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Abstract
Aims/hypothesis Hypothalamic glucose-excited (GE) neu-
rons contribute to whole-body glucose homeostasis and
participate in the detection of hypoglycaemia. This system
appears defective in type 1 diabetes, in which hypoglycae-
mia commonly occurs. Unfortunately, it is at present unclear
which molecular components required for glucose sensing
are produced in individual neurons and how these are func-
tionally linked. We used the GT1-7 mouse hypothalamic
cell line to address these issues.
Methods Electrophysiological recordings, coupled with
measurements of gene expression and protein levels and
activity, were made from unmodified GT1-7 cells and cells
in which AMP-activated protein kinase (AMPK) catalytic
subunit gene expression and activity were reduced.
Results Hypothalamic GT1-7 neurons express the genes
encoding glucokinase and ATP-sensitive K+ channel (KATP)
subunits Kir6.2 and Sur1 and exhibit GE-type glucose-
sensing behaviour. Lowered extracellular glucose concen-
tration hyperpolarised the cells in a concentration-dependent
manner, an outcome that was reversed by tolbutamide. In-
hibition of glucose uptake or metabolism hyperpolarised
cells, showing that energy metabolism is required to main-

tain their resting membrane potential. Short hairpin
(sh)RNA directed to Ampkα2 (also known as Prkaa2) re-
duced GT1-7 cell AMPKα2, but not AMPKα1, activity and
lowered the threshold for hypoglycaemia-induced hyperpo-
larisation. shAmpkα1 (also known as Prkaa1) had no effect
on glucose-sensing or AMPKα2 activity. Decreased uncou-
pling protein 2 (Ucp2) mRNA was detected in AMPKα2-
reduced cells, suggesting that AMPKα2 regulates UCP2
levels.
Conclusions/interpretation We have demonstrated that
GT1-7 cells closely mimic GE neuron glucose-sensing be-
haviour, and reducing AMPKα2 blunts their responsiveness
to hypoglycaemic challenge, possibly by altering UCP2
activity. These results show that suppression of AMPKα2
activity inhibits normal glucose-sensing behaviour and may
contribute to defective detection of hypoglycaemia.
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Abbreviations
ACC Acetyl-CoA carboxylase
AMPK AMP-activated protein kinase
GCK Glucokinase
GE Glucose excited
GI Glucose inhibited
GnRH Gonadotrophin-releasing hormone
KATP ATP-sensitive K+ channel
Kir Inwardly rectifying K+ channel
POMC Proopiomelanocortin
shCont Control shRNA
shRNA Short-hairpin RNA
SUR1 Sulfonylurea receptor 1
UCP2 Uncoupling protein 2
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Introduction

The ability of the hypothalamus to sense change in glucose
levels is important in the control of feeding, energy expen-
diture and peripheral glucose homeostasis in mammals.
Indeed, for patients with type 1 diabetes, the impairment
of central detection of reduced glucose levels (hypoglycae-
mic unawareness) is a major concern, as this results in a
defective counter-regulatory response, leading to severe risk
of profound hypoglycaemia and consequent morbidities [1].
Although brain glucose concentrations parallel those of plas-
ma, they are generally much lower. Thus, during euglycae-
mia, brain glucose concentrations are ~1.0–2.5 mmol/l and,
during extreme hyperglycaemia or hypoglycaemia, may
reach 5 and 0.2 mmol/l, respectively [2]. To detect changes
in brain glucose levels and produce proportionate physiolog-
ical responses, a neuronal glucose-sensing system is re-
quired. Brain regions intimately associated with this role
are the hypothalamus, amygdala, basal ganglia and hind-
brain, where specific neuron subtypes that respond electri-
cally to acute variations in glucose are situated [3]. The two
major subtypes are glucose-excited (GE) and glucose-
inhibited (GI) neurons, whereby a hypoglycaemic stimulus
results in hyperpolarisation and inhibition and depolarisation
and excitation, respectively [3, 4].

The identity of the molecular constituents that confer
glucose-sensing properties on these neurons is unclear. This
is due to the difficulties associated with intact brain tissue,
absence of a transgenic mouse model allowing easy location
of glucose-sensing neurons, uncertainties regarding the role of
astrocytes, and lack of a suitable cell culture model. Although
GE neurons exhibit similar glucose-sensing behaviour to pan-
creatic beta cells, the glucose concentration range over which
electrical responses occur deviates significantly. The respon-
siveness of beta cells to altered plasma glucose is dependent
on the presence of: GLUT2 in rodents (GLUT1 in humans),
the high-capacity glucose transporter; GCK, the low-affinity
hexokinase isoform, glucokinase; and KATP, the ATP-sensitive
K+ channel, consisting of the K+ channel subunit, Kir6.2, and
the sulfonylurea receptor, SUR1 [5]. All four proteins are
produced in hypothalamic cells, but not always in a coincident
manner and in conjunction with unequivocal identification of
glucose-sensing properties [6, 7]. Thus there is no clear con-
sensus about the molecular definition of glucose sensing in
GE neurons. Our knowledge of the molecular constituents that
underlie GI neuron glucose-sensing behaviour is even less
well advanced [8]. In addition, glucose sensing may not be
an intrinsic feature of hypothalamic neuron populations, but
may require metabolic support from glial cells, particularly
astrocytes [1, 6].

