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ABSTRACT

At a cocktail party, we can broadly monitor the entire
acoustic scene to detect important cues (e.g., our
names being called, or the fire alarm going off), or
selectively listen to a target sound source (e.g., a
conversation partner). It has recently been observed
that individual neurons in the avian field L. (analog to
the mammalian auditory cortex) can display broad
spatial tuning to single targets and selective tuning to
a target embedded in spatially distributed sound
mixtures. Here, we describe a model inspired by these
experimental observations and apply it to process
mixtures of human speech sentences. This processing
is realized in the neural spiking domain. It converts
binaural acoustic inputs into cortical spike trains using
a multi-stage model composed of a cochlear filter-
bank, a midbrain spatial-localization network, and a
cortical network. The output spike trains of the
cortical network are then converted back into an
acoustic waveform, using a stimulus reconstruction
technique. The intelligibility of the reconstructed
output is quantified using an objective measure of
speech intelligibility. We apply the algorithm to single
and multi-talker speech to demonstrate that the
physiologically inspired algorithm is able to achieve
intelligible reconstruction of an “attended” target
sentence embedded in two other non-attended mask-
er sentences. The algorithm is also robust to masker
level and displays performance trends comparable to
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humans. The ideas from this work may help improve
the performance of hearing assistive devices (e.g.,
hearing aids and cochlear implants), speech-
recognition technology, and computational algo-
rithms for processing natural scenes cluttered with
spatially distributed acoustic objects.
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INTRODUCTION

Our sensory systems are constantly challenged with
detecting, selecting and recognizing target objects in
complex natural scenes. In the auditory domain, the
problem of understanding a speaker in the midst of
others (a.k.a the “cocktail party problem,” or CPP)
remains a focus of intensive research in a diverse
range of research fields (Cherry 1953; Haykin and
Chen 2005; McDermott 2009; Lyon 2010). Although
hearing assistive devices and speech recognition
technology have difficulties under CPP-like condi-
tions, normal hearing listeners can solve the CPP with
relative ease, indicating that a solution exists in the
brain.

An impressive aspect of the CPP is the flexible
spatial listening capabilities of normal-hearing lis-
teners. A listener can broadly monitor (i.e., maintain
awareness of) the entire auditory scene for important
auditory cues, or select (i.e., attend to) a target
speaker of a particular location. Indeed, the selection
of the most relevant target often requires careful
monitoring of the entire acoustic scene, and the
ability to flexibly switch between these two states is
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essential in effectively solving the CPP. Yet, the neural
mechanisms for this behavior remain unclear. Previ-
ous studies in birds and cats have suggested that
spatially distributed sounds are segregated at the
subcortical levels in the ascending auditory pathway
(Konishi 2003; Yao et al. 2015). Though the specific
differences in encoding across species remains an
active research area, a key open question remains in
both animals: how do flexible modes of listening
emerge from spatially localized representations in the
midbrain?

Behaviors of flexible tuning at the neuron level
have been recently observed in the zebra finch field L
(analog to the mammalian auditory cortex), and are
dependent on their surrounding acoustic environ-
ment (Maddox et al. 2012; Dong et al. 2016). When
target sounds (birdsongs) were presented separately
from one of four spatial locations, cortical neurons
showed broad spatial tuning, as indicated by similar
discriminability performance across different target
locations (Narayan et al. 2006). Remarkably, the
neuron’s spatial tuning sharpened when a competing
sound (song-shaped noise) was presented simulta-
neously from a different location. Such a neuron is
sensitive to the spatial configuration of the target and
the masker. A similar observation has been made in
mammals, where spatial tuning is sharpened in the
presence of multiple spatial streams (Middlebrooks
and Bremen 2013).

Inspired by the recent discoveries in the cortical
processing of spatially distributed sounds, we describe
and implement a multistage model, which displays this
flexible tuning characteristic, for processing multiple
spatially distributed sound sources into a single audible
acoustic output. The model is a generalization and
application of a proposed model network for explaining
the observations in the songbird field L. (Dong et al.
2016). Our model assumes that spatial segregation is
achieved at the midbrain level, and segregated sounds
are either integrated or selected at the cortical level,
corresponding to broad or sharp spatial tuning, respec-
tively. The cortical model is realized in a spiking network.
The processed spikes are then decoded via a linear
stimulus reconstruction algorithm to produce audible
waveforms. We demonstrate the flexible spatial tuning
characteristic of the model, and compare its segregation
performance with other engineering-based binaural
sound segregation algorithms. The goal of this study is
to build a physiology-based model inspired by the cortical
responses in songbirds, and thereby demonstrate how
the auditory system might operate under CPP-like
conditions. The model provides a platform to explore
physiologically relevant parameters for CPP processing,
and provides an audible result that can be interpreted by
human listeners, unlike the spike-distance-based discrim-
inability measures presented in (Dong et al. 2016). The

CHou ET AL.: A Model for the Cocktail Party Problem

results generated using the model may motivate new
physiological experiments to probe the auditory cortex,
strategies for CPP processing in computer hearing, as
well as strategies for processing cluttered visual scenes
with computer vision.

METHODS

Physiologically Inspired Algorithm

The Physiologically Inspired Algorithm (PA) is a
sound processing algorithm that is based on the
auditory system. It receives binaural speech inputs
and transforms the speech signals into neural spikes
for processing. After processing, it reconstructs the
neural spikes back into the acoustic domain. The PA
is composed of four key stages: a cochlear filter bank,
a midbrain spatial localization model, a cortical
network model, and a stimulus reconstruction step.
These components are implemented in MATLAB
(Mathworks, Natick MA) and the Python Program-
ming Language, and are illustrated in Fig. 1. Below,
we describe each of these components in details.

Cochlear Filter Bank

The cochlear filter bank represents a fundamental
stage in the processing of sounds at the periphery of
the auditory system, where sounds are first
decomposed into different frequency bands
(Patterson et al. 1992). This is implemented using an
equivalent rectangular bandwidth (ERB) gammatone
filter bank (Slaney 1998), a widely used representation
in computational models of the auditory system (Fig.
1A). The filter bank consists of 36 frequency channels
with center frequencies ranging from 300 to 5000 Hz.
The PA uses 36 frequency channels because it
provides a good balance between physiological accu-
racy and computational complexity. Additional fre-
quency channels provided minimal benefit to the
model. Subsequent stages of the model assume that
each frequency channel is processed independently,
thus the processing during each subsequent stages of
the model are repeated for each frequency channel.

Midbrain Spatial Localization Network

To identify the location of the sound source, the
auditory system exploits two important spatial cues:
the interaural time difference (ITD) and the
interaural level difference (ILD). ITD is created when
a sound arrives at the more proximal ear earlier than
the more distal ear, while ILD is created when the
head shadows the more distal ear, decreasing the
loudness compared with the more proximal ear.
There are many models for binaural cue computation
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FIG. 1. Detailed illustrations of the components of the physiolog-
ically inspired algorithm. a Cochlear filter bank: left and right
channels of the input (S, and Sg) are filtered separately with an ERB
gammatone filter bank. The outputs u;, and ug, illustrate the output
of the ith frequency channel. The output signals’ envelopes are
emphasized in blue. b Midbrain model: spatial localization network
for one frequency channel. Left and right outputs from each
frequency channel are used to calculate timing and level differ-
ences. A neuron spiking model then simulates a spiking pattern.
Each frequency channel is processed by the network independently.
¢ Cortical model: spikes from differently tuned spatial neurons act
as the input to the cortical network, with an output showing the

(Dietz et al. 2018). We elected to adapt a physiology-
based model of the spatial localization network of the
barn owl midbrain (Fischer et al. 2009), because it is
one of the most accurate and best understood
physiological systems for sound localization.

The model is illustrated in Fig. 1 B. It calculates
ITD wusing a cross-correlation-like operation, and
calculates ILD by taking the difference in the energy
envelopes between the left and right signals. Readers
are referred to the original work by Fischer and
colleagues for detailed mathematical descriptions of
binaural cue extraction (Fischer et al. 2009). In a
subsequent stage of processing in the inferior
colliculus model, the ITD cues are combined with
ILD cues via a multiplication-like operation (Pena
and Konishi 2001; Fischer et al. 2007). The model we
adapted from Fischer et al. operates on discretized
waveforms, while the next stage of our work (Fig.

effects of lateral inhibition, which suppresses neural spikes from off-
target spatial locations. Input layer: spatially tuned inputs at — 90,
-45, 0, +45, and +90. Middle layer: R, relay neurons and I,
inhibitory interneurons. Output C, cortical neuron. The population
of spikes from each frequency channel is processed by the cortical
network independently. d Stimulus reconstruction. For each
frequency channel, the reconstruction filter is used to calculate
envelopes of sound (A) from neural spikes from the cortical
network. Carrier of the sound is added to the envelope by
multiplication. The estimated sound from each frequency channel
is summed to produce the final acoustic output (Ses)

1C) operates on neural spikes; therefore, we imple-
ment model neurons at this stage to encode the
input waveforms into neural spikes. Five model
neurons were implemented at this stage, with
preferred ITDs and ILDs corresponding to —90°, -
45°, 0°, 45°, and 90° azimuth, respectively. The firing
probabilities for each of the model neurons are
calculated by adding the ITD and ILD signals at the
sub-threshold level followed by an inputoutput non-
linearity given by a threshold sigmoid function. This
overall operation effectively represents a multiplica-
tion of ITD and ILD cues as observed physiologically
(Pena and Konishi 2001). Spikes are generated based
on the calculated firing rates using a Poisson-spike
generator. The calculations described above are done
independently for each frequency channel, corre-
sponding to the frequency channels of the cochlear
filter bank model.
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We tuned the specific parameters of the model
neuron to match the ITDs and ILDs for a human
head. We calculated the azimuth-specific ITD and
azimuth- and frequency-specific ILD of KEMAR head-
related transfer functions (HRTFs) for the five
azimuth locations. For each preferred azimuth, we
adjusted the ITD and ILD tuning parameters of the
model neuron to match the ITD and ILD calculated
for that azimuth and frequency.

Cortical Network Model: Inhibition Across Spatial Channels

The cortical network implements the critical compu-
tation of inhibiting off-target spatial channels. The
network implemented here uses neural spikes as both
input and output, and its architecture is illustrated in
Fig. 1C. The five azimuth locations on the left side of
Fig. 1C represent inputs from the midbrain model
neurons. The inputs excite both relay neurons (R)
and interneurons (I). The relay neurons for each
azimuth excite a single cortical neuron (C) (i.e.,
cortical neuron integrates information across spatial
channels), while the interneurons inhibit the relay
neurons of other spatial channels. Each node of the
network is composed of leaky integrate-and-fire neu-
rons. For all neurons, resting potential was — 60 mV,
spiking threshold was -40 mV, and the reversal
potential for excitatory currents was 0 mV. In relay
neurons, the reversal potential for inhibitory currents
was —70 mV. In interneurons, synaptic conductance
for excitatory synapses was modeled as an alpha
function with a time constant of 1 ms. In relay
neurons, synaptic conductance for both excitatory
and inhibitory synapses were modeled as the differ-
ence of a rising and a falling exponential, where rise
and fall time constants were 1 and 3 ms, and 4 and
1000 ms, respectively. Time constants were chosen
based on the study by Dong et al. (2016), with the
exception of the fall time of the relay neuron
inhibitory synapses. Since the goal of this network is
to optimize the reconstruction of the auditory target,
the fall time of the relay neuron’s inhibitory synapse
was increased to 1000 ms in order produce a strong,
sustained suppression of maskers in off-target chan-
nels, to produce the best reconstruction of targets. An
absolute refractory period of 3 ms was enforced in all
neurons. Synaptic strengths were uniform across all
spatial channels for the same type of synapse. The
synaptic conductances between input to inter-neurons
and relay neurons were 0.11 and 0.07 nS, respectively.
The synaptic conductance from relay to cortical
neurons was 0.07 nS. The conductance for the cross-
spatial channel inhibition was 0.2 nS, which was the
minimum value required to effectively suppress off-
target spatial channels. The network connectivity was
set to select sounds originating from 0° azimuth, as
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shown by the blue inhibitory pathways in Fig. 1C.
Cortical network models are specific for each fre-
quency channel, and the network structures are
identical across all frequency channels. There are no
interactions between frequency channels unless oth-
erwise specified.

Stimulus Reconstruction

The output of the cortical network is a set of
processed neural spikes for each frequency channel.
In order to evaluate the model performance, the
neural response was “translated” back to an acoustic
waveform that humans can understand via a “stimulus
reconstruction.” Here, we develop a novel stimulus
reconstruction technique based on the estimation of a
linear reconstruction filter (Fig. 1D) (Bialek et al.
1991; Stanley et al. 1999; Mesgarani et al. 2009;
Mesgarani and Chang 2012). The basic idea is to first
convolve a neural spike train with a reconstruction
filter function to estimate the envelopes of the
acoustic waveform (see “Optimal filter”). Since each
frequency channel has a distinct set of neural spikes,
this process is independently carried out for each
channel. Then, the envelopes are used to modulate
carrier signals to obtain narrowband signals. Finally,
the narrowband signals across frequency channels are
summed (without weighting) to obtain a reconstruct-
ed stimulus. We tested two different carrier signals for
the reconstruction algorithm: (1) pure tones with
frequencies equal to the center frequencies of each
channel, and (2) band-limited noise limited to the
frequency range for each frequency channel. In this
manuscript, we present the results for pure tone
carriers, which achieved the highest quantitative
scores by the short time objective intelligibility (STOI,
details in Measures of Reconstruction Quality and Segrega-
tion Performance, below) measure.

Optimal Filter

Commonly used analytically derived reconstruction
filters assume that each frequency channel is inde-
pendent of one another (Theunissen et al. 2001;
Mesgarani et al. 2009): For a set of stimulus and
response from frequency channel f the stimulus
waveform s{f) can be reconstructed from a set of
spike trains x/(#) with spike-times ¢; (i=1,2, -+, n), by
convolving x/f) with a linear reconstruction filter,
hy(1), to obtain an estimate of the original stimulus:
Sest, £ (1) = 27 hy(t-t;). We derive A1) in the frequency
domain: H(w) :;—(f)), where S,.(w) is the cross-
spectral density of a training stimulus s(¢) and the
corresponding spike train x(¢), and S,,(®) is the power
spectral density of the neural training response (Rieke
et al. 1997; Gabbiani and Koch 1998). We restricted
the length of h(#) to 51.2 ms (or 2048 taps). The
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estimated original stimulus is then found by taking the
unweighted sum across individual frequency chan-
nels: s,,(1) = nge.st, j(t)

In contrast to the analytical approach described
above, we introduced another frequency dimen-
sion, o, to the optimal linear filter, to address the
potential interactions across frequency channels:
hf(t, w). Such interactions may exist due to the
relatively wide bandwidths of the gammatone
filters, resulting in energies from one channel
being picked up by adjacent channels. The esti-
mated stimulus is obtained via a two-dimensional
convolution obtained without zero-padding (“valid”
mode in MATLAB or Python): s, ,= (1, ®) x(t, ),
where x({, w) is the response spike trains for all
frequency channels over time ¢ Since the convolu-
tion is only computed on elements that do not
require zero-padding, the result is a one-
dimensional signal of length (t-2048). To calculate
hf(t, ), we initialized a zero matrix and set kf(t,
®)|w-y=hAt). We used gradient descent to mini-
mize the mean-squared error (MSE) between the
original signal’s envelopes and the reconstructed
envelopes, treating the values of hf(f ®) as free
parameters. Initial one-dimensional reconstruction
filters h/(t) were calculated in MATLAB, and two-
dimensional filters were optimized using the
Theano Toolbox in Python. The same process is
repeated for each frequency channel f We found
that the optimal two-dimensional filter improved
the reconstructions by 26 % relative to the one-
dimensional filter, from 0.58 to 0.73, as assessed by
the STOI measure (see “Measures of Segregation
and Reconstruction Quality and Segregation Per-
formance”).

Reconstruction Filter Training

We constructed a training waveform by extracting one
instance of all callsign and color-number combina-
tions from the CRM corpus (see “Speech Stimuli”)
and concatenated these into one continuous sound
waveform. To derive the optimal filter, the training
waveform was presented to the PA at 0° as the training
input stimulus, and the corresponding cortical re-
sponse was used as the training target. Since the
optimal filter is a mapping between the clean CRM
utterances (prior to introducing HRTF) and neural
spikes, the effect of HRTF are removed from the
reconstructed stimuli. After deriving the reconstruc-
tion filter, we tested the algorithm on other CRM
sentences and their corresponding neural responses.
Note that the training phase only requires training on
clean speech. The filter was not re-trained as long as
frequency channels remain independent of one
another.
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Cross Validation and Overfitting

We ran simulations with randomly selected TIMIT
corpus sentences (Victor et al. 1990) while
reconstructing with the CRM corpus-trained recon-
struction filter. The reconstruction performance (see
“Measures of Reconstruction Quality and Segregation
Performance”) did not differ significantly from the
simulations ran with the CRM corpus, differing by 4 %
on average. Based on this result, we determined that
overfitting was not an issue.

Code Accessibility

The code for the PA is available upon request.

Simulations
Speech Stimuli

The coordinated response measure (CRM) corpus
(Bolia et al. 2000) was used to train and test the novel
stimulus reconstruction technique, as well as test the
segregation and reconstruction results using our
physiology-inspired model. The CRM Corpus is a
large set of recorded sentences in the form of [Ready
CALLSIGN go to COLOR NUMBER now], where call
sign, color, and number have 8, 4, and 8 variations,
respectively. All recordings were stored as 40 kHz
binary sound files. Directionality was added to the
recordings by convolving each recording with KEMAR
(Burkhard and Sachs 1975) head-related transfer
functions (HRTFs) corresponding to the appropriate
location (Gardner and Martin 1995; Kim and Choi
2005). For each simulation, we randomly selected
three sentences from the CRM corpus, and designat-
ed one to be the “target” and the remaining to be the
“maskers.” Since the result of the simulations is
quantified using entire sentences, having repeats in
any of the three keywords may artificially inflate the
results. Therefore, sentences in each trio cannot
contain the same call sign, color, or number. For
simulations with single talkers, only the “target”
sentence is used.

Simulation Scenarios

To test the segregation and reconstruction quality of
the PA, we configured the model network to “attend
to” 0° azimuth (Fig. 1C) by only activating the
inhibitory neuron in the 0° spatial channel. This is
achieved by setting the I-R connection matrix such
that only the non-zero values in the matrix corre-
spond to the connections from 0° I neurons to other
spatial channels’ R neurons.

We designed three simulations to demonstrate that
the PA is capable of: (1) monitoring the entire
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azimuth in quiet, (2) selectively encoding a preferred
location while suppressing another non-preferred
location when competition arises, and (3) robustly
encoding a preferred location when maskers became
louder than targets. Each simulation was repeated 20
times, each time using a different set of CRM
sentence trios. In the first simulation, we presented
the PA with a single target at locations between 0 to
90° in azimuth, at 5° intervals. We then calculated
assessment measures (see “Measures of Reconstruc-
tion Quality and Segregation Performance”) of the
quality and intelligibility of the reconstructed signal
compared with the original target signal. In the
second simulation, we presented one sentence at the
target location (0°) and two masker sentences at
symmetrical locations in 5° intervals from 0 to £90°.
The sentences have a target-to-masker ratio (TMR) of
0 dB, defined as the energy difference between the
target and individual maskers. We then calculated
speech intelligibility of the reconstruction compared
with the target and masker sentences, respectively, for
all masker locations. We then swapped the location of
the two masker sentences and repeated the simula-
tion. The third simulation was designed to test the
robustness of the PA at low SNRs. In this simulation,
the target was fixed at 0° and the maskers fixed at =
90° respectively. The TMR was then varied between
-13 and 13 dB. This equates to signal-to-noise ratios
(SNRs) of 16 to 10 dB.

Measures of Reconstruction Quality and Segregation
Performance

We compared several objective measures of speech
intelligibility and quality including the STOI (Taal
et al. 2010), the normalized covariance metric (NCM)
(Chen and Loizou 2011), and the PESQ (Rix et al.
2001), each of which calculates the intelligibility and
quality of a processed signal compared with its
original unprocessed form (i.e., a reference signal).
A higher score indicates better intelligibility or quality
of the processed signal to human listeners. All CRM
sentences have the words “ready,” “go to,” and “now,”
and there is a possibility that these repetitions would
inflate individual objective scores. Therefore, a rela-
tive segregation performance is quantified by the
score difference between using target versus maskers
as the reference signal, which we call A. In our
analyses, all three objective measures performed
similarly, in a qualitative sense. We present only the
STOI results here. The STOI is designed to measure
the intelligibility of speech in the presence of added
noise, which makes it an appropriate measure to
quantify the quality of the reconstructed speech. STOI
scores are shown to be well-correlated to subjective
intelligibility (Taal et al. 2010):
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Predicted subjective intelligibility (%)

100
1+ exp(-13.1903 STOI + 6.5192)

where subjective intelligibility score is measured by
the percent of words correctly recognized by human
listening subjects. By this measure, an STOI score
above 0.7 is highly intelligible, corresponding to 90 %
correct. MATLAB functions for computing intelligi-
bility measures were generously provided by Stefano
Cosentino at the University of Maryland.

Frequency Tuning

The model network we used assumes sharp frequency
tuning, where frequency channels do not interact with
one another. Cortical neurons have been found to
have various sharpness in frequency tuning (Sen et al.
2001), and the model performance may depend on
frequency tuning width. For these reasons, we ex-
plored the effects of frequency tuning curves on the
network performance for single-target reconstruc-
tions. We modeled the spread of information across
frequency channels with a Gaussian-shaped weighting
function, centered around the center frequency (CF)
of each frequency channel:

2
CF;-CF,
= exp <¥>

207

1

where i and j are the indices of frequency channels,
and o is the standard deviation. The spread of
information is modeled by having the relay neurons
centered at CF; receive inputs from its neighboring
frequency channels, centered at CFjweighted by w; ;.
The values of o; used in this simulation was deter-
mined by introducing the variable Q, defined as the
ratio of CF to the full-width at half-maximum
(FWHM) of a tuning curve (Sen et al. 2001). Here,
we formulate Q in terms of the Gaussian weighing
function’s FWHM, which can then be related to o;
: F%MZQ }{:‘i 22)@-' We tfsted s rangiflg from
0=0.85 (broad tuning) to Q=23 (sharp tuning). For
reference, Q values from field L in the zebra finch
have been reported to range from 0.4 and 7.8 (Sen
et al. 2001). This is the only simulation where there
are interactions between frequency channels. Due to
this cross-frequency interaction, we re-trained the
reconstruction filter for each @, using the same
training sentences previously described as the training
stimulus, the corresponding spike trains for each Q as
the training target.
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TABLE 1

Effect of Q on single-target reconstructions

Q STOI +

0.85 0.3567 0.0536
1.3 0.4902 0.0425
2.5 0.5930 0.0336
3.4 0.6459 0.0255
5.1 0.6671 0.0270
7.6 0.6805 0.0241
10.6 0.6723 0.0254
23.4 0.6906 0.0243

Robustness to Frequency Tuning

We processed 20 target sentences, placed at 0° azimuth,
with our model network for Q ranging from 0.85 to 23.
Performance of the model at each Q was evaluated by
the intelligibility of the reconstructions with the targets
alone, quantified by the STOI score (Table 1).

Engineering Algorithms

Although our main goal here was to develop a
physiologically inspired model, we were curious to
compare the segregation performance of the PA to
cutting-edge engineering algorithms. Some engineer-
ing algorithms, notably beam-formers, rely on increas-
ing the number of sound inputs with the number of
sources (see comparative discussion in Mandel et al.
2010), and/or rely on monaural features, such as pitch
(Krishnan et al. 2014). In contrast, the PA is a binaural
algorithm requiring only two inputs (left and right ear
signals), as in the human auditory system, and does not
use any additional information from monaural features.
Thus, for a controlled comparison, we compared the
segregation performance of the PA with two cutting-
edge engineering algorithms that were essentially
binaural: model-based expectation-maximization
source separation and localization (MESSL) and a deep
neural network (DNN) trained with binaural cues, and
evaluated all algorithms with the same STOI metric.

MESSL

MESSL algorithm by the Ellis group is freely available
via Github (https://github.com/mim/messl)
(Mandel et al. 2010). MESSL uses binaural cues to
localize and separate multiple sound sources. Specif-
ically, it uses a Gaussian mixture model to compute
probabilistic spectrogram masks for sound segrega-
tion. For the best performance possible, the correct
number of sound sources in each scenario was
provided to the algorithm as a parameter. MESSL
also requires a parameter fau, which is an array of
possible source ITDs converted to numbers of sam-
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ples. For this parameter, we used 0 to 800 ps of ITDs,
and omitted the negative taps. MESSL does not
require any training, but does require careful selec-
tion of these parameters to optimize performance. We
systematically searched over a range of tau and
selected the ones that yielded the highest STOI and
PESQ scores for this study.

DNN

The DNN algorithm is also freely available online
(http://web.cse.ohio-state.edu/pnl/DNN_toolbox/)
(Wang et al. 2014). DNN isolates a target sound from
noisy backgrounds by constructing a mapping between
aset of sound “features” and an ideal spectrogram mask.
For a controlled comparison with the other algorithms,
we replaced the monaural features in the DNN
algorithm with three binaural features: ITD, ILD, and
interaural cross-correlation coefficient (IACC). ITD was
calculated through finding the peak location of the
time-domain cross-correlation function, and the IACC
was the peak value. To be consistent with the features
used by the DNN model reported by Jiang et al. 2014, 64
frequency channels were used and the features were
calculated for each time-frequency unit. We trained the
DNN with sentences from the CRM corpus. Often, a
critical factor in optimizing the performance of the
DNN is the amount of training data used. The number
of training sentences needed for the DNN performance
to reach the highest performance under the two-masker
scenario described above was used to train the DNN.

Stimuli for Comparing Algorithms

Sentences from the CRM corpus described above
were used to form the speech stimuli for all three
algorithms. The input sound mixtures had target-to-
masker-ratios (TMRs) of 0 dB. TMR is defined as the
sound level of the target to a single-masker, regardless
of the number of maskers present.

Scenarios for Comparing Algorithms

Two scenarios were simulated for all three algorithms:
In the first scenario, a target stimulus was placed at 0°
while two symmetrical maskers were varied between 0
and +£90°. In the second scenario, a target stimulus
was placed at 0° while 2, 3, or 4 maskers were placed
at +45 and/or +90° in all possible combinations. The
STOI score was then calculated for each condition.
For MESSL and DNN, STOI was calculated by
comparing the output of each simulation against each
of the original individual stimuli.

Segregation Comparison

Here, we describe the measure of segregation perfor-
mance in more details. As mentioned previously, we
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quantify the segregation performance as the differ-
ence between STOIs, computed using either target or
masker as the reference waveform, or ASTOI. The
output of the PA is noisy due to the stimulus
reconstruction step, resulting in an artifact that is
absent in MESSL and DNN. The use of ASTOI allows
comparison of true segregation ability, independent
of reconstruction artifacts.

Algorithm Training

MESSL did not require any training. The amount of
training versus performance for the DNN algorithm
was determined experimentally using scenario 2.
DNN required training on targets in the presence of
maskers, with about 100 sentence mixtures required
to reach peak performance, which was used to train
the DNN algorithm in the simulations. Due to the
small number of sentence available in the CRM
corpus, we recognize we have most likely overfitted
the DNN. However, we do not believe this to be an
issue, because we want to create the best possible
performance for DNN. The PA was trained in the
same manner as previously described in “Reconstruc-
tion Filter Training.”

RESULTS
A Physiologically Inspired Algorithm for Solving the CPP

We built upon the network model for cortical
responses, as described above, to design a physio-
logically inspired algorithm (PA) to process human
speech in a CPP-like setting (Fig. 2A). The input to
the PA was binaural speech input, corresponding
to the sound signals at the left and right ears. The
PA was composed of a cochlear filter bank, a
midbrain spatial localization network, a cortical
network, and a stimulus-reconstruction algorithm.
The biological motivation and the computations
carried out in each of these processing stages are
described in details in the “Methods” section, and
a detailed figure for each stage of the model is
illustrated in Fig. 1.

Frequency Tuning

Cortical neurons can be tuned to a variable range
of frequencies. This tuning property differs across
both species and cell types. We tested the effect of
frequency tuning of model cortical neurons on the
intelligibility of the model output for single CRM
sentences, and found that sharper frequency
tuning (higher Q values) correspond to higher
intelligibility (Table 1). In our model, when Q is
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greater than 23.4, frequency channels essentially
become independent of one another.

Performance: Monitoring Mode

The performance of PA is similar to the responses of
cortical neurons in the avian auditory cortex. The
monitor mode of the network is illustrated in Fig. 2B.
When a target alone was roved in space, the recon-
structed signal resembled that target regardless of
location, as demonstrated by similar STOI scores
across all locations (Fig. 2C). The similarity between
the target and reconstructed waveforms is also visually
illustrated in their spectrograms (Fig. 2C, inset). Such
encoding of single sources at all locations would allow
the listener to broadly monitor the entire acoustic
scene.

Performance: Selective Mode

The selective mode of the network, in the presence of
competing sounds, is illustrated in Fig. 2D. For these
simulations, the target was fixed at 0°, while two
maskers of equal amplitude (0 TMR) were played
simultaneously and symmetrically at angles anywhere
between 0 and +90°. The PA was used to segregate
and reconstruct the frontal target while suppressing
the maskers. Three STOI curves are shown (Fig. 2E):
The dark blue curve represents the STOI scores
calculated using the target as the reference waveform.
Error bars indicate standard deviation. The STOI
score increases as a function of spatial separation, and
plateaus at around 25°. The teal and green curves
represent the STOI scores calculated using either
masker 1 or masker 2 as the reference waveform,
respectively. These curves show the opposite trend as
the targetreferenced STOI. The STOI measure
demonstrates that the PA is able to segregate the
target signal effectively when the maskers are separat-
ed by more than about 15° from the target, illustrated
by the separation between the dark blue and the teal
and green curves. The configuration of the network
was not changed between the quiet (target alone) and
noisy (target + masker) conditions, indicating that the
same network achieved both broad tuning to single
targets and sharpened tuning in the presence of
maskers.

Robustness

We found that the PA remains effective in challenging
situations where the intensity of the target source is
weaker than the maskers. To demonstrate this robust-
ness, we presented the target at 0°, and two maskers at
+90°, and varied the target to masker ratio (TMR).
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FIG. 2. The physiologically inspired algorithm. a Flow diagram of
the algorithm. Dual channel (L and R) audio is used as the input to
CA. The CA consists of a cochlear filter bank, a spatial localization
network, the cortical network and a stimulus reconstruction algo-
rithm (see “Methods”). The output is a single acoustic waveform. b-e
The performance of the CA with a frontal beam-former cortical
network where 0° inhibits all other spatial channels (inset). b Monitor
mode simulation with the target alone roved from 0 to 90°. ¢
Simulation results of b: short-time objective intelligibility measure
(STOIl) as a function of location is shown. Insets show the
spectrograms for the vocoded target and the reconstructed output

for the target position of 45° indicated by the asterisk. d Selective
mode: the target sentence is fixed in the front, while two maskers are
placed symmetrically at angles from 0 to +90°. e Simulation results
of d the STOI of the reconstructed output is computed with both the
target and masker signals as reference. Inset shows the spectrogram
of the reconstructed output for when the maskers are positioned at
+45° (indicated by the asterisk). The y-axis on the right-hand side
shows the predicted intelligibility that corresponds to the calculated
STOI scores. f Robustness of the CA. STOI curves with respect to
target and maskers vs. target to masker ratio (TMR). g Comparison
with psychophysics
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FIG. 3. Different configurations of the cortical network. For all

simulations, two sentences were presented from 0° (S1) to 90° (S2)
simultaneously. a With no cross-spatial channel inhibition, the
cortical network is broadly tuned and the reconstructed stimulus
resembles the mixture of both sentences (spectrograms in middle and

We found that the reconstructed signal more closely
resembles the target than maskers down to about -
5 dB, as reflected by higher STOI when comparing
the reconstruction to the target vs. the maskers (Fig.

2F).
Comparison with Human Psychophysics

In psychoacoustics, the benefit of increased separa-
tion between target and masker has been termed
spatial release from masking (SRM). Previous studies
have recorded the TMR thresholds for 50 % correct
human performance in listening experiments with a
center (0°) target and symmetrical maskers at differ-
ent spatial separations (Marrone et al. 2008;
Srinivasan et al. 2016). For comparison, we calculated
the 50 % classification threshold based on STOI for
each targetmasker separation. The 50 % classification
threshold for each separation was the TMR where the
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lower panels). b With a frontal beam-former cortical network, the
reconstructed stimulus resembles the sentence presented from front
(S1). ¢ With a side beam-former network, the reconstructed stimulus
resembles the sentence presented from 90° (S2)

intelligibility measures (STOI) of the algorithm was
higher compared with the target sentence than the
masker sentences for at least 50 % of sentences.
Figure 2G compares the 50 % TMR thresholds of PA
with those measured for humans in psychoacoustic
studies. The overall range and trend of performance
of the PA was qualitatively similar to human perfor-
mance.

Different Configurations of Cortical Network

In the previous section, we simulated a frontal “beam-
former” cortical network where the 0° azimuth frontal
channel inhibits all other channels. The cortical
network model can be configured to different spatial
preferences by changing the cross-spatial-channel
inhibitory connections. Figure 3 demonstrates how
changing the inhibitory connectivity of the cortical
network while using the same mixed-source inputs
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symmetrical-masker simulation was carried out in the a PA, b MESSL,
and ¢ DNN algorithms. The STOI of each algorithm output was
quantified using the target sentence (dark blue line) or masker

changed the reconstructed signal. For these simula-
tions, two sentences (S1 and S2) were presented
simultaneously from the front (S1, 0° az) and right
side (S2, 90° az). With cross-spatial-channel inhibition
turned off, the reconstructed waveform resembled the
mixture of the two sentences (Fig. 3A). With a frontal
beam-former network, the reconstructed waveform
resembled the sentence in the front (Fig. 3B). In this
configuration, STOLupu, s1=0.57, while STOI,ypu,
s2=0.10. With a different configuration of inhibitory
connections as shown in the side beam-former
network, the reconstructed waveform resembled the
sentence on the side (90°) (Fig. 3C). In this configu-
ration, STOl,ypu, s1=0.09, and STOl,ypu, s2=0.63.
Thus, depending on the configuration of the inhibi-
tory connections, the network outputs resemble
sound streams originating from specific spatial loca-
tions.

Comparison with Cutting-Eidge Engineering Algorithms

There have been intensive efforts to perform auditory
source segregation using purely engineering algo-
rithms (Wang and Brown 2006). Although our main
goal here was to develop a physiologically based
model, we were curious to compare the segregation
performance of the PA with two cutting-edge engi-
neering algorithms: model-based expectation maximi-
zation source separation and localization (Mandel
et al. 2010) and a deep neural network (Jiang et al.
2014; Wang et al. 2014) trained with binaural cues;
both were evaluated with STOIL.

Figure 4b and c show the STOI curves for MESSL
and DNN. Ideally, for good segregation, STOI values
relative to the target should be as high as possible,
while STOI values relative to the masker should be as
low as possible. Target STOI were higher for the DNN

STOI w/ Masker 2

sentences (green and light blue lines) as references. STOI scores are
shown on the left hand y-axis, and the corresponding predicted
intelligibility (as percent correct), calculated using the conversion
from (Taal et al. 2010), are shown on the right hand y-axis.

and MESSL, compared with the PA (Fig. 4). However,
the Masker STOI values were also higher for the DNN
and MESSL, compared with the PA. Since STOI is
designed to measure relative intelligibility, it alone is
not a good measure of segregation. To quantify the
segregation of the target and masker, we computed
the difference in the STOI values, ASTOI, as well as
the differences in their corresponding intelligibility
values (see “Methods”). The PA had higher ASTOI
values compared with MESSL and DNN, and lower
Alntelligibility (Table 2).

DISCUSSION

In this study, we have developed a novel, physiologi-
cally inspired algorithm (PA) for processing sounds in
a CPP-ike setting. Our results demonstrate that, like
cortical neurons in birds and mammals, the PA is
capable of operating in two distinct modes. In the
presence of single sounds, the algorithm reconstructs
sounds across the entire azimuth, effectively monitor-
ing the acoustic space (Fig. 2D). Such a behavior may
also be important in complementing the visual system
in detecting objects, when an object is outside of or in
the periphery of the visual field. In the presence of
multiple competing sounds, with cross-spatial channel
inhibition in the cortical network, the algorithm
segregates a target sound from a mixture, allowing
the network to selectively listen to a target (Fig. 2E).
Note that with cross-spatial channel inhibitory con-
nections in place, switching between the two modes
only requires the presence or absence of a competing
sound, not a reconfiguration of the cortical network.
The PA is robust to the level of the masker relative to
the target (Fig. 2F), and displays trends similar to
human performance (Fig. 2G). The flexible behavior
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TABLE 2

Differences in objective scores between the proposed
algorithm and two other engineering algorithms for sound
source segregation

ASTOI Alntelligibility
Proposed algorithm 0.394 69.7
MESSL 0.276 76.8
DNN 0.325 84.3

of the PA reflects every-day behavior of humans and
animals, but this important feature is non-existent in
current sound-processing technologies. Thus, the
ideas from the PA, the first physiologically-based
algorithm to exploit binaural spatial cues and utilize
passive, flexible tuning behavior to solve the CPP, may
help improve the performance of a broad range of
sound processing systems and devices that have
difficulty under CPP-like conditions.

Physiological Basis and Implications

Our model is a synthesis of multiple stages of auditory
processing that are based in physiological mechanisms
of birds. The spatial localization network was based
the barn-owl’s midbrain, one of the best understood
model systems for spatial localization. The cortical
level was based on experimental recordings from field
L, the analogue of primary auditory cortex, in the
zebra finch. Although the cortical level in birds is
structurally different from the mammalian cortex,
recent studies have shown that the functional proper-
ties of auditory neurons in field L. are remarkably
similar to mammalian cortex (Calabrese and Woolley
2015). The spatial responses of field L neurons
(Maddox et al. 2012) are also similar to neural
responses in the primary auditory cortex of cats,
which showed broad spatial tuning for single sound
sources but sharper spatial tuning in the presence of
two competing auditory streams from different loca-
tions (Middlebrooks and Bremen 2013). Therefore, it
is possible that the mechanisms in the avian-based PA
model also exist in mammals. We are currently
conducting experiments in mice to determine wheth-
er the Al neurons also display flexible tuning
behavior.

Effects of Spatial Tuning Width and Frequency
Tuning Width

The model as implemented here relies on tuned
responses to both spatial location and frequency. A
previous study has investigated the effect of sharpness
of spatial tuning in a similar network model (Dong
et al. 2016) and found that the performance of the
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network remained robust over a broad range of
spatial tuning widths. Specifically, for tuning curves
modeled as Gaussians, performance was robust for
tuning curve widths (i.e., twice the standard deviation)
ranging from less than 15° up to 80°.

In mammalian systems, spatial tuning curves for
single locations have been found to be broadly tuned
“open-ended” response functions, e.g., a sigmoidal
function of location, instead of the spatially tuned
channels employed in our model, experimentally
observed in avian species. Computational modeling
shows that it is possible to construct accurate readouts
for spatial location either using sharply tuned
circumscribed receptive field (e.g., Gaussian) or
broadly tuned “open-ended” response pattern (e.g.,
a sigmoid) (Lee and Groh 2014). Thus, the readout
computation for spatial location for single sound
sources may be different in birds and mammals.
However, once the readout for single locations has
been achieved, cross-spatial-channel inhibition could
be used as described in our model, to achieve
hotspots on the spatial grid. Our preliminary data,
using a very similar experimental paradigm have
revealed similar spatial grids in the mouse (Gritton
et al. 2017). This suggests that despite potential
differences in readouts for single sounds, avian and
mammalian species may show similar cortical repre-
sentations for sound mixtures.

To evaluate the effect of frequency tuning widths
on reconstructed outputs, we simulated cortical
networks with gradually increasing cross-frequency
connectivity profiles (see “Methods”), which would
broaden the effective frequency tuning widths of
individual channels, and evaluated the performance
of our model for capturing a single target sentence
placed at 0° azimuth. We found that performance of
our model network remained robust over a range of
connectivity widths (Q factors 23.5-3.5) and degraded
for lower values (Table 1). The range of Q values over
which performance remained robust contains values
similar to those observed in the avian auditory cortex
(Sen et al. 2001), suggesting that physiologically
observed values for frequency tuning width can
support robust stimulus reconstruction.

Bottom-up vs. Top Down Processing

In our model, some of the critical components of the
overall computation, e.g., peripheral filtering of
sounds and spatial localization using acoustic cues
such as ITD and ILD, occur prior to the cortical level,
supporting the idea that bottom-up processing plays
an important role in separating auditory mixtures into
different spatial streams. The cortical level then builds
on these computations to select appropriate stream (s)
to attend. The brain combines both bottom-up and
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top-down processes to solve the CPP (Bee and
Micheyl 2009). Modeling top-down processes would
be an appropriate next step in extending our model.

Relating to the Visual System

Cross-spatial-channel inhibition plays an important
role in the cortical network of our proposed model.
In our model, inhibitory connections are recruited
when multiple competing objects are simultaneously
present at different locations. This is reminiscent of
an interesting finding in the primary visual cortex,
where simultaneously stimulating the classical and the
non-classical receptive field of a visual cortical neuron
increases the sparseness, reliability, and precision of
neuronal responses, by recruiting strong “cross-chan-
nel” inhibition (Vinje 2000; Vinje and Gallant 2002;
Haider et al. 2010). Thus, similar inhibitory cortical
circuitry may be involved in processing complex
scenes in both the auditory and the visual cortex.
Unlike primary auditory cortical neurons, primary
visual cortical neurons have much more spatially
localized receptive fields. However, spatial receptive
fields in downstream visual areas thought to be
involved in object recognition, e.g., inferotemporal
cortex (IT), are physically much larger. Interestingly,
when a second stimulus is presented in the visual
receptive field of IT neurons, neurons can be
suppressed by or tolerant to the second stimulus
(Zoccolan et al. 2007). The observations from these
studies suggest that the principle of the PA could also
be applied to the visual cortex. In a visual scene
cluttered with multiple objects, the cortical model
would allow inhibitory neurons with spatial receptive
fields containing a target object to suppress the
responses of excitatory neurons with receptive fields
in other spatial locations.

Comparison with Engineering Algorithms

There have been intensive efforts to solve the CPP
using computational models for auditory scene anal-
ysis (Wang and Brown 2006). To our knowledge, there
are no other physiological models for auditory scene
analysis that exploit the remarkable spatial processing
capabilities of the auditory system. We compared the
PA and two other algorithms that also use binaural
cues to perform sound segregation—MESSL and
DNN.

Although all three algorithms were binaural, some
differences are worth noting. The performance of
DNN was heavily dependent on the amount of
training sentences available. To achieve high perfor-
mance using the small number of CRM sentences
available, it was necessary for us to severely over-train
the algorithm. In addition, it is noteworthy that the
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training set for DNN were target-in-maskers, meaning

that the testing set was included in the training set.
On the other hand, the training set for PA consists of

one single modified target sentence. It is unknown
how well the DNN generalizes to different target and
masker locations after training, whereas the PA can be
configured to varying spatial configurations of target
and maskers by adjusting the inhibitory connectivity
in the cortical network, without further training (Fig.
2). One advantage of the MESSL algorithm is that it
did not require any training; however, it was the most
sensitive of all the algorithms to increasing number of
maskers. It also required an initial estimation of the
number of sources present to accurately separate a
sound mixture, making it difficult to implement in
real-world settings. Another important distinction
between the algorithms is that the PA is rooted in
physiology, whereas MESSL. and DNN are not. The
cortical network architecture enