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ABSTRACT: Molecular dynamics simulations have been em-
ployed to investigate the effect of molecular polydispersity on the
aggregation of asphaltene. To make the large combinatorial space
of possible asphaltene blends accessible to a systematic study via
simulation, an upfront unsupervised machine-learning approach
(clustering) was employed to identify a reduced set of model
molecules representative of the diversity of asphaltene. For these
molecules, single asphaltene model simulations have shown a
broad range of aggregation behaviors, driven by their structural
features: size of the aromatic core, length of the aliphatic chains,
and presence of heteroatoms. Then, the combination of these
model molecules in a series of mixtures have highlighted the
complex and diverse effects of molecular polydispersity on the
aggregation process of asphaltene. Simulations yielded both antagonistic and synergistic effects mediated by the trigger or facilitator
action of specific asphaltene model molecules. These findings illustrate the necessity of accounting for molecular polydispersity when
studying the asphaltene aggregation process and have permitted establishing a robust protocol for the in silico evaluation of the
performance of asphaltene inhibitors, as illustrated for the case of a nonylphenol resin.

1. INTRODUCTION
As a consequence of global governmental policies, the
increasing popularity of electric vehicles, and the momentum
for hydrogen as a clean source of energy, the consumption of
gasoline and other fuels is set to steadily decline. On the other
hand, the proportion of the average oil barrel dedicated to
petrochemicals will grow by an estimated 20% by 2040.1

Therefore, ensuring a sustainable production of fossil resources
will continue to be an objective of paramount importance. A
predominant challenge for the oil and gas industry is the
deposition of asphaltene,2 a class of compounds defined as the
fraction of crude oil that is soluble in toluene but not in n-
heptane.3 Asphaltenes, considered to be among the heaviest
and most polar components of crude oils, are generally
described as a very polydisperse class of organic solids made of
a variety of polyaromatic structures with aliphatic chains or
heteroatoms, either organic or metallic.2 Their interaction with
water, clay, and between themselves can result in critical issues
in oil fields. Overall, they can precipitate in the reservoir and
plug production and transportation flowlines, risking economic
loss due to flow interruption and environmental damage.4 An
efficient and economical mitigation strategy consists of
injecting chemical additives, referred to as asphaltene
inhibitors, to stabilize asphaltene in crude oil. Hence, the

development of these additives is of high industrial relevance.
They are generally surfactants or polymers,5−8 but the
potential of more exotic chemistries, such as amphiphilic
macromolecules9 or deep eutectic solvents10 (a class of
products formed by the hydrogen bonding between cheap
and safe components, e.g. an amine and a carboxylic acid,
which represents an alternative to the expensive traditional
ionic liquids), has also been evaluated. The development of
efficient asphaltene inhibitors is often hindered because of the
oil field dependence of asphaltene stability and aggregation
behavior. Therefore, it seems critical to understand and
rationalize the underlying mechanisms of the asphaltene
aggregation process to better address its inhibition.
After decades of research, two main interpretations of the

asphaltene aggregation process are usually presented. On the
one hand, the Yen−Mullins model argues a hierarchical
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description in which asphaltenes are predicted to form dense
nanoaggregates of less than 10 molecules, driven by
interactions between aromatic centers, which then aggregate
less strongly into larger clusters.11,12 Such macroaggregates end
up being too heavy and produce solid deposits on the pipeline
wall. On the other hand, as the Yen−Mullins model fails to
predict or reconcile a series of experimental observations, such
as the complexity of the asphaltene molecular structure or the
heterogeneous distribution of nanoaggregate sizes, Gray et al.13

proposed an alternate supramolecular model to better capture
the high complexity of the aggregation process. In this
paradigm, aromatic π−π stacking is not considered to be the
dominant aggregation driving force but a contributing factor
alongside other interactions relevant to petroleum such as
acid−base interactions, hydrogen bonding, metal coordination
complexes, and interactions between cycloalkyl and alkyl
groups.14 In this model, strongly bound nanoaggregates can
continue to grow beyond 10 asphaltenes. As encouraged in the
research article from Gray et al.,13 this paradigm has been put
to the test both experimentally and computationally over the
past decade.
Historically, asphaltene research has been mostly exper-

imentally led,15 but in the context of the global digital
transition, there is undoubtedly momentum for in silico
approaches, thanks to their contributions to the understanding
and the rationalization of complex chemical and physical
processes, as well as their relative affordability in comparison to
laboratory experiments. Seminal works such as those by
Headen et al.16,17 and Seghdi et al.18 have established robust
molecular dynamics (MD) simulation protocols capable of
providing valuable insights into the first stage of the asphaltene
aggregation process. Moreover, many works, in particular from
the University of Illinois,19−21 have focused on studying the
influence of a variety of factors, such as salinity and interactions
with solvent on the onset of asphaltene precipitation. More
recently, via a series of MD studies,22−27 Santos Silva et al.
have worked on decoding the complex relationships between
asphaltene molecular structures and their aggregation, studying
the role of heteroatoms positioned either on the core or on the
lateral chains,22,23 the role of metalloporphyrins and
demulsifier molecules,24,27 and the effect of variations in the
size of the aromatic core and lateral chain length.25 Overall,
they have shown that the formation of nanoaggregates depends
on the size of the conjugated core and on the possible presence
of an H-bond-forming polar group, whereas macroaggregation
is determined by the length of the lateral chains and their
possible terminal polar group.26 Given that their observations
lay outside the domain of the Yen−Mullins model, they
consequently argued that this colloidal model, even though it is
capable of describing the aggregation process of standard
asphaltenes, might be a particular case of the more general
supramolecular model, as proposed by Gray et al.,13 which is
better suited to address the complete chemical diversity of
asphaltenes. Furthermore, in a few studies, MD simulations
have also been deployed to investigate the inhibitor action of
chemical additives such as dodecylbenzenesulfonic acid,28

limonene,17 n- octylphenol,29−31 and a series of polymers (two
succinimide-based structures and one maleic anhydride)32 on
asphaltene aggregation. Finally, Headen et al. have demon-
strated that MD aggregation simulations for single asphaltene
model systems qualitatively reproduce neutron total scattering
data.33

However, two types of limitations have been identified for
MD simulations of asphaltene:34,35 (i) the size and time scale
limitations of MD simulations restrain this approach to the first
stage of aggregation, and coarse-grained simulations would be
necessary to simulate the second and later stages of assembly
(e.g., flocculation), and (ii) polydispersity in the asphaltene
molecular structures is of great importance for the prediction
of aggregation structures and should be included in any
simulation. Indeed, in order to thoroughly investigate the effect
of functional groups on the aggregation process, many previous
works�with the exception of that of Javanbakht et al.35�had
to be limited to series of asphaltene model molecules with
similar aromatic cores18,22,23,25,36 to prevent the complexity of
the systems from hindering the decoding of interaction
mechanisms that underlie such a process. To provide a
different perspective on the asphaltene aggregation process,
one objective of this work is to account for the global
asphaltene molecular polydispersity.
The molecular structure of asphaltene has been a long-

standing subject of debate and an important focus during
decades of investigation; thus over time the molecular weight
has been estimated at values spanning 6 orders of magnitude.37

The development of asphaltene model molecules, which is not
the focus of this work, designed for performing MD
simulations has been addressed and reviewed in a series of
studies.34,38−41 In recent years, two experimental techniques
have provided insights of unprecedented quality into the
molecular structures of asphaltenes. On the one hand, atomic
force microscopy studies have permitted the visualization of
more than 100 asphaltene motifs,42 confirming the presence of
structures made of polynuclear aromatic hydrocarbons with
alkyl side chains, usually referred to as the “island” or
“continental” model. On the other hand, extrographic
fractionation and ultrahigh-resolution mass spectrometry
studies advocate that in petroleum island-type asphaltenes
coexist with less generally accepted “archipelago” motifs, in
which multiple aromatic cores are bridged together and include
multiple functionalities.43,44 Such works argue that, while the
island motifs are readily accessible, asphaltene purification is
required to detect and characterize archipelago asphaltenes.
In this work, we have performed a series of MD simulations

to investigate the aggregation of different systems of
asphaltene. After identifying, via unsupervised machine-
learning (ML) approaches, a set of asphaltenes that are
representative of the diversity of the catalogue of Law et al.,41

we have focused first on the aggregation of single asphaltene
model systems, i.e., involving only one type of asphaltene
model molecule. Then, the selected model molecules have
been combined in systems mixing different types of asphaltene
to study the effect of the molecular polydispersity of asphaltene
on the aggregation process. Finally, the most aggregating
mixture of asphaltene has been selected as a test case to study
the action of a nonylphenol resin asphaltene inhibitor at a
reasonably low concentration of 1 wt%. In what follows, the
results are reported and discussed while the details of the
computational methods employed are presented in the final
section.

2. RESULTS AND DISCUSSION
2.1. Identification of Representative Asphaltene

Models. The asphaltene molecular models used in this work
have been selected from a catalogue of 100 plausible molecular
models designed for MD simulations of asphaltenes (89
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models) and resins (11 models) that comprises both island
and archipelago motifs.41 To generate these models, the
quantitative molecular representation approach implemented
by Boek et al.45 had been applied to elemental analysis and
1H−13C nuclear magnetic resonance spectroscopy experimen-
tal data.41 Furthermore, as shown by Law et al.,41 their
catalogue of molecules reasonably covers the same chemical
space as previous asphaltene models collected from an in-depth
literature review. Simulating all 89 asphaltene molecules and
multiple combinations of these is currently beyond the reach of
affordable MD simulations. Therefore, identifying representa-
tive asphaltene models out of this catalogue is a way of
accounting for molecular polydispersity at a reasonable cost.
After digitalization of the catalogue of molecules,41 an
unsupervised machine learning strategy relying on unsuper-
vised clustering, detailed in section 4.1, has been implemented
to identify the 6 model molecules displayed in Figure 1. These

molecules are representative of the large diversity of asphaltene
structures, with 4 island and 2 archipelago asphaltenes. In
particular, the island models have very different structural
features: A3 has long side chains, A54 has many heterocycles,
and A29 is very bulky. The detailed composition of each
cluster is given in the Supporting Information. Finally, it is

important to keep in mind that only a limited number of
asphaltene molecules have been observed up to now.
Therefore, despite the approach developed here, the possibility
of having a bias in the initial pool of asphaltene molecular
structures cannot be entirely discarded. Interestingly, our
approach would be readily and seamlessly extendable to
account for future findings regarding asphaltene molecular
structures and would permit identification of additional
relevant and different molecules to study via MD simulations.
2.2. Single Asphaltene Model Systems. The aggrega-

tion of representative asphaltene model molecules from Figure
1 has been studied by a series of MD simulations in toluene
and heptane. The detail of the setup is given in section 4.2. To
investigate the tradeoff between convergence and simulation
cost, all single asphaltene model simulations were performed
with 40, 100, and 200 asphaltene molecules, maintaining a
concentration of 7 wt%. The aggregation state of asphaltenic
systems is monitored consistently with previous works: the
series of observables defined by Headen et al.34 have been
implemented in a homemade Python script using the package
MDAnalysis version 2.046 and are defined in section 4.3. The
aggregation number, gn, which corresponds to the number of
molecules per aggregate, also referred to as clusters, permits
monitoring the equilibrium state of the system while estimating
the size of a cluster of asphaltenes. In Figure 2, the evolution of
gn during the 240 ns simulation of 100 molecules of model A29
in heptane is represented along with 5 and 20 ns moving
averages to guide the eye.

For all other single asphaltene model simulations performed
in this study, the evolution of gn is displayed in Figures S5−S9
in the Supporting Information, and Table 1 reports the final
values of the 20 ns average window of the aggregation number,
thus filtered from short time oscillations. Additionally,
intermediate values for the same observable after 120 ns are
provided to evidence the necessity of extending these
simulations up to 240 ns. As always in molecular modeling,
identifying the reasonable system size and time scale to
simulate is crucial to balance the tradeoff between simulation
cost and accuracy. In recent studies, (i) Headen et al.34 have
performed simulations of 27 asphaltene molecules during 80 ns
(even tough they occasionally extended up to 160 and 500 ns),

Figure 1. 2D representations of the representative asphaltene model
molecules selected after the cluster analysis. The molecule name is
consistent with the original work from Law et al.,41 and cluster labels
and colors are consistent with Figure 9. No molecule from cluster #3
has been selected, as they are resins.

Figure 2. Aggregation number, i.e., average asphaltene cluster size,
from the simulation of 100 molecules of asphaltene A29 in heptane. 5
and 20 ns moving averages are used to filter short-term fluctuations of
the aggregation dynamics.
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(ii) Ghamartale et al.30 with the same model molecules
simulated 50 molecules of asphaltene during 120 ns, and (iii)
Villegas et al.,36 who focused on the aggregation of a
subfraction of asphaltene in toluene, showed by comparison
with simulations of system sizes up to 160 asphaltene
molecules that in their case simulating 20 asphaltene molecules
for 120 ns already yielded converged results. For the model
molecules studied in this work, it appears that simulating
systems of 100 asphaltenes during 240 ns, a system size and
simulation time that is well in the top tier of the current state
of the art, is the best compromise between cost and accuracy.
Indeed, as shown in Table 1 and in Figures S7 and S8 in the
Supporting Information, with 100 model molecules finite size
effects are only observed for A29 in heptane, which arrives at
full segregation within 240 ns (aggregate size of 100 molecules
in Figure 2), whereas the aggregate size does not reach 200
when 200 asphaltenes are in the system. However, even at the
largest system size studied (200 asphaltenes), aggregation is
clearly much stronger with A29 than with any other model
asphaltene, which is already well captured with 100 asphaltene
molecules. When using only 40 asphaltene molecules, finite
size effects are also observed with molecules A3, A54, and A85
in heptane. Although very insightful, the simulations performed
with 200 asphaltene molecules are currently still too expensive
(for instance up to 621,082 atoms for A3 in heptane) to be
performed on a regular basis and must be reserved for case-by-
case studies. Additionally, when the aggregation behavior of a
system is uncertain, as for example with 40 molecules of A85 in
heptane (see Figure S6 in the Supporting Information),
extending the simulation time further than 240 ns can provide
more trustworthy insights. In what follows, we focus our
analysis and comments on simulations of 240 ns performed
with 100 asphaltene molecules. While these system sizes and
simulation time scales are accessible in high-performance
computer facilities, though costly over an entire study, some
initiatives that have been pushing the system size and time
scale limits are worth mentioning. On the side of the
simulation time scale, Glova et al.47 performed simulations of
50 asphaltene molecules during 5 μs to identify the best partial
charge method, namely AM1-BCC, to use in combination with
the general AMBER force field, whereas from the system size
aspect, Javanbakht et al.35 studied the aggregation of
asphaltene mixtures of size up to 1005 model molecules
during 200 ns and concluded that, under their simulation

conditions, 375 asphaltene molecules were enough to capture
all possible nanoaggregate shapes.
Further than the average number of asphaltene molecule per