Recent studies have shown that AMP-activated protein
kinase (AMPK) is an essential component for detection of

hypoglycaemia by pancreatic beta cells and hypothalamic
neurons. Thus ablation of the AMPKα2 catalytic subunit
from beta cells [9] and subpopulations of GE hypothalamic
neurons [10] results in failure of these cells to respond
electrically to reduced levels of glucose. Importantly, hypo-
thalamic AMPK plays a key role in the integrative response
to central hypoglycaemia detection, with AMPK downregu-
lation suppressing [11], and activation amplifying [12],
counter-regulatory responses, respectively.

We show that mouse hypothalamic GT1-7 cells [13]
exhibit hypoglycaemia-detecting behaviour typical of GE
neurons and utilise a similar array of molecular components
to beta cells to elicit an electrical response. Furthermore, like
native hypothalamic neuron and beta cell glucose sensors,
GT1-7 cells exhibit dependence on AMPKα2 activity for
the transduction of a hypoglycaemic signal to an electrical
response.

Methods

Cell culture GT1-7 cells (Pamela Mellon, San Diego, Cal-
ifornia, USA [13]) were maintained in DMEM (Sigma-
Aldrich, Gillingham, UK) with 10% FBS (PAA Laborato-
ries, Yeovil, UK) as previously described [14].

Immunoblotting GT1-7 cells, in six-well dishes, were
serum-starved for 3 h, and DMEM (low or high glucose)
was replaced with normal saline (below) before challenge
with glucose. Protein isolation and immunoblotting proce-
dures were as described previously [14]. Briefly, protein
lysates were subjected to SDS-PAGE and electrotransferred
to nitrocellulose membrane, and immunoreactive proteins
were identified by chemiluminescence. Primary antibodies
used were: phospho-AMPK (Thr172; 1:1000 dilution) and
phosphorylated acetyl-CoA carboxylase (p-ACC; Ser79;
1:1000 dilution) from New England Biolabs, Hitchin, UK;
AMPKα2 and AMPKα1 from D.G. Hardie, University of
Dundee, Dundee, UK; GK from M. Magnusson, Vanderbilt
University, Nashville, Tennessee, USA; Kir6.2 (p-Ser385)
from L.M. Chuang, Taipei, Taiwan; actin (1:5000 dilution)
from Sigma-Aldrich. Gel protein bands were quantified by
densitometry, where total density was determined with re-
spect to a constant area, the background was subtracted, and
the average relative band density was calculated.

Assay of AMPK activity GT1-7 cells were maintained in
2.5 mmol/l glucose/DMEM and serum and washed in normal
saline (2.5 mmol/l glucose), before challenge with 2.5 or
0.5 mmol/l glucose for various times. Cells were lysed in lysis
buffer (in mmol/l: 50 Tris-HCl, pH 7.5, 150 NaCl, 50 NaF,
5 sodium pyrophosphate, 1 EDTA, 1 EGTA, 1 dithiothreitol,
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0.1 benzamidine) with 0.1 mmol/l phenylmethanesulfonyl
fluoride, 5 μg/ml soya bean trypsin inhibitor and 1% (vol./
vol.) Triton X-100, and the protein content was determined
(BCA assay; Fisher Scientific, Loughborough, UK). AMPK
activity was determined as previously described [15] by cal-
culating the difference in counts between AMARA (AMPK
substrate: AMARAASAAALARRR)-containing and
AMARA-negative samples as nmol ATP incorporated per
min per mg peptide. Data were normalised to the control and
are expressed as the mean of four to six independent experi-
ments each with three replicates.

AMPK knockdown Lentiviral transduction of cells using
non-targeting short hairpin RNA (shRNA; control;
SHC202; Sigma-Aldrich) and shRNA targeting Ampkα1
(also known as Prkaa1) and Ampkα2 (also known as
Prkaa2) was performed as per the manufacturer’s instruc-
tions. Briefly, GT1-7 cells were grown in poly-L-lysine-
coated 12-well dishes to ~50% confluence. Hexadimethrine
bromide (10 μg/ml) and 40 μl lentiviral particles were added
to each well, and, after 24 h, the mixture was replaced with
fresh medium. Cells were grown to ~80% confluence and
selected using puromycin hydrochloride (5 μg/ml). All data
presented are from three to four independent cell lines, each
generated in parallel to a control, and comparisons are
between the knockdown line of interest and their control.
Knockdown of AMPKα1 and AMPKα2 was screened by
western blot and assay of radiolabelled kinase activity. A
panel of five clones targeting AMPKα1 and AMPKα2 was
used for screening, with clones XM_139298.4-1396s1c1
(AMPKα1) and XM_131633.3-858s1c1 (AMPKα2) pro-
viding the best knockdown.

