschneider et al., 2013; Schediwy et al., 2019). The
estimated parameter µmax= 1.56 d−1 is comparable also to
µmax ranges between 0.86, . . . , 1.6 d−1 as found in the literature
(Sandnes et al., 2005; Spolaore et al., 2006; Weise et al., 2019).

The similar parameters indicate that the model structure in
particular with respect to the light-limited growth modeling
shows a good transferability for tubular photobioreactors that
differ in scale, glass tube diameter and the mode of bioprocess
operation, although the experimental and modeling approaches
differed in many respects. In contrast to Weise et al. (2019), who
considered constant temperature conditions (T= 22 ◦ C) under
steady-state turbidostatic bioprocess operation, experiments
presented here were conducted under variable temperature
conditions and have been scaled up by≈ 7x regarding the reactor
liquid volume VL, by 10x regarding the number of modeled
compartments and by 2x regarding the glass tube diameter.

In order to transfer the devised model to other reactors and
different scales, it is necessary to consider homogeneous one-
sided illuminated glass tube compartments within the model,
although the glass tubes may be illuminated homogeneously

from both sides in the actual arrangement. Therefore in this
context also, the physical compartments are to be decomposed
mathematically into several theoretical ones. If these assumptions
do not apply to the specific photobioreactor structure, the
model cannot be transferred without further modification.
The presented model considers basic geometric properties
(e.g., inner tube radius, liquid reactor volume, illuminated
reactor surface, etc.) of tubular photobioreactors. Using biomass
productivity or reactor size as scale-up objectives, it is possible
to estimate the dimensions (e. g. illuminated reactor surface) of a
photobioreactor scale-up.

The presented model is implemented using the ordinary
differential equation (ODE) for batch bioprocesses. In order to
adapt the model for continuous cultivation, the ODE for batch
bioprocesses can be extended by a dilution term. The growth
kinetics, which are described by algebraic equations are not
affected by this extension.

With respect to the model’s sensitivity analysis, Figure 4

illustrates the first-order and total-order sensitivity indices of the
model parameters across different scenarios. The comparatively
small differences in the values of Si and STi indicate only
limited interactions between the parameters, which was to be
expected due to the model’s structure (see Equations 1, 2, 7).
The output of the model is highly sensitive (Si and STi ≥ 0.1)
with respect to the parameters µmax and KS,ph. Both parameters
combined contribute predominantly to the variance in the model
output, since they describe the utilization of light as the sole
energy source for phototrophic growth. The set cX,0 effects the
sensitivities ofKS,ph andmph. Since higher cX,0 reduce the qph, the
photon half-saturation constant KS,ph becomes more sensitive. In
addition,mph becomes sensitive (Si and STi ≥ 0.01) only at higher
cX,0 (Figure 4).

Topt is sensitive (Si and STi ≥ 0.01) in all scenarios, while Tmin

and Tmax are sensitive only at lower and higher temperatures.
Also, Tmin and Tmax become non-sensitive at temperatures close
to Topt. At temperatures away from Topt, the combined sensitivity
of the three cardinal temperatures contributes up to 10% (i.e.,
0.1) to themodel’s output variance. The set cX,0 does not influence
the sensitivity of the cardinal temperatures.

All experiments were carried out in the range 20, . . . , 25◦ C,
except ExperimentNo. 10 at 31◦ C. Although the temperature
inside the photobioreactor was actively controlled, diurnal
rhythms in the ambient temperature resulted in temperature
variations within individual experiments. These are displayed in
Figure 5A using kernel density approximations (violins). The
width of the individual violin represents the number of available
data at the respective temperature value, while small pin-like
tails of the violins indicate short-term outliers of the measured
variable. In analogy, Figure 5B shows the distribution of the
measured pH values of the respective experiments. Variations in
temperature and pH value did not occur rapidly, as can be seen
in Figure 2. Despite the variations in the observed temperature
and pH ranges, using the specific approach applied here, the

available data could be successfully processed in order to estimate
model parameters and optimize process parameters at pilot-

scale. Figure 5C provides violin plots that represent the absolute
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FIGURE 4 | Results of the Sobol sensitivity analysis: First and (total) order sensitivity indices for �f ± 3σ and 9 scenarios (3 each for cX,0 and T ).