cluster, the size of these clusters can also be characterized via
their radius of gyration, Rg, while an estimate of their density
and their relative shape anisotropy κ2, which takes values
between 0 for a spherical cluster and 1 for a linear chain,
provide information relative to their shape. Details of the
implementation of these metrics are presented in section 4.3.
Besides, as these observables have been defined to charaterize
the equilibrated state of the asphaltenic systems that were
simulated, we have focused on the last 40 ns of each simulation
in order to compare what we consider equilibrated asphaltenic
systems.
Along with the aggregation number, the different observ-

ables displayed in Figure 3, accumulated during the last 40 ns
of a simulation with 100 asphaltenes A29, permit an analysis of
the aggregation of the different single asphaltene model
systems. Figures S10−S18 in the Supporting Information are
available for all other simulations, and results (average values
of radius of gyration, estimated density, and shape anisotropy)
with 100 asphaltene model molecules are summarized in Table
2 (see Tables S3 and S4 in the Supporting Information for
equivalent summaries for simulations with 40 and 200
asphaltene molecules, respectively). As could be expected, in
toluene the dispersion of the model molecules studied in this
work is generally very stable, with the exception of molecule
A29, the aggregation numbers are very low and remain low
along the entire trajectories. Overall, for simulations with 100
asphaltenes, aggregation numbers larger than 10 are only
obtained for molecule A29 (see Table 1 and Figure S7). A29 is
also very clearly the most strongly aggregating molecule in
heptane. In heptane, Figure 2 shows different stages of
aggregation of A29, with three plateaus around gn = 33, gn = 50,
and gn = 100, the last corresponding to a complete segregation
of the asphaltenes from the solvent. As observed in other
simulations,18,26 the aggregation process of this system can be
described hierarchically. Initially, in the stage that Sedghi et
al.18 named nanoaggregation, the size of the aggregates
smoothly increases up to gn values of around 15−17 at 40
ns, which is larger than the definition of the Yen−Mullins
model.11,12 Then, between 40 and 120 ns, gn starts exhibiting a
stepwise increase characteristic of the beginning of a clustering
stage, in which aggregation occurs between asphaltene clusters.

Table 1. Values of the 20 ns Window Moving Average of the Aggregation Number of All Single Asphaltene Model Simulations
Performed in This Study after Half of the MD production, gn120 at 120 ns, and at the End of the Simulations, gn240 at 240 nsa

40 asph 100 asph 200 asph

asph solvent gn120 gn240 gn120 gn240 gn120 gn240

A3 toluene 10.2 ± 0.9 7.6 ± 0.5 7.6 ± 0.2 8.3 ± 0.2 7.1 ± 0.1 6.7 ± 0.3
A3 heptane 20.6 ± 0.0 40.0 ± 0.0 12.6 ± 0.6 28.1 ± 1.7 12.0 ± 0.1 28.2 ± 1.5
A29 toluene 40.0 ± 0.3 29.2 ± 3.7 16.9 ± 0.7 60.2 ± 2.8 14.3 ± 0.2 40.8 ± 0.7
A29 heptane 22.1 ± 4.6 40.0 ± 0.0 45.6 ± 4.9 100.0 ± 0.0 37.9 ± 4.5 66.9 ± 0.3
A54 toluene 4.6 ± 0.1 4.0 ± 0.1 4.6 ± 0.1 5.3 ± 0.1
A54 heptane 15.2 ± 0.9 19.8 ± 1.3 16.5 ± 0.6 23.8 ± 1.4
A63 toluene 3.9 ± 0.1 3.7 ± 0.1 3.8 ± 0.1 3.9 ± 0.1 3.8 ± 0.0 3.5 ± 0.0
A63 heptane 5.4 ± 0.2 4.9 ± 0.2 6.4 ± 0.2 6.8 ± 02 5.4 ± 0.1 6.4 ± 0.1
A80 toluene 3.3 ± 0.2 3.1 ± 0.1 3.1 ± 0.1 3.4 ± 0.1
A80 heptane 6.1 ± 0.2 8.7 ± 0.8 10.2 ± 0.4 14.0 ± 0.4
A85 toluene 3.4 ± 0.1 3.7 ± 0.2 3.4 ± 0.2 3.5 ± 0.1
A85 heptane 7.8 ± 1.0 23.3 ± 4.2 10.0 ± 0.2 13.7 ± 1.0

aThe uncertainties are the standard deviations of the moving average.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c07120
ACS Omega 2023, 8, 4862−4877

4865

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c07120/suppl_file/ao2c07120_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c07120/suppl_file/ao2c07120_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c07120/suppl_file/ao2c07120_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c07120/suppl_file/ao2c07120_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c07120/suppl_file/ao2c07120_si_001.pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c07120?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


As the simulation time increases, gn steps increase, illustrating
the merger into asphaltene clusters of increasing size until the
event at 180 ns that results in the combination of the last two
remaining clusters. In heptane, the asphaltene model molecules
can be classified in two groups: (i) the stable A63, A80, and
A85 that do not aggregate and (ii) the unstable A3, A29, and
A54 that aggregate. The relative aggregation ranking of these
systems is consistent with previous studies decoding the
relationship between the structure of the asphaltenes and

aggregation.18,26,34 Indeed, as nanoaggregation has been shown
to primarily depend on the size of the aromatic core of
asphaltenes, it is to be expected that A29 reaches the highest
level of aggregation in this study. Additionally, A29 contains
polar aliphatic chains with sulfur heteroatoms that, in spite of
their length, contribute favorably to macroaggregation. A29 is
followed by A3, which also possesses long polar aliphatic
chains, and A54, which is made up of many heterocycles and
short apolar aliphatic chains. The relationship between the
solubility of asphaltene molecules and the extension of their
aromatic cores was already identified in early studies.48 The
extension of the aromatic core can be characterized by the
aromatic condensation index, CI/C1, which is the ratio between
the number of internal aromatic carbons (CI) and the number
of peripheral aromatic carbons (C1) of the model molecules.
Asphaltenes from deposits and unstable crude had shown
extended aromatic cores and hence large values of CI/C1. In
the single asphaltene model simulations performed in this
work, we observe that the aggregation behavior of the island
asphaltene molecules is indeed proportional to their aromatic
condensation index.
Over the 240 ns simulations, asphaltene aggregates of gn ≥

20 are formed in these the unstable systems A3, A29 and A54
in heptane. To illustrate their equilibrium states, snapshots of
the simulations after 220 ns are displayed in Figure 4 and some
full-page enlargements are provided in Figures S21−S23 in the
Supporting Information. Even tough A3 long polar aliphatic
chains do not seem to limit aggregation in comparison with
A54, they govern the packing of the aggregates. Indeed, the
aromatic cores of A3 and A54 are of similar size, but A3
exhibits ordered parallel stacks of 5−10 molecules, sometimes
referred as “pancakes stacking”, whereas A54 aggregates in a
more disordered manner with numerous T-shaped interactions
between parallel stacks of smaller size, typically 2−5 molecules.
It seems that even though T-shaped π−π interactions occur for
A3, they are not as frequent as with A54. This can be attributed
to a combination of factors: the heterocycles of A54 strengthen
both parallel and T-shaped π−π interactions between aromatic
cores, while the long aliphatic chains of A3 hinder T-shape π −
π interactions. In the case of A29, in spite of the limitations of
the static 2-dimensional view, we clearly see a single aggregate
of 100 molecules, whereas many clusters are present in the two
other systems. Consistently with its larger aggregation number,
A29 in heptane also yields aggregates with a much larger radius
of gyration: average Rg = 35.0 ± 0.3 Å in comparison with Rg =
19.6 ± 2.3 Å, Rg = 18.2 ± 1.6 Å, and Rg = 12.6 ± 0.8 Å,
respectively, for A3, A54, and A63 in heptane (Table 2).
Nevertheless, despite these differences, Figure S14 shows
similar distributions for the estimated density of the aggregates
produced by these island systems. The more peaked Rg and
density distributions of A29 in comparison with A3, A54, and
A63 confirm that A29 has reached a completely equilibrated
segregation from the heptane solvent. With respect to the
relative shape of the aggregates, as evidenced by the average
values in Table 2, the clusters are more elongated than
spherical (values close to 0). Among the three asphaltenes
stable in heptane, A80 and A85 are of archipelago type, a type
of molecule known for its stability, and A63, with its aromatic
core of moderate size and absence of heteroatoms, do not
present any structural feature favoring aggregation. As
mentioned previously, the finite size effects of the simulations
quantitatively affect the values of the observables for A29 in
heptane. All details for simulations with 200 asphaltenes in

Figure 3. Properties of the asphaltene clusters from simulations of
100 molecules of A29 in toluene and heptane: (top) distributions of
the cluster radius of gyration; (middle) distributions of the estimated
cluster density; (bottom) distributions of the cluster relative shape
anisotropy.
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heptane are provided in Figures S9, S12, S15, and S18 and
Table S4 in the Supporting Information, and most of the
qualitative conclusions on the differences between A29 and
other model molecules still apply. However, it is worth
mentioning that the differences in Rg and in density between
A3 and A29 do not seem as important with simulations
performed with 200 asphaltene molecules (Figures S12 and
S15 and Table S4), even though the difference in final gn is
already striking with gn = 66.8 ± 4.5 for A29 and gn = 28.2 ±
0.1 for A3. This shows that with larger system sizes, more
representative of the reality, the simulation time required for
the system to settle into the clustering stage of the aggregation
process and adopt its characteristics, beyond the stepwise
increases visible with 200 asphaltenes A29 in heptane (Figure
S9), can be longer than 240 ns. To obtain confirmation, we
have extended up to 500 ns the simulations in heptane with
200 molecules of A3 and with 200 molecules of A29, which
yields aggregation numbers gn = 28.9 ± 0.6 and gn = 200.0 ±
0.0, respectively. The observables for these simulations, plotted
in Figures S19 and S20, confirm an important quantitative
difference between these two asphaltene model molecules
already observed in simulations with 100 asphaltene molecules
in spite of the finite size effects. Consequently, the multistage
aggregation processes observed in early simulation works may

be artifacts from simulation finite size effects but could still be
confirmed by longer or larger simulations. However, with the
computational power currently available, gaining insights into
the late stages of the aggregation process would probably
require resorting to coarse-grained simulations.49 Overall, the
representative asphaltene model molecules identified by
unsupervised ML show a diversity of aggregation behaviors
that confirms their suitability for describing asphaltene
molecular polydispersity once mixed together.
2.3. Mixtures of Asphaltene: Effect of Molecular

Polydispersity. To study the effect of asphaltene molecular
polydispersity on the aggregation process, a series of mixtures,
made of 3−4 types of model molecules for a total
concentration of 7 wt % of asphaltene, have been designed
based on the results from single asphaltene model simulations
(details in Table 3). While simulations of the first four
quaternary mixtures (Q1−Q4) contain 25 molecules of each
model, in ternary mixtures (T1−T4) 34 molecules of the first
listed model and 33 of the other two are combined to reach
100 asphaltene molecules per simulation. Q5 and Q6 have
been designed slightly differently from the other quaternary
mixtures and contain respectively 23 molecules of A23, 33
molecules of A29, and 22 molecules of A54 and A85 for Q5
and 33 molecules of A29, 23 molecules of A63, and 22

Table 2. Summary of the Monodisperse Simulations Performed with 100 Asphaltene Moleculesa

asph CI/C1 solvent gn240 av Rg av density av κ2

A3 0.345 toluene 8.3 ± 0.2 14.5 ± 1.3 0.4 ± 0.0 0.2 ± 0.0
A3 heptane 28.1 ± 1.7 19.6 ± 2.3 0.4 ± 0.0 0.1 ± 0.0
A29 0.545 toluene 60.2 ± 2.8 30.0 ± 4.0 0.3 ± 0.0 0.2 ± 0.1
A29 heptane 100.0 ± 0.0 35.0 ± 0.3 0.4 ± 0.0 0.2 ± 0.0
A54 0.200 toluene 5.3 ± 0.1 10.3 ± 0.6 0.5 ± 0.0 0.2 ± 0.0
A54 heptane 23.8 ± 1.4 18.2 ± 1.6 0.4 ± 0.0 0.3 ± 0.0
A63 0.108 toluene 3.9 ± 0.1 11.6 ± 0.8 0.3 ± 0.0 0.3 ± 0.0
A63 heptane 6.8 ± 0.2 12.6 ± 0.8 0.4 ± 0.0 0.2 ± 0.0
A80 0.000 toluene 3.4 ± 0.1 15.6 ± 1.1 0.2 ± 0.0 0.3 ± 0.0
A80 heptane 14.0 ± 0.4 17.4 ± 1.6 0.3 ± 0.0 0.2 ± 0.0
A85 0.000 toluene 3.5 ± 0.1 13.1 ± 0.8 0.3 ± 0.0 0.3 ± 0.0
A85 heptane 13.7 ± 1.0 15.8 ± 1.6 0.3 ± 0.0 0.2 ± 0.0

aCI/C1 is the aromatic condensation index, i.e., the ratio between the number of internal aromatic carbons (CI) and the number of peripheral
aromatic carbons (C1) of the model molecules. For the aggregation number, gn240, we report the value of the 20 ns window moving average at the
end of the simulation. For the radius of gyration, Rg (in Å), the estimated density (in g/mol/Å3) and the relative shape anisotrpy, κ2, we report the
average value over the last 40 ns of the simulations. For gn240, the uncertainties are the standard deviations of the moving average, while for the other
observables they are the standard deviation of the data acquired during the last 40 ns.

Figure 4. Snapshots from single asphaltene model simulations of 100 model molecules in heptane for A3 (left), A29 (center), and A54 (right) after
220 ns. Carbon atoms are represented in gray, nitrogen atoms in blue, sulfur atoms in yellow, and hydrogen atoms in white. Full-page images for
each system are available in Figures S21−S23 in the Supporting Information.
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molecules of A80 and A85 for Q6. The reasoning behind the
specific selection of model molecules in the ternary mixtures is
as follows: T1 and T4 were designed to mix together the
asphaltene model molecules that are stable (A63, A80, and
A85 in T1) and unstable (A3, A29, and A54 in T4) in heptane.
Then, T2 mixes the two most unstable molecules (A3 and
A29) with the less stable of the stable molecules, namely A85.
Finally, T3 mixes two aggregating asphaltenes (A3 and A54)
with A85 but does not include the very strongly aggregating
molecule A29. Table 3 summarizes the results of the
simulations, and all plots, in analogy to those of the single
asphaltene model simulations, can be found in Figures S24−
S33 in the Supporting Information. Furthermore, to enable a
deeper understanding of the dynamics of the aggregation
process and in particular the formation of the aggregates in
heptane, additional observables are displayed in the Supporting
Information. Indeed, Figures S34 and S35 show respectively
for ternary and quaternary mixtures the percentage of each
type of asphaltene molecule participating in the formation of
aggregates along the trajectory. Furthermore, in Figures S36−
S45, the composition of the aggregates for each system is
represented in the form of bar charts at different points of the
trajectory (10, 30, 50, 100, 150, and 220 ns) to compare their
evolution.
As could be anticipated from the single asphaltene model

simulations, aggregation in toluene is always quite low in
mixture simulations (gn always ≤11.0 in Table 3). The
aggregation observed for T1 in heptane is quite low with gn =
8.8 ± 0.1. Nevertheless, Figures S34 and S35 show that for all
systems, already at the beginning of the production phase,
more than 70% of the asphaltene molecules participate in
aggregates. Moreover, from Figures S36−S45 it becomes
evident that already after 10 ns all systems exhibit a least one

large aggregate of 10 or more asphaltene molecules. Toward
the end of the simulations, at 220 ns, even T1 (Figure S36)
presents a very large aggregate of 44 asphaltene molecules, and
10 much smaller aggregates in this case. The final aggregation
level of T1 is lower than the average aggregation from single
asphaltene model simulations (gnav T1 = (0.34 × 6.8) + (0.33 ×
14.0) + (0.33 × 13.7) = 11.5). Therefore, already in that case,
we observe that molecular polydispersity can have an
antagonistic effect on the aggregation process, i.e., the
simulation yields an aggregation level inferior to the weighted
average of the contributions from single asphaltene model
simulations. This antagonistic effect is even more pronounced
in T4, for which aggregation only reaches gn = 18.8 ± 0.6,
whereas individually, all single asphaltene model simulations of
the constituents of this mixture exceed gn = 23.8 (see Table 2).
In T3, aggregation reaches gn = 20.0 ± 2.9, which is in the
same range as the weighted average of contributions from
single asphaltene model simulations (gnav T3 = (0.34 × 28.1) +
(0.33 × 23.8) + (0.33 × 13.7) = 21.9) and in T2, aggregation
reaches gn = 52.6 ± 1.3, which even exceeds the respective
average (gnav T2 = (0.34 × 28.1) + (0.33 × 100) + (0.33 × 13.7)
= 47.1). Therefore, in the case of T2, asphaltene molecular
polydispersity has a synergistic effect on the aggregation
process, i.e., the simulation yields an aggregation level superior
to the weighted average of the contributions from single
asphaltene model simulations. Besides, it is worth mentioning
that in Figures S34 and S35 the percentages of each model
molecule involved in the formation of aggregates within
mixture simulations confirm the aggregation strength of the
asphaltene models already observed in single-component
simulations. Indeed, A29, A3, and A54 appear as the most
involved molecules in aggregates with levels generally close to

Table 3. Summary of the Mixture Simulations Performed with 100 Asphaltene Moleculesa

mixture asph models solvent gn240 av Rg av density av κ2

T1 A63 A80 A85 toluene 3.3 ± 0.0 13.2 ± 0.8 0.3 ± 0.0 0.3 ± 0.0
T1 A63 A80 A85 heptane 8.8 ± 0.1 14.8 ± 1.3 0.4 ± 0.0 0.2 ± 0.0
T2 A3 A29 A85 toluene 9.5 ± 0.2 15.0 ± 1.5 0.4 ± 0.0 0.3 ± 0.0
T2 A3 A29 A85 heptane 52.6 ± 1.3 27.2 ± 3.7 0.3 ± 0.0 0.3 ± 0.1
T3 A3 A54 A85 toluene 6.2 ± 0.1 12.8 ± 1.0 0.4 ± 0.0 0.2 ± 0.0
T3 A3 A54 A85 heptane 20.0 ± 2.9 15.9 ± 2.8 0.4 ± 0.0 0.2 ± 0.0
T4 A3 A29 A54 toluene 8.3 ± 1.6 15.2 ± 2.7 0.4 ± 0.0 0.2 ± 0.1
T4 A3 A29 A54 heptane 18.8 ± 0.6 17.0 ± 1.1 0.4 ± 0.0 0.1 ± 0.0
Q1 A3 A29 A54 A85 toluene 7.0 ± 0.9 13.6 ± 1.3 0.4 ± 0.0 0.2 ± 0.0
Q1 A3 A29 A54 A85 heptane 18.2 ± 1.1 15.5 ± 1.4 0.4 ± 0.0 0.2 ± 0.0
Q2 A54 A63 A80 A85 toluene 3.9 ± 0.1 12.6 ± 0.8 0.3 ± 0.0 0.3 ± 0.0
Q2 A54 A63 A80 A85 heptane 12.1 ± 0.9 16.3 ± 1.9 0.4 ± 0.0 0.2 ± 0.1
Q3 A29 A63 A80 A85 toluene 4.5 ± 0.1 13.2 ± 1.0 0.3 ± 0.0 0.3 ± 0.0
Q3 A29 A63 A80 A85 heptane 18.2 ± 1.8 18.0 ± 3.3 0.4 ± 0.0 0.3 ± 0.1
Q4 A3 A63 A80 A85 toluene 4.1 ± 0.1 13.1 ± 0.8 0.3 ± 0.0 0.2 ± 0.0
Q4 A3 A63 A80 A85 heptane 10.4 ± 0.3 15.4 ± 1.2 0.4 ± 0.0 0.2 ± 0.0
Q5 A3 A29 A54 A85 toluene 9.0 ± 0.7 13.7 ± 1.3 0.4 ± 0.0 0.2 ± 0.0
Q5 A3 A29 A54 A85 heptane 35.3 ± 1.9 20.3 ± 2.8 0.5 ± 0.0 0.2 ± 0.0
Q6 A29 A63 A80 A85 toluene 4.6 ± 0.0 12.7 ± 0.8 0.4 ± 0.0 0.3 ± 0.0
Q6 A29 A63 A80 A85 heptane 20.0 ± 0.2 16.8 ± 1.1 0.4 ± 0.0 0.2 ± 0.0

aIn ternary mixtures there are 34 molecules of the first listed model and 33 of the other two. Quaternary mixtures Q1−Q4 contain 25 molecules of
each model. Q5 is a mixture of 23 molecules of A23, 33 molecules of A29, and 22 molecules of A54 and A85. Q6 is a mixture of 33 molecules of
A29, 23 molecules of A63, and 22 molecules of A80 and A85. For the aggregation number, gn240, we report the value of the 20 ns window moving
average at the end of the simulation. For the radius of gyration, Rg (in Å), the estimated density (in g/mol/Å3) and the relative shape anisotropy, κ2,
we report the average value over the last 40 ns of the simulations.For gn240, the uncertainties are the standard deviations of the moving average, while
for the other observables they are the standard deviation of the data acquired during the last 40 ns.
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100%. Conversely, the three other models, A63, A80, and A85,
only very rarely reach 100% participation in the aggregates.
Figure 5 displays the standard aggregation observables for

T2, which exhibits the largest aggregation among the mixtures
studied in this work. It is the only mixture to reach the
clustering stage of the aggregation, as confirmed by the
stepwise increases of its aggregation number (see Figure S25),
early in the trajectory (see also aggregate composition in
Figure S37). System Q5, discussed in more detail later, is also
close to reaching the clustering stage toward the end of the
simulation. Both systems have in common to show, with the
exception of T4 (which is addressed further below), the largest
total contribution of asphaltenes into aggregates (see black
dashed lines in Figures S34 and S35), i.e., the lowest number of
free asphaltene monomers. The tendency of T2 and Q5
systems to strongly aggregate can be attributed to the role of
molecule A29, the most strongly aggregating molecule in this
study, which act as a trigger to the aggregation process. Further
than T2 and Q5, Figures S34 and S35 illustrate this general
triggering role of A29 also for T4, Q1, Q3, and Q6, in which
A29 is clearly leading the aggregation process at the beginning
of the trajectories and is the first type of asphaltene to reach
100% participation in aggregates. Overall, the effect of
molecular polydispersity is complex and the aggregation
between molecules of different types is driven by a sum of
correlated contributions from aromatic cores, aliphatic chains,
or heteroatoms. Indeed, comparing T4 to T2 and Q5, one

would be tempted to postulate a lower compatibility in the
aggregation of molecules A29 with molecules A54 than in the
aggregation between A29 and A85 that results in being more
favorable to the aggregation process. A similar interpretation
could be proposed for rationalizing the compatibility of A54
and A85 with molecule A3 comparing T4 to T3, which does
not aggregate much more but is lacking the strong aggregation
triggering action of molecule A29. However, for T4 in Figure
S34, after 80 ns all asphaltene molecules are involved in
aggregates, and in Figure S39, already at a very early stage,
there are a number of medium-sized aggregates that are quite
balanced and involve all 3 types of asphaltene models.
Therefore, there is no incompatibility between the asphaltene
model molecules present in T4, but these aggregates have
difficulties merging into aggregates of larger size, despite the
intrinsic good aggregation strength of all the asphaltene models
involved. The difference between T4 and systems T2, T3, and
Q5 is the lack of archipelago asphaltene molecules A85. Thus,
these observations evidence that the archipelago nature of A85,
even though usually associated with stable asphaltenic systems,
seems to facilitate the aggregation�when combined with
bulky asphaltenes such as A3 and A29 in T2 or Q5�more
than the island nature of A54 with a very short aliphatic chain,
as in T4, in particular for the transition from medium to large
aggregates. It is interesting to point out that molecules A85
fulfill this facilitator role without reaching 100% of
participation in aggregates (see Figures S34 and S35).

Figure 5. Aggregation number gn (top left) from simulations of mixture T2 in heptane. 5 and 20 ns moving averages are used to filter short-term
fluctuations of the aggregation dynamics. The distributions of the properties of the asphaltene clusters from simulations of T2 in both heptane and
toluene are also represented: namely, the radius of gyration (top right), the estimated density (bottom left), and the relative shape anisotropy
(bottom right), accumulated over the last 40 ns of the simulations.
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To further investigate the triggering action of molecule A29
and the synergistic action of A29 and A85 with respect to
aggregation, mixtures Q5 and Q6 have been designed slightly
differently from the other quaternary mixtures, namely with the
same species as in Q1 and Q3, but in different concentrations.
Conversely to T2, no synergistic effect is observed at the
specific composition in Q5 or Q6 (aggregation does not
exceed the weighted average contributions from the single
asphaltene model simulations) even though molecule A29 is
seen to trigger the general aggregation on comparing T1 with
Q3 and Q6 and T3 with Q1 and Q5. However, this triggering
effect is not linearly correlated with the composition of the
systems. For example in Q3, there is the same number of each
model molecule (25 molecules) A63, A80, A85, and A29, and
an important increase in aggregation (gn = 18.2 ± 1.1) is
observed in comparison with T1 (gn = 8.8 ± 0.1). However, in
Q6 there are more molecules of the very strongly aggregating
A29 (33 molecules) in comparison with Q3, but yielding a
proportionally smaller increase in aggregation (gn = 20.0 ±
0.2). Thus, it seems that in this case the trigger effect of
molecule A29 reaches a saturation point. This is evidenced in
Figures S34 and S35 by similar behaviors of the participation in
aggregates in Q3, Q6, and even T1 (for the model molecules
present in the last). Therefore, we conclude that, due to the
weak aggregation strength of models A63, A80, and A85, the
trigger action of adding molecule A29 in Q3 compared to T1 is
saturating in Q6 and its number of molecules is not sufficient
to reach higher aggregation levels. On the other hand, in Q1,
which contains the same number of each model molecule (25
molecules) A3, A29, A54, and A85, the presence of 25 of the
strongly aggregating A29 molecules does not lead to a larger
aggregation (gn = 18.2 ± 1.8) than in T3 (gn = 20.0 ± 2.9),
which only contains molecules A3, A54, and A85. Meanwhile,
in Q5, where the number of molecules of A29 is set to 33, a
clear increase in aggregation is observed (gn = 35.3 ± 1.9), as if
there were a concentration threshold to overcome within this
mixture for the triggering effect of molecules A29 to be strong
enough. This can be seen in Figure S35, in which molecule
A29 reaches very quickly (already at 30 ns) and definitively
100% of involvement in aggregates, whereas 160 ns is needed
in Q1. Then, molecule A54 participates slightly earlier in
aggregates (70−100 ns) and a larger number of molecules A85
are involved in aggregates compared to Q1. Besides, comparing
Q2 and Q4 with Q3 shows that A29 is clearly a stronger
aggregation trigger than A3 and A54, but no synergistic effect
is observed among the quaternary mixtures investigated in this
work.
Finally, a word of caution must be mentioned here: even

though the conclusions just presented above seem reasonable,
it is important to keep in mind that some of them are only
based on small differences obtained from single-run
simulations. Ideally, one would like to perform many
simulations per system in order to draw stronger conclusions.
However, the computational cost of such MD simulations
makes a systematic n-repetition process prohibitive. Overall,
the investigation of the asphaltene aggregation process in these
mixtures has shown a variety of complex and correlated effects:
antagonistic and synergistic effects within mixtures, triggering
effects of specific model molecules, A29 in particular, and the
facilitator role of archipelago molecule A85 have been
detected. These findings highlight once again the necessity of
accounting for asphaltene molecular polydispersity even
though the level of asphaltene aggregation in mixtures never

reaches the largest aggregation level of the single asphaltene
model simulation of A29. Moreover, as the ultimate goal is to
contribute to the design of asphaltene inhibitors, it is
important to ensure that the in silico evaluation of their
performance is not biased by a specific asphaltene model
molecule with which the inhibitor could interact a great deal
and limit its aggregation, whereas it could interact more
moderately with other molecules, depending on their
chemistry. Accounting for molecular polydispersity in this
characterization permits limiting this risk. Besides, in order to
be able to capture the action of an inhibitor on a mixture of
asphaltenes, it is necessary to use a mixture that reaches a
significant level of aggregation. Therefore, T2 is the most
suitable mixture of asphaltenes for this task and has been
employed in the simulations presented in the next section.
2.4. Showcase of Inhibition Simulation. Beyond the

investigation of asphaltene aggregation and the effect of
molecular polydispersity on this process, another objective of
this work is to set up a robust protocol for the in silico
characterization of the action of asphaltene inhibitors. To
illustrate that this objective has been reached thanks to the
workflow implemented in this study, a simulation of the
aggregation in heptane of the mixture T2 in the presence of a
nonylphenol resin asphaltene inhibitor, at a concentration of 1
wt%, has been performed. Due to intellectual property
restrictions, the exact form of the inhibitor cannot be
published, but we show in Figure 6 its general structure,
which is sufficient for the purpose of this showcase.

The aggregation behavior of the mixture T2 in the presence
of the inhibitor (in black) is compared in Figure 7 to the case
without (in green) already discussed in the previous section.
To facilitate the comparison and avoid short-term fluctuations,
the 20 ns moving averages are presented for the aggregation
number. Moreover, while in the aggregation number only the
asphaltene molecules are considered, the inhibitor molecules
are included in the calculation of the radius of gyration of the
cluster they belong to, in order to avoid drawing erroneous
conclusions from artificially low aggregation numbers resulting
from the limitations of this metric. An example of this type of
artifact would be the following case: if two clusters of
asphaltene were connected by one or two inhibitors in
between while not interacting directly with each other, the
aggregation number would be low, whereas there would
actually be a very large cluster of asphaltene and inhibitors. On
the other hand, the inclusion of the inhibitors in the calculation
of the radius of gyration would yield large values, thus revealing
the limitation of the inhibitor performance. For future
investigations focusing on the inhibition of the aggregation

Figure 6. 2D representation of the molecular structure of the
inhibitor.
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process, the definition of additional observables, e.g., a
modified version of the aggregation number, should facilitate
the identification of the situations in which inhibitors are
failing to prevent aggregation and end up embedded in the
aggregates. Here, the nonylphenol resin inhibitor limits the
aggregation of the T2 mixture to gn = 23.0 ± 1.9, which is less
than half the aggregation number of the case without inhibitor,
as summarized in Table 4. The average radius of gyration is
also reduced, which confirms the very good performance of
this inhibitor. Considering that the concentration of inhibitor
is only 1 wt%, we can conclude that the nonylphenol resin
inhibitor is qualitatively (a different definition of the
aggregation number was used) a better-performing asphaltene
inhibitor than n-octylphenol,30 which needed 7 wt% to limit
the aggregation of less-aggregating asphaltenic systems.
Nevertheless, it is worth noting that such a concentration,
namely 1 wt%, is still 2 orders of magnitude larger than usual
operating conditions. However, further decreasing the
concentration of the inhibitor would require performing the

simulations on much larger systems, yielding a computational
cost far beyond the reach of any systematic study.
To gain further insights into the action of the asphaltene

inhibitor, Figure 8 compares the percentage of asphaltene
molecules participating in aggregates (top) and the composi-
tion of the asphaltene aggregates at 220 ns (bottom) between
system T2 (left) and T2 in the presence of the inhibitor
(right). The composition of the asphaltene aggregates for T2 +
inhibitor along the trajectory can be found in Figure S46.
Interestingly, when the inhibitor is present in the system (5
molecules in total), a larger percentage of asphaltene
participates in aggregates, namely 100% already at 40 ns, but
overall, at 220 ns there is a much larger number of aggregates
(5 aggregates with inhibtor in the system instead of 2
aggregates without inhibitor), and the largest aggregate is
much smaller (66 molecules with inhibitor in the system versus
87 molecules without inhibitor). Figure S46 shows that the
composition of the aggregates in the presence of inhibitor is
very similar from 100 to 220 ns. Therefore, the interactions

Figure 7. Aggregation number gn (top left) from simulations of mixture T2 in heptane with (in black) and without (in green) inhibitor molecules.
20 ns moving averages are used to filter short-term fluctuations of the aggregation dynamics. The distributions of the properties of the asphaltene
clusters from these simulations are also represented (using the same color code): namely the radius of gyration (top right), the estimated density
(bottom left,) and the relative shape anisotropy (bottom right), accumulated over the last 40 ns of the simulations.

Table 4. Summary of the Simulations of T2 with and without Inhibitora

mixture asph model inhibitor solvent gn240 av Rg av density av κ2

T2 A3 A29 A85 no heptane 52.6 ± 1.3 27.2 ± 3.7 0.3 ± 0.0 0.3 ± 0.1
T2 A3 A29 A85 1 wt % heptane 23.0 ± 1.9 18.5 ± 2.4 0.4 ± 0.0 0.2 ± 0.1

aFor the aggregation number, gn240, we report the 20 ns average window at the end of the simulation. For the radius of gyration, Rg (in Å), the
estimated density (in g/mol/Å3) and the relative shape anisotropy, κ2, we report the average value over the last 40 ns of the simulations.
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between molecules of inhibitor and asphaltene aggregates of
medium size successfully permit preventing their merger into
aggregates of larger size.

3. CONCLUSION
In this study, the combination of unsupervised machine
learning and molecular dynamics simulation has permitted a
thorough investigation of the role of asphaltene molecular
polydispersity on the aggregation process. Indeed, we first
performed an upfront selection, via unsupervised machine
learning, of a series of asphaltene model molecules
representative of a broad and diverse catalogue specifically
designed for the purpose of molecular dynamics simulations.
Then, we studied the aggregation of these molecules via single
asphaltene model simulations in toluene and heptane solvents.
With the exception of the most strongly aggregating molecule,
namely A29, aggregation in toluene has been weak. In heptane,
single asphaltene model simulations�in agreement with
recent simulation works�have shown that, even though π−π
interactions can be a very strong driver for asphaltene
aggregation, other molecular features such as polar aliphatic
chains and heteroatoms contribute significantly to this process.
Furthermore, the different aggregation behaviors of the
representative asphaltene model molecules in heptane have
confirmed their ability to capture the diversity of asphaltene.
Afterward, the effect of asphaltene molecular polydispersity on
the aggregation process has been investigated by simulations of
ternary and quaternary mixtures of these molecules. Overall,
the effect of asphaltene molecular polydispersity is complex,
difficult to disentangle, and diverse: depending on the
composition of the mixture antagonistic, synergistic, and
triggering effects have been observed. These findings illustrate
again the necessity to account for molecular polydispersity
when studying the asphaltene aggregation process and its

inhibition. Finally, this work has also permitted deploying a
robust simulation protocol for the in silico evaluation of the
performance of asphaltene inhibitors, as demonstrated by the
case study presented with the nonylphenol resin inhibitor. In
future works we intend to build on the developments
presented here to investigate and compare the behavior of a
series of asphaltene inhibitors.

4. COMPUTATIONAL METHODS
4.1. Unsupervised Machine Learning. The first step in

the selection of a series of representative asphaltene model
molecules from the catalogue of Law et al.41 was to generate
digital molecular structures of the model molecules released in
the form of 2D and 3D molecular representations. To
accelerate the digitalization, we have used an open-source
optical chemical structure recognition (OCSR) Java-based tool
called MolVec.50 Despite such a tool, this is still a cumbersome
process, but it is worth pointing out that OCSR tools have
been reviewed recently51 and that many developments are
currently in process in this field. Additional comments on the
information of the original catalogue of 100 molecules are
presented in the Supporting Information. SMILES codes
(simplified molecular input line entry system)52 of the model
molecules have been obtained via MolVec, and their 3D
molecular structures have been generated using RDKit.53 The
3D molecular structures have been used as inputs for the
calculation of 3D molecular descriptors by the free software
Mordred54 and later on to perform MD simulations when
deemed relevant.
At this point, each of the 100 molecules from the catalogue

of Law et al.41 is described by 1826 3D molecular descriptors.
Then, this highly multidimensional representation of the
chemical space of asphaltene is reduced to three dimensions
via a principal component analysis (PCA),55 a linear

Figure 8. Percentage of asphaltene molecules participating in aggregates (top) and composition of the asphaltene aggregates at 220 ns (bottom)
between system T2 (left) and T2 in the presence of the inhibitor (right).
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dimensionality reduction method, using the implementation of
the Scikit-learn library.56,57 In order to identify groups of
similar molecules, an unsupervised cluster analysis has been
performed, using the standard Kmeans algorithm of Scikit-
learn. Figure 9 displays the 3D PCA representation of the
catalogue of 100 molecules using one color per cluster. It is
worth mentioning that the first 3 PCA components account for
37.5%, 21.9%, and 8.8% of the explained variance ratio,
respectively, hence a total of 68.2%. In this case the Kmeans
algorithm had been set up to identify 7 clusters, and it is
interesting to point out that the 11 resin molecules have
correctly been assigned to a cluster of their own, namely cluster
#3 in Figure 1, leaving 6 clusters of asphaltene. More details,
such as the effect of the dimensionality reduction method
(either using PCA or the uniform manifold approximation and
projection method, UMAP, which is an nonlinear method58),
the difference between performing the dimensionality reduc-
tion before or after the cluster analysis, and the effect of the
parameters of the clustering analysis (choice of number of
clusters and choice of clustering algorithm) are reported in
Figures S1−S4 and Tables S1 and S2 in the Supporting
Information. However, it is important to mention that we have
verified that such details only affected the cluster assignation of
a few molecules at the frontier between clusters. When large
numbers of molecules are considered in cluster analysis, the
closest molecule to each cluster centroid is often chosen as a
representative for the cluster. In our specific case, the number
of molecules is moderate, and therefore we have looked at all
the assignations and have chosen the molecules represented in
Figure 1 as representative of their clusters, ensuring that none
of these were at the frontier between clusters and affected by
the setup of the clustering analysis. These molecules have
subsequently been used in the MD simulations. The approach
reported here is general and can be extended to include future
developments of asphaltene models. The detailed composition
of each cluster is given in the Supporting Information.
4.2. Simulation Details. While a variety of force fields

(FF), all-atom, united-atom, and coarse-grained, have been
used for the simulation of asphaltene aggregation,30 overall any
modern and well-validated FF can be considered a reasonable
choice, as pointed out by Headen et al.34 Indeed, by way of
comparison, there are still uncertainties about larger issues,
such as asphaltene structures and the exact composition of

their systems. In this work, we have used the GAFF force
field59 in combination with AM1-BCC atomic partial charges,
as validated by Glova et al.47 Besides, the GAFF force field had
already been used in asphaltene simulations.60−62 The
topologies of the simulated molecules (available in additional
files in the Supporting Information) were generated using the
ACPYPE tool,63 which builds on Antechamber.64 GPU-
accelerated MD simulations were performed with the
GROMACS simulation code (version 2020.4),65−68 which
also served to construct the simulation boxes via random
insertion of molecules (for both position and orientation).
Single asphaltene model simulations with 40, 100, and 200
asphaltene molecules served as benchmarks, before settling on
100 molecules as the best compromise between system size
and simulation cost. The number of solvent molecules
(toluene and heptane) in each cubic simulation box was
defined so as to ensure an asphaltene concentration of 7 wt%
for each system. Therefore, the largest simulated system,
namely 200 molecules of asphaltene model A3 in heptane,
contained 621,082 atoms. When the aggregation inhibitor, a
nonylphenol resin, was included in the simulations, its number
of molecules was obtained from the 7:1 target ratio between
asphaltenes and inhibitor. Then the number of solvent
molecules was tuned to adjust the concentration of the
inhibitor at 1 wt%.
The adopted simulation protocol can be summarized as

follows. After construction of a cubic periodic simulation
system, a steepest decent energy minimization is performed
until all forces decreased below 100 kJ/mol/nm. Then, a 3 ns
MD equilibration simulation in the isobaric−isothermal
(NPT) ensemble was run using GROMACS’ velocity rescaling
thermostat69 and a Berendsen barostat.70 Afterward, produc-
tion MD simulations were carried out for 240 ns with a Nose−́
Hoover thermostat71,72 and Parrinello−Rahman barostat.73,74

All simulations were performed at a temperature of 300 K and
a pressure of 1 bar. Equations of motion were integrated using
the leapfrog algorithm75 with a time step of 2 ps while keeping
hydrogen bonds rigid via the LINCS algorithm.76 To account
for long-range electrostatic interactions the particle-mesh
Ewald (PME) algorithm77 was employed, whereas a plain
cutoff (PME could not be used with GPU yet) with a standard
correction for energy and pressure was adopted for long-range

Figure 9. Representation of the catalogue of 100 molecules from Law et al.41 after 3D principal component analysis and Kmeans clustering analysis.
Each point represents a molecule, and colors reflect cluster assignation. The labels of the molecules are consistent with the original work.41
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dispersion interactions, in both cases with a cutoff value of 1.25
nm.
4.3. Aggregation Observables. The aggregation number

captures the aggregation state of asphaltenic systems by
counting the number of asphaltene molecules constituting an
aggregate (also called a cluster). In this study, two molecules
are considered to belong to the same aggregate if the shortest
distance between atoms of the two molecules is inferior to a
threshold value of 3.5 Å. This definition follows the findings of
Headen et al.,34 who showed that, when asphaltene molecules
are clustered, their shortest distance clearly decreases below 3.5
Å. Moreover, Ghamartale et al.,30 who studied the same
asphaltene molecules, argued that such a threshold is
applicable because the range of hydrogen bond lengths is
between 2.70 and 3.30 Å. Furthermore, they provided an
interesting discussion about the different possibilities for
defining such a criterion, with a focus on the effect of using
distances calculated between the center of mass between
molecules (instead of interatomic distances) which can be less
suited to properly account for the irregular packing of
aggregates. Both the number-average aggregation number, gn,
and z-average aggregation number, gz, have been used in
asphaltene publications. Even though some prefer using gz

18,30

over gn,
34 no compelling argument was found in the papers or

in the original ref 78 that actually contains a third definition,

namely, the weight-average aggregation number gw. These
three observables can be obtained from different experimental
techniques: gn via membrane osmometry, gw via static light
scattering, and gz via intrinsic viscosity measurements. As this
study relies on MD simulations, we have followed�as for
other observables�the definitions from Headen et al.34 and
used gn as the aggregation number, which is strictly the average
number of asphaltene molecules per aggregate
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with ni being the number of aggregates of gi molecules. It is
important to point out that the sums of eq 1 start from 2; thus,
the monomers are excluded. To quantify the size of polymers
or macromolecules in solution,79 the radius of gyration (Rg) is
defined as
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with ri being the position vector of atom i and rcm being the
position vector of the center of mass of the aggregate.
Furthermore, information relative to the shape of the aggregate
can be extracted from the gyration tensor (S)80
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in which the sums run over all atoms i of the aggregate and cm
again refers to the center of mass. The diagonalization of the
gyration tensor, S = diag(λ1, λ2, λ3), permits obtaining the
eigenvalues (principal moments) ordered as λ1 ≥ λ2 ≥ λ3.
Alternatively to eq 2, the radius of gyration can directly be
obtained from the sum of the eigenvalues: Rg2 = λ1 + λ2 + λ3.
From these eigenvalues, an estimation of the dimensionality
and the symmetry of the aggregates can be provided by κ2, the
relative shape anisotropy:

=
+ +
+ +
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2
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κ2 values span between 0, for a perfectly spherical cluster, and
1, for a linear chain. Still from the eigenvalues, it is possible to
estimate the density of the asphaltene aggregates. The volume
of each aggregate is approximated by the volume of an
hypothetical effective ellipsoid having the same principal
moments as the gyration tensor. Hence the axes a, b, and c
of such an ellipsoid would be equal to =n5 ( 1 3)n

3 and
the volume encompassing the aggregate is

=V
4
3

5cluster
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The mass of the aggregate is calculated as the sum of the mass
of each asphaltene molecule populating the cluster. Therefore,
the estimated density can be written as

=
m

V
i i

cluster
cluster (6)

where mi is the mass of the ith molecule of the aggregate. In
this work, the atomic positions have been written out each 10
ps (5000 time steps), and thus all observables of the
aggregation state of the system, namely the aggregation
number, radius of gyration, relative shape anisotropy, and
density estimate, have been computed for trajectory frames
each 10 ps. The aggregation number is represented with both 5
and 20 ns moving averages to better guide the eye.
Additionally, in order to describe the equilibrium state of the
asphaltenic systems, the average of the other observables in
each recorded trajectory frame and their distributions are
calculated during the last 40 ns of each run (from 200 to 240
ns of MD simulation).
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