Gene expression studies mRNA was quantified using real-
time quantitative RT-PCR as described previously [9, 16].
mRNA was extracted from GT1-7 cells or mouse brain,
heart or liver using Tri reagent (Sigma-Aldrich) according
to the manufacturer’s protocol. cDNA was prepared using
1 μg RNA reverse transcribed with Superscript II kit (Life
Technologies, Paisley, UK) or ImProm-II reverse transcrip-
tase (Promega, Madison, WI, USA) with oligo(dT) priming
and RNase treatment. mRNA expression was analysed us-
ing an ABI Prism 7500 or ABI 7700 sequence detection
system (Applied Biosystems, Foster City, CA, USA) or an
iCycler iQ TM Multicolor Real-Time system (Bio-Rad,
Hercules, CA, USA) using primer/probe sets designed (Ap-
plied Biosystems, Paisley, UK) to target Slc2a1, Slc2a2,
Slc2a3, Slc2a4 (solute carrier family 2 [facilitated glucose
transporters 1–4]), Hk1, Hk2, Hk3 and Gck, Slc16a7 (neu-
ronal monocarboxylate transporter), Abcc8, Abcc9 (sulfo-
nylurea receptors 1 and 2), and Kcnj8 and Kcnj11 (Kir6.1

and Kir6.2), and data were analysed by the 2�ΔCt method

[16]. Levels of Ucp2 mRNA under control and AMPKα2
knockdown are expressed relative to 18S RNA. For detec-
tion of Gck mRNA, tissues were homogenised in Trizol
reagent, and 1 μg RNA reverse transcribed as above.
PCR was carried out with first-strand cDNA with pri-
mers for mouse pancreas- type GCK (forward,
TGGAGGCCACCAAGAAGGAAAAG; reve r se ,
GCATCTCGGAGAAGTCCCACGATG).

Electrophysiology GT1-7 cells were superfused at room
temperature (22–25°C) with saline (in mmol/l): 135 NaCl,
5 KCl, 1 MgCl2, 1 CaCl2, 10 HEPES, 10 or 2.5 glucose (pH
7.4). Membrane potentials were recorded using perforated-
patch or whole-cell current-clamp configurations, and cur-
rents by whole-cell voltage clamp. In whole-cell experi-
ments, cells were maintained in current-clamp mode to
monitor resting membrane potential, with short excursions
into voltage clamp to obtain current–voltage relations.
Current- and voltage-clamp data were collected and ana-
lysed as described previously [9]. Recording electrodes
had resistances of 5–10 MΩ when filled with pipette solu-
tion, which for whole-cell recordings comprised (in mmol/l)
140 KCl, 5 MgCl2, 3.8 CaCl2, 10 EGTA, 10 HEPES, pH 7.2
(free [Ca2+] of 100 nmol/l). For perforated-patch recordings,
the electrode solution contained (in mmol/l): 140 KCl, 5
MgCl2, 3.8 CaCl2, 10 HEPES, 10 EGTA (pH 7.2) and 25–
40 μg/ml amphotericin B (Sigma-Aldrich). After a mini-
mum of 10 min of stable recording, normal saline containing
altered glucose concentration and/or tolbutamide
(100 μmol/l), diazoxide (250 μmol/l) (both Sigma-
Aldrich) or NN414 (5 μmol/l; Novo Nordisk, Copenhagen,
Denmark) was applied.

Statistical analysis Data are presented as means±SEM.
Analysis of variance, one-sample t test and Student’s paired
or unpaired t tests were performed using GraphPad Prism
(Prism 5) software (GraphPad Software, La Jolla, CA,
USA). p values ≤0.05 were considered statistically
significant.

Results

Expression of GT1-7 cell glucose transporter, hexokinase
and functional KATP channel subunits GT1-7 cells show
mRNA for the glucose transporters Glut1, Glut3 and Glut4,
but not Glut2 (Fig. 1a) and for the monocarboxylate trans-
porter, Slc16a7 (data not shown). mRNAs for Hk1 and Hk2,
but not Hk3 or Gck, could be distinguished (Fig. 1a). In
further attempts to demonstrate Gck mRNA, PCR was per-
formed using pancreas-specific Gck mRNA primers, and
expression of this transcript was confirmed, with GCK
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protein also detectable by immunoblot in GT1-7 cells
(Fig 1b,c). Sulfonylurea receptor subunit Sur1 mRNA was
expressed, with Sur2b mRNA also present, along with the
pore-forming KATP subunit Kir6.2 (with protein also detect-
able by immunoblot; electronic supplementary material
[ESM] Fig. 1), although no Kir6.1 or Sur2a mRNA was
demonstrable (Fig. 1d). Perforated-patch recordings
revealed electrical activity in saline containing 10 or
2.5 mmol/l glucose, with no difference in firing rates or
membrane potential (Vm) (10 mmol/l, Vm0−51.0±2.5 mV
[n08]; 2.5 mmol/l, Vm0−48.8±2.2 mV [n05]; p>0.1).
GT1-7 cells in 10 mmol/l glucose and challenged with
2.5 mmol/l glucose also showed no change in Vm or firing
rate (data not shown). For cells in 2.5 mmol/l glucose,
addition of tolbutamide (200 μmol/l) caused a modest depo-
larisation (<3 mV) and increased firing (Fig. 1e). In contrast,
the KATP activator, diazoxide (250 μmol/l), or the SUR1-
specific activator [17], NN414 (5 μmol/l), rapidly hyper-
polarised Vm and inhibited firing (Fig. 1f,g). Whole-cell
voltage clamp (Fig. 1h,i) showed significant K+ conduc-
tance, after washout of cell ATP, which was blocked by
tolbutamide (200 μmol/l). These results indicate the pres-
ence of functional KATP channels in GT1-7 cells, which are
predominantly closed at euglycaemic (2.5 mmol/l) glucose.

Hypothalamic GT1-7 cells sense brain glucose concentra-
tions In contrast with the lack of sensitivity over the phys-
iological plasma glucose range (10–2.5 mmol/l) GT1-7 cells
responded, reversibly, to a lower glucose concentration
(0.5 mmol/l) by hyperpolarisation and cessation of firing,
which occurred independently of the initial glucose concen-
tration (Fig. 2a,b). This sensitivity was observed regardless
of the glucose concentration in the culture medium. Thus,
for GT1-7 cells maintained in 2.5 mmol/l glucose/DMEM,
followed by 2.5 mmol/l glucose/saline, a reduction to
0.5 mmol/l glucose caused reversible hyperpolarisation
(2.5 mmol/l, Vm0−46.8±2.2 mV; 0.5 mmol/l, Vm0−61.3±
1.7 mV; p<0.001, n06) indistinguishable from cells main-
tained in high-glucose DMEM (Fig. 2a). GT1-7 cells
responded to glucose concentrations below 1mmol/l (Fig. 2c),
in agreement with the glucose sensitivity reported for GE
hypothalamic neurons [10]. To address glucose sensitivity
further, we used another mechanism that monitors cell en-
ergy availability [18], AMPK, and examined phosphoryla-
tion of AMPK (p-AMPK) and its downstream effector,
ACC (p-ACC). In GT1-7 cells exposed to 0.1 mmol/l glu-
cose for 30 min and challenged with increasing glucose
concentrations, maximal sensitivity occurred below
1 mmol/l (Fig. 2d and ESM Fig. 2). We also assessed
AMPK phosphorylation in relation to hypoglycaemic glu-
cose concentrations (2.5 mmol/l glucose starting point),
which also demonstrates optimal sensing at concentrations
below 0.5 mmol/l (Fig. 2e). As GT1-7 cells hyperpolarised

to 0.5 mmol/l glucose (Fig. 2a), we were concerned that the
immunoblot method was insufficiently sensitive. Conse-
quently, direct AMPK activity assay showed that glucose
reduction from 2.5 to 0.5 mmol/l significantly increased
total AMPK activity after 15 min (Fig. 2f), when neuronal
hyperpolarisation is maximal. In conclusion, the glucose
concentrations that engendered the largest change in AMPK
activity were between 1.0 and 0.1 mmol/l, in good agree-
ment with the electrical sensitivity to hypoglycaemia.

Glucose uptake and phosphorylation are required to main-
tain KATP closure in GT1-7 cells Expression studies showed
mRNA for Glut1, Glut3, Glut4 and hexokinase isoforms
Hk1, Hk2 and Gck. Cytochalasin B (20 μmol/l), an inhibitor
of facilitated glucose transporters [19], rapidly caused
hyperpolarisation by opening KATP, as denoted by tolbuta-
mide reversal (Fig. 3a). The non-specific hexokinase inhib-
itor, alloxan (1 mmol/l), or replacement of glucose with the
anti-metabolite, 2-deoxyglucose, also hyperpolarised GT1-7
cells (Fig. 3b,c). These results indicate that glucose uptake
and metabolism are required to maintain the resting poten-
tial of GT1-7 hypothalamic neurons.

As Gck mRNA and protein abundance were low, we used
an alternative approach to demonstrate that GCK contribut-
ed to glucose-sensing behaviour in GT1-7 cells. The GCK
activator, GKA50, prevents hyperpolarisation of pancreatic
beta cells in response to hypoglycaemic challenge [9] and
increases insulin secretion [20]. After hyperpolarisation by
0.5 mmol/l glucose, application of GKA50 (1 μmol/l)
caused depolarisation and increased firing (Fig. 3d),

Fig. 1 GT1-7 cells express functional Kir6.2/Sur1-containing KATP

channels. (a) Bar graphs showing cycle threshold for real-time PCR
amplification of Glut1, 2, 3 and 4, Hk1, 2 and 3 and Gck mRNA from
liver (grey bars), brain (hatched bars) and GT1-7 cells (black bars) (n03
for each). # represents non-detectable. (b) Detection of brain/pancreas-
type GCK by PCR and immunoblot in GT1-7 cells. DNAwas extracted
from different tissues (H, heart; B, brain; M, skeletal muscle; F, fat; L,
liver; GT, GT1-7 cell line). La, DNA ladder. (c) Representative immuno-
blots for hexokinase (HK) and GCK in GT1-7 cells in comparison with
mouse islets. (d) Bar graphs showing cycle threshold for real-time PCR
amplification of Sur1, Sur2a, Sur2b, Kir6.1 and Kir6.2 from GT1-7 cells
(n03 for each). (e) Perforated patch recording from GT1-7 cell showing
excitation by tolbutamide (200 μmol/l). The bar graph shows mean
values for membrane potential in 2.5 mmol/l glucose, in the absence
(Cont) and presence (Tolb) of tolbutamide (n06). (f,g) Perforated patch
recordings fromGT1-7 cells in 2.5mmol/l glucose showing the reversible
hyperpolarisation in response to diazoxide (DZX) (f) and NN414 (g). Bar
graphs denote mean values of membrane potential in cells exposed to
diazoxide (n04) and NN414 (n04). (h) Representative current–voltage
relationships for voltage-clamped currents of GT1-7 cells. Mean currents
were measured at various membrane potentials shortly after attaining
whole-cell recording (i.e. before significant washout of ATP (control;
squares) and 20 min later (after maximal washout of cellular ATP [0
ATP], circles) and with subsequent addition of tolbutamide (200 μmol/l,
triangles). (i) Bar graph denotes mean conductance density (n04)
obtained under the recording conditions described in (h). Values are
means±SEM. *p<0.05, **p<0.01, ***p<0.001

b
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indicating increased glucose metabolic flux. Central neurons
also metabolise lactate if their glucose supply is restricted
[21], thus we determined whether GT1-7 cells could use this
alternative energy source to maintain Vm under hypoglycae-
mic conditions. GT1-7 cells exposed to 0.1 mmol/l glucose

were depolarised when challenged with lactate at concen-
trations from 0.1 to 3.0 mmol/l (Fig. 3e). Although the mean
changes in Vm induced by lactate only showed significance
at 1.0 and 3.0 mmol/l, we observed cells that clearly
responded to 0.3 mmol/l lactate (Fig. 3e).
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Decreased AMPKα2, but not AMPKα1, activity diminishes
the glucose sensitivity of GT1-7 cells The AMPKα2 subunit
is required for hypoglycaemia sensing in pancreatic beta
cells [9] and subpopulations of hypothalamic neurons [10].
Consequently, we examined whether this protein was also
linked to glucose sensing in GT1-7 cells. To reduce AMPK
levels and activity, GT1-7 cells were infected with lentivirus
expressing shRNA to Ampkα2 (shAmpkα2), Ampkα1
(shAmpkα1) or a control, scrambled sequence (shCont).
Immunoblots confirmed that both AMPK catalytic subunits
were present, that treatment of GT1-7 cells with control
vector had no effect on isoform protein levels, and that

shAmpkα2 reduced AMPKα2, but not AMPKα1, protein
levels (Fig. 4a). Measurement of AMPK isoform specific
activity showed that GT1-7 cells exhibited predominantly
AMPKα1 (0.395±0.068 mU min−1 mg−1; n017) over
AMPKα2 (0.0077±0.0017 mU min−1 mg−1; n017) activity,
and that 100 μmol/l H2O2 significantly raised the activity of
both isoforms (Fig. 4b,d). Although shAmpkα2 treatment of
GT1-7 cells did not significantly alter basal AMPKα2 ac-
tivity (Fig. 4b,c), it did prevent H2O2 activation of
AMPKα2, but not AMPKα1, activity (Fig. 4b,d) and
importantly prevented stimulation of AMPKα2 activity by
hypoglycaemia (Fig. 4c).
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Fig. 2 GT1-7 cells are
sensitive to brain glucose
concentrations. (a,b) GT1-7
cells respond, reversibly, to a
reduction in glucose from 10
(a) or 2.5 (b) to 0.5 mmol/l by
hyperpolarisation and cessation
of firing. Bar graphs show mean
values for membrane potential
of cells exposed to 10 (a; n07)
or 2.5 (b; n05) mmol/l glucose,
or 0.5 mmol/l glucose and
diazoxide (DZX). (c) Mean
membrane potential values for
GT1-7 cells as a function of
glucose concentration (n05–7).
(d) Representative immunoblot
showing the effect of increasing
glucose concentration (0.1–
20 mmol/l) on p-AMPK and
p-ACC levels. (e) Representa-
tive immunoblot showing the
effect of glucose (0.1–
2.5 mmol/l) on p-AMPK and
total AMPK levels. Bar graph
shows relative mean level of p-
AMPK as a function of glucose
concentration (n06). (f) AMPK
activity (arbitrary units [AU])
measured in GT1-7 cells after
their exposure to 2.5 and
0.5 mmol/l glucose for 15 min
(n03). Values are means±SEM.
*p<0.05, **p<0.01,
***p<0.001
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shCont-treated GT1-7 cells displayed electrical activity in
2.5 mmol/l glucose and responded to 0.5 mmol/l glucose by

hyperpolarisation and cessation of firing (Fig. 4e) in a man-
ner indistinguishable from untreated cells. In contrast,

Tolbutamide

2 min

25 mV

Cyto B

2.5

M
em

br
an

e 
po

te
nt

ia
l

(m
V

)

-75

0

-25

-50

Cont Cyto B Tolb

** ***

a

b

M
em

br
an

e 
po

te
nt

ia
l

(m
V

)

0

-25

-50

-75

Cont Alloxan

*

c

Glu Glu2-DG
0

-25

-50

-75

M
em

br
an

e 
po

te
nt

ia
l

(m
V

)

*** ***

d
2.5
0.5

GKA50

5 min
25 mV

[Lactate]
0

-25

-50

-75M
em

br
an

e 
po

te
nt

ia
l

(m
V

)

***

0 0.1 0.3 1.0 3.0

0

-25

-50

-75

M
em

br
an

e 
po

te
nt

ia
l

(m
V

)

* **

2.5 0.5 2.5
GKA
0.5 [Glucose]

eAlloxan

2 min

25 mV

Glucose
2-DG

5 min
25 mV

5 min

50 mV

0.1
1.0

0.1
2.5

0.3
0.1

Fig. 3 Nutrient metabolism controls excitability of GT1-7 cells. (a)
Perforated patch recording showing that cytochalasin B (Cyto B;
20 μmol/l) hyperpolarises GT1-7 cells in 2.5 mmol/l glucose, an action
reversed by tolbutamide (200 μmol/l). Bar graph shows mean values
for membrane potential of cells exposed to 2.5 mmol/l glucose (Cont),
cytochalasin B and tolbutamide (Tolb; n05). (b) Alloxan (1 mmol/l)
hyperpolarises GT1-7 cells. Bar graph shows mean membrane potentials
under control conditions (2.5 mmol/l glucose) and in alloxan (n04). (c)
Replacement of 2.5 mmol/l glucose with 2.5 mmol/l 2-deoxyglucose
(2-DG) reversibly hyperpolarises GT1-7 cells. Bar graph denotes mean
membrane potential of cells exposed to glucose and 2-deoxyglucose (n0

4). (d) Application of the GCK activator, GKA50 (1 μmol/l) reverses the
hyperpolarisation and inhibition of firing caused by 0.5 mmol/l glucose.
Bar graph shows mean membrane potential of cells exposed to
2.5 mmol/l glucose and 0.5 mmol/l glucose with or without
GKA50 (n06). (e) Lactate compensates for low glucose in maintenance
of GT1-7 cell membrane potential and excitability. Solid and broken lines
denote glucose and lactate concentrations, respectively, with individual
concentrations given above the trace. Bar graph shows mean membrane
potential of cells in 0.1 mmol/l glucose (white bar) or lactate
(0.1–3.0 mmol/l; n05–9; black bars). Values are means±SEM. *p<0.05,
**p<0.01, ***p<0.001

2438 Diabetologia (2012) 55:2432–2444



shAmpkα2-treated cells were less responsive to hypoglycae-
mic challenge, with 0.5 mmol/l glucose having no effect on
Vm or firing rate (Fig. 4f). However, these cells were re-
sponsive to more severe hypoglycaemic challenge, with

0.25 mmol/l (Fig. 4g) and 0.1 mmol/l (ΔVCont0−9.7±
2.1 mV; ΔVshAMPKα20−13.5±4.3 mV; n04; p>0.1) glu-
cose exposure causing hyperpolarisation. Thus treatment of
GT1-7 cells with shAmpkα2 shifts the threshold for
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detection electrically to a more severe hypoglycaemia stim-
ulus. This shift in glucose-sensing capability was not asso-
ciated with any change in maximal KATP conductance of
GT1-7 cells (Fig. 4h). As responsiveness to NN414 was also
unaltered (compare Fig. 4e,f and Fig. 1g), it is likely that no
change in KATP availability is associated with modification
of glucose sensing. ShAmpkα1-treated GT1-7 cells
exhibited reduced AMPKα1 protein levels (Fig. 5a) and
depressed H2O2-stimulated AMPKα1 activity (Fig. 5b),
which was not associated with loss of AMPKα2 protein
levels or activity. Furthermore, stimulation with H2O2 in-
creased AMPKα2 activity, identical with the control
(Fig. 5d). Although shAmpkα1 treatment of GT1-7 cells
ablated stimulation of AMPKα1 activity by 0.5 mmol/l glu-
cose (Fig. 5c), robust and reproducible hyperpolarising
responses to 0.5 mmol/l glucose were observed (Fig. 5e),
indicating that AMPKα2, rather than AMPKα1, activity is
required for cells to respond electrically to hypoglycaemia.

UCP2 may also contribute to glucose sensing in GT1-7
cells Previous work suggests a role for UCP2 in the
glucose-sensing behaviour of beta cells and hypothalamic
neurons [22–24], with KATP activation and hyperpolarisa-
tion induced by low glucose in beta cells and proopiomela-
nocortin (POMC) neurons prevented by pharmacological

inhibition of UCP2 with genipin [9, 24]. In agreement, we
found that genipin (100 μmol/l) prevented GT1-7 cells from
responding electrically to hypoglycaemia (Fig. 6a). Further-
more, treatment of GT1-7 cells with shAmpkα2 significantly
reduced Ucp2 mRNA levels, in comparison with shCont-
treated cells (Fig. 6b), suggesting a close link between
AMPKα2 activity and UCP2 content.

Discussion

GT1-7 cells, which make and secrete gonadotrophin-
releasing hormone (GnRH) exhibit intrinsic glucose-
sensing properties after reduction of extracellular glucose
from the euglycaemic levels (2.5 mmol/l) normally associ-
ated with brain. As reported here for GT1-7 cells, mouse
GnRH neurons express mRNA for Gck and the KATP sub-
units Kir6.2 and Sur1, and respond to lowered glucose by
KATP-dependent hyperpolarisation [25]. Furthermore, Kir6.2
and Sur1 mRNAs have been demonstrated in hypothalamic
GE neurons using single-cell RT-PCR [7, 26]. However, the
presence of these transcripts did not completely correlate
with GE neuron phenotype, and expression of the combina-
tion, Kir6.1 and Sur1, has also been reported in hypothalam-
ic GE neurons [27]. Our findings that GT1-7 cells express

1.5

1.0

0.5

0.0
shControl shAMPKα1

**
**

R
el

at
iv

e 
A

M
P

K
α1

ac
tiv

ity
 (

A
U

) 

**

NN414

2.5
0.5

25 mV

5 min

0

-25

-50

-75M
em

br
an

e 
po

te
nt

ia
l

(m
V

)

****

2.5 0.5 2.5 [Glucose]2.5
NN414

***

a

b

c

d

e

Actin

AMPKα2

AMPKα1

shCont shAMPKα1

R
el

at
iv

e 
A

M
P

K
α1

ac
tiv

ity
 (

A
U

)

8

6

4

2

0
shControl shAMPKα1

***
**

*

20

15

10

5

R
el

at
iv

e 
A

M
P

K
α2

ac
tiv

ity
 (

A
U

)

0
shControl shAMPKα1

***

***

Fig. 5 Hypoglycaemic
responses are insensitive to
reduction in AMPKα1. (a)
Lentiviral delivery of shRNA
targeting AMPKα1 reduces
AMPKα1, but not AMPKα2,
protein levels. Cells treated with
control lentiviral vector (shCont)
are unaffected. (b–d)
shAMPKα1 reduces H2O2-
(b) and 0.5 mmol/l glucose (c)-
induced increase in AMPKα1
activity (arbitrary units [AU]),
but has no effect (d) on H2O2-
induced increase in AMPKα2
activity (n04–12). White bars
denote vehicle-treated cells and
black bars H2O2-treated cells in
(b) and (d), whereas in (c) white
bars denote cells exposed to
2.5 mmol/l glucose and
black bars cells exposed to
0.5 mmol/l glucose. (e) GT1-7
cells infected with shAMPKα1
show a normal electrical re-
sponse to 0.5 mmol/l glucose.
Bar graph shows mean values
of membrane potential for
shAMPKα1-treated GT1-7 cells
challenged with 0.5 mmol/l glu-
cose and NN414 (n04–6). Val-
ues are means±SEM. *p<0.05,
**p<0.01, ***p<0.001

2440 Diabetologia (2012) 55:2432–2444



Kir6.2 and Sur1, but not Kir6.1, mRNA support the notion
that the beta cell KATP subunit combination underlies GE
neuron effector responses to hypoglycaemia. Demonstrable
levels of Kir6.2 protein and KATP activation by diazoxide
and NN414 and inhibition by tolbutamide also support this
subunit permutation. In keeping with the proposed role for
GCK as ‘gatekeeper’ of neuronal glucose sensing [28, 29],
GCK inhibition by alloxan or activation by GKA50 [20]
mimicked or reversed the effects of hypoglycaemic chal-
lenge. These results indicate major roles for KATP and GCK
in mediating glucose sensing in GT1-7 cells as described for
pancreatic beta cells [30, 31]. In rodent beta cells, GLUT2
mediates glucose entry under physiological glucose concen-
trations [32]. However, GT1-7 cells only expressed Glut1,
Glut3 and Glut4 transcripts. GLUT2 is mainly located in
astrocytes, with GLUT3 being the primary neuronal

transporter, although GLUT1 and GLUT4 have been
reported in neurons [33]. Indeed, glial GLUT2 may be
required for normal glucagon secretion in response to hypo-
glycaemia [34]. GLUT1 and GLUT3 have low Km values
(~1 mmol/l [33]) consistent with the glucose sensitivity of
hypothalamic GE neurons [10, 35, 36] and GT1-7 cells.
GLUT4 has a Km that encompasses the physiological range
of brain glucose and could allow insulin-mediated modulation
of glucose uptake, as described for hypothalamic GE neurons
[37].

The lack of responsiveness to glucose above 2.5 mmol/l
and the small effect of tolbutamide in 2.5 mmol/l glucose
indicate that GT1-7 KATP channels are mostly closed in eugly-
caemic and hyperglycaemic conditions. This has previously
been reported for GE neurons [38], and contrasts with larger
beta cell responses to tolbutamide under euglycaemic condi-
tions, indicating the greater influence of KATP on the resting
Vm of beta cells. Indeed, the baseline resting Vm of GT1-7 cells
of~−50 mV is similar to that reported previously for hypotha-
lamic GE neurons [10, 26, 27, 36, 37, 39]. In contrast, reducing
the glucose concentration to 1.0 mmol/l or below caused
reversible KATP-dependent hyperpolarisation and reduction,
or loss, of firing of GT1-7 cells. The sensitivity of GT1-7 Vm
to agents that suppress glucose uptake and metabolism indi-
cates the requirement, as observed for beta cells, for glucose
entry and metabolism to maintain KATP in the predominantly
closed conformation. Glial cells, such as astrocytes, provide
neurons with energy substrates [3] such as lactate, which, in
conjunction with monocarboxylate transporters, cause closure
of KATP in GE neurons [39]. Thus astrocyte lactate produc-
tion may act as an energy fuel reserve for neurons, main-
taining their electrical activity during hypoglycaemia [1].
Although GT1-7 cells are intrinsic glucose sensors, the
presence of Slc16a7 mRNA and the ability of exogenous
lactate to depolarise and excite these cells under condi-
tions of glucose deprivation indicate that lactate conver-
sion into pyruvate in neurons could maintain their Vm and
excitability during hypoglycaemic episodes. Indeed, the
similar concentration response of lactate and glucose on
Vm indicates that lactate is a more effective energy sub-
strate, on an energy basis, at closing KATP channels. Con-
sequently, GT1-7 cells behave as direct glucose and lactate
sensors.

AMPK is an important nutrient sensor and effector mecha-
nism in cells, allowing detection of lowered cell energy status
with coupling to intrinsic cell mechanisms designed to restore
energy balance. Changes in AMPK activity have been impli-
cated in counter-regulatory hormone responses to hypoglycae-
mia [11, 12], and a role for AMPK has been proposed for
hypoglycaemia-dependent depolarisation of hypothalamic GI
neurons [40,41]. Inaddition,deletionof theAMPKα2catalytic
subunit in beta cells [9] and identified hypothalamic neurons
[10] prevents hypoglycaemic challenge from KATP activation
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andhyperpolarisation.Hypoglycaemia increasesAMPKactiv-
ity inGT1-7cellswithaglucoseconcentration-dependence that
mirrors the electrical change. By using shRNA targeted to
AMPKα subunits, we decreased protein levels of the targeted
subunit sufficiently to reduce its maximal activation by H2O2

and prevent AMPKα activation by 0.5 mmol/l glucose.
This demonstrated that reducing AMPKα2, but not
AMPKα1, activity prevented the hyperpolarising re-
sponse to 0.5 mmol/l glucose, but not to stronger stim-
uli, indicating a shift in the glucose-sensing threshold
away from the physiologically relevant range. This re-
sult puts AMPKα2 activity (which is only ~2% of total
AMPK activity in GT1-7 cells) directly in the glucose-
sensing pathway of GE neurons.

Therefore, what links AMPKα2 activity with GE
neuron metabolism and KATP channels? It is generally
considered that modulation of beta cell KATP activity by
glucose metabolism is driven by changes in the ATP/
ADP ratio. Glucose sensing is negatively regulated by
raised UCP2 activity, which is argued to diminish the
yield of ATP from glucose, causing beta cell dysfunc-
tion [23, 42]. Ucp2 is highly expressed in the hypothal-
amus [43], and recent studies suggest that UCP2
negatively regulates glucose sensing in hypothalamic
neurons [24, 44]. Increased UCP2 decreases mitochon-
drial Vm and respiration, via uncoupling, and is expected to
reduce the ATP/ADP ratio, thus causing KATP opening. This
scenario is supported by the observation that genipin closes

KATP and depolarises beta cells and POMC neurons, and
this requires the presence of UCP2 [30, 32]. Under hypo-
glycaemic conditions, genipin closes KATP and depolarises
GT1-7 cells, suggesting a UCP2-mediated change in glu-
cose metabolism in these cells. However, we have been
unable to detect an alteration in bulk ATP/ADP during
hypoglycaemia in GT1-7 cells (ESM Fig. 3), consistent
with a previous study [39] of GE neurons. It is plausi-
ble that localised, sub-membrane alterations of ATP/
ADP are responsible for generating the signals that
control KATP gating under hypoglycaemic conditions
and our measures are simply insufficiently sensitive.
Nevertheless, reducing AMPKα2 in GT1-7 cells signif-
icantly decreased Ucp2 mRNA levels, an outcome also
reported in islets from mice lacking AMPKα2 in beta
cells [9]. Thus AMPKα2 activity may, in an as yet
undefined way, be positively linked to Ucp2 transcrip-
tion in GE neurons and pancreatic beta cells. Interest-
ingly, activation of AMPK increases Ucp2 expression in beta
cells [45–47].

Our findings demonstrate that the GT1-7 cell line is an
excellent model with which to probe hypothalamic glucose-
sensing mechanisms. GT1-7 cells replicate the critical features
of hypothalamic GE neurons, with functional expression of
the molecular components essential for metabolic sensing and
transduction to an electrical signal, as exemplified by beta
cells. Decreasing AMPKα2 activity in GT1-7 cells dimin-
ished electrical sensitivity to a moderate hypoglycaemic
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stimulus, an action that may require reduced UCP2, although
we have no definitive data to prove this at present. We
hypothesise that AMPKα2 acts as a sensor of fluctuations
in glucose concentration by connecting glucose metabolism,
through modulation of UCP2, with changes in local nucle-
otide levels (e.g. ADP), KATP channel activity and electrical
excitability (Fig. 7). Furthermore, it is possible that hor-
mones such as leptin and/or amylin could, by modifying
AMPK activity [48], alter this intrinsic glucose-sensing
behaviour. Functional deficits of any one of the classical
components of glucose-sensing cells (e.g. KATP, GLUT2
and GCK) engender dysfunctional output, as exemplified
for pancreatic beta cells and type 2 diabetes [30, 49, 50].
Consequently any loss of function involving AMPKα2–UCP2
in beta cells or GE neurons may have a similar outcome.
Therefore, in the context of hypothalamic glucose sensing,
it will be interesting to determine whether defective glucose
counter-regulation after recurrent bouts of hypoglycaemia is
associated with alterations in the putative hypothalamic
AMPKα2–UCP2 pathway.
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