modeling error with respect to the biomass concentration time

series using the estimated parameter vector�f. It can be seen that
the modeling error rarely exceeds± 0.15 gX l

−1.
Furthermore, one good as well as one badly predicted

experiment are highlighted in green (ExperimentNo. 05) and
red (ExperimentNo. 13), as shown in Figure 5C. These two

experiments are presented as time series in Figures 5D,E.
Although the biomass concentration has been well predicted
over much of the time (Figures 5D,E), some regions are
underestimated or overestimated at the beginning and the end
of the respective experiments (Figure 5E as example).

The prediction accuracy MAPE (Equation 12) of the target
value biomass productivity Pr (Equation 11) improved over the
course of the estimation procedures. Table 2-lower part provides

an overview of these experimental and modeling results as well

as the parameters a and b. The initial parameter estimation of �1

and �2 resulted in MAPE(�1)= 7.5% and MAPE(�2)= 7.2%,
whilst the prediction accuracy after the final parameter estimation

was MAPE(�f)= 7.2%. Therefore, the accomplished overall
model prediction accuracy is very satisfactory, although the
Absolute Percent Error of individual experiments (APEj) covers
a wider range 0.1, . . . , 26.1%. Typical MAPE values for industrial
and business data and their interpretation are: < 10% highly
accurate forecasting, 10, . . . , 20% good forecasting, 20, . . . , 50%
reasonable forecasting, > 50% inaccurate forecasting (Lewis,
1982; Moreno et al., 2013).

Based on the results of the parameter estimation procedure
(Table 2-upper part), the parameterized model has been used to
design an optimized bioprocess regime regarding the inoculation
biomass concentration cX,0, the cultivation cycle time tcyc
and the temperature T with respect to optimum biomass
productivity Propt for a series of equal batch cultivations
(repeated batches). Since, the specific light availability rate qph
decreases monotonously along with biomass accumulation under

constantly illuminated discontinuous bioprocess operation, qph is
only influenced by alterable cX,0 and tcyc.

Following the above objective, a numerical optimization of
Pr was conducted using Equations (24) and (25) as described
in section 2.6.6. The biomass productivity optimization showed
two major aspects: First, the optimum growth temperature
equals the model parameter Topt= 27.93◦ C, which matches the
intuitive expectation with regard to Equations (1) and (5). This
applies independently of the lighting conditions according to the
devised model. Second, the optimization results in a corner point
optimum that points toward an insignificantly small cultivation
cycle time tcyc→ 0.

The developed approach therefore predicts the theoretical
optimum biomass productivity Propt→ 0.50 gX l

−1 d−1 within
the investigated bioreactor set-up for negligibly small cultivation
cycle times with cX,0,opt→ 1.07 gX l

−1, and hence the transition
from discontinuous (e.g., batch, fed-batch or their repeated
versions) to continuous (e.g., chemostat, turbidostat) bioprocess
operation. The optimum inoculation biomass concentration
cX,0,opt calculated this way corresponds to the steady-state
biomass concentration of a settled chemostat bioprocess or to
the optimum biomass concentration set-point of a turbidostat
bioprocess, respectively (Weise et al., 2019). (Statement is no
longer applicable due to the modifiaction of Equation 2).
The above findings are also supported by Chen et al. (2012)

who estimated cX,0,opt= 0.98 gX l
−1 (Propt= 0.75 gX l

−1 d−1) for
a small-scale laboratory set-up, as well as Hulatt et al. (2017)

finding Propt= 0.51 gX l
−1 d−1 for a flat-panel photobioreactor,

both under discontinuous operation. In addition, literature

values for Pr at pilot-scale and industrial-scale show a range

< 0.1, . . . , 0.71 gX l
−1 d−1 (de Vree et al., 2015; Pereira et al.,

2018), confirming the feasibility of the Propt values obtained here.
A simulation of the original experiments was carried out

using the actually applied cultivation cycles times tcyc of the
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FIGURE 5 | Experimental and modeling results: Time series of measured and modeled biomass concentration, measured temperature and pH; Violin plots: center

point - median, box - interquartile range (IQR), whisker - 1.5 · IQR, kernel density estimation - number of observations; (A): Temperature distributions of the

experimental time series data; (B): pH distributions of the experimental time series data; (C): Model prediction error distributions of the experimental time series data

with respect to biomass concentration; (D): “good fit” example - representing lowest prediction error calculated, Experiment No. 05; (E): “bad fit” example -

representing highest prediction error calculated, Experiment No. 13.
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experiments (see Table 2-lower part) as well as the optimized
process parameters cX,0,opt and Topt (according to section 2.6.6).

TABLE 3 | Numerical optimization results: Model predicted Propt for different

bioprocess operations and pre-set tcyc at Topt with the required cX,0,opt (see

Figure 6A).

Bioprocess operation tcyc cX,0,opt Propt

[d] [gX l
−1] [gX l

−1 d−1]

Discontinuous (repeated) 7.0 0.17 0.37

Discontinuous (repeated) 3.5 0.43 0.46

Discontinuous (repeated) 1.0 0.84 0.50

Continuous → 0 1.07 0.50

The model predicts a noticeable increase of Pr by 39% from
0.33 gX l

−1 d−1 (see Table 2-lower part) to 0.46 gX l
−1 d−1.

The convergence toward the predicted optimum biomass
productivity is asymptotic. This results in only minor
additional gains in biomass productivity when moving from
short-cycled discontinuous to continuous bioprocesses and
requires a simultaneous adaptation of the inoculation biomass
concentration cX,0. Within this context, Table 3 shows examples
of the predicted Propt under discontinuous (repeated batch)
bioprocess operation for fixed cultivation cycle times tcyc (1 d,
3.5 d, and 7 d) starting at the required inoculation biomass
concentration cX,0 and under optimum temperature Topt. As
a consequence, solely reducing tcyc from 7 d to 3.5 d would
outweigh the increase in operational efforts by a higher Pr

FIGURE 6 | Heat map representation of model predicted biomass productivity; (A): Pr depending on tcyc and cX,0 at Topt; (B–D): Pr depending on T and cX,0 at set

tcyc [1 d (B), 3.5 d (C), 7 d (D)].
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(0.37→ 0.46 gX l
−1 d−1; with cX,0,opt 0.17→ 0.43 gX l

−1) under
discontinuous bioprocess operation.

Figure 6A illustrates these relations in more detail by

presenting the model’s prediction with respect to biomass

productivity Pr depending on the cultivation cycle time
tcyc and the inoculation biomass concentration cX,0 for the

optimum cultivation temperature Topt. According to the model’s

prediction, only moderately high biomass productivities are
gained for cultivation cycle times greater ≈ 5 days, as well
as for inoculation biomass concentrations above ≈ 1 gX l

−1

(Figure 6A). Notably, the optimum productivity is reached at the
shortest cultivation cycle time, which illustrates the said corner
point optimum regarding the cultivation cycle time tcyc.

In accordance with these findings, Figures 6B–D additionally
provides graphical representations of the biomass productivity
loss when varying the process parameters cX,0, tcyc and T.
Figures 6B–D illustrate scenarios for three different cultivation
cycle times: 1 d, 3.5 d (1/2week), and 7 d (1week) with
respect to discontinuous bioprocess operation (repeated batch).
Considerations regarding lag phases are neglected here, as
can be seen in Figures 2, 5D,E. All three scenarios show
a single optimum of biomass productivity at the respective
optimum temperature Topt and the optimum inoculation
biomass concentration cX,0,opt.

The predicted Propt increases by about 35% from

0.37 gX l
−1 d−1 at tcyc= 7 d (cX,0,opt= 0.17 gX l

−1) to

0.50 gX l
−1 d−1 at tcyc= 1 d (cX,0,opt= 0.84 gX l

−1). In general,
the optimum biomass productivity Propt increases when the
cultivation cycle time is shortened. In addition, when this
time is shortened, a higher cX,0,opt is required to obtain the
optimum productivity.

4. CONCLUSION

The work presented here provides a transferable methodology
to model microalgal growth covering light availability and
temperature based on experimental data from cultivation runs in
a small pilot-scale tubular photobioreactor under discontinuous
operation in order to subject it to biomass productivity analysis
and optimization.

The established model with its estimated parameters
accurately predicts light and temperature dependent growth of
Nannochloropsis granulata. The parameter ranges are supported
by the literature. In general, the model parameter Topt is much
closer to Tmax than to Tmin, thus the CTMI displays a strong
asymmetry. Temperatures above Topt therefore lead to a steep
decline in the growth rate and also the biomass productivity.
Since an accurate temperature control is hardly to provide under
large-scale or outdoor conditions, these processes should be
operated below the targeted Topt.

Model-based numerical biomass productivity optimization
for repeated discontinuous operation points toward best
performance under continuous operation. The optimization for
repeated discontinuous operation yields reduction of cultivation
cycle time and increase of inoculation biomass at optimum
temperature. The calculated optimum inoculation biomass

concentrations cX,0,opt and the corresponding optimum biomass
productivities Propt are confirmed by different publications.
Furthermore, biomass productivities for laboratory-scale, pilot-
scale and industrial-scale reported in the literature support the
feasibility of the Propt values obtained here. Applying these
optimized process parameters would deliver a noticeable increase
in biomass productivity.

The successful application of this approach here to small
pilot-scale under discontinuous operation, following a previous
investigation into lab-scale under continuous operation,
indicates its potential transferability also to larger scale tubular
photobioreactors covering both light and temperature dependent
microalgal growth and biomass productivity.
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NOMENCLATURE

Symbol Description Unit

Latin

A Illuminated photobioreactor projection surface m2

c Number of photobioreactor compartments −

cX Biomass concentration (within the photobioreactor) gX l
−1, gXm

−3

I0 Light intensity at the photobioreactor surface molph m
−2 d−1

J Cost function −

KS,ph Specific photon half-saturation constant molph gX
−1 d−1

l Light path length m

l∅ Average light path length m

mph Specific photon maintenance coefficient molph gX
−1 d−1

M Model output

(M)APE (Mean) absolute percent error %

ODNIR Optical density at near infrared range AU

Pr Biomass productivity gX l
−1 d−1

Propt Optimum biomass productivity gX l
−1 d−1

qph Specific photon availability rate molph gX
−1 d−1

r Inner radius of tube/compartment m

S Sobol sensitivity index –

ST Sobol total sensitivity index –

t Time d

T Temperature (within the photobioreactor) ◦ C

VL Liquid volume of the photobioreactor m3

Var Variance

YX,ph True photon growth yield gX molph
−1

Greek

µ Specific growth rate d−1

µmax Maximum specific growth rate d−1

φ(T ) Cardinal temperature model with inflexion (CTMI) −

φ̂(T ) Cardinal temperature model with inflexion (CTMI) for

Tmin < T < Tmax

−

σ Standard deviation

θ Vector of all possible parameter combinations

� Vector of estimated optimum parameter values

Indices

0 Value at begin of cultivation

cyc Cultivation cyle

f Final value

min/max Minimum/maximum value

meas/data Measured value

opt Optimum value

ph Photon

pred/model Predicted/modeled value

X Biomass

∅ Average value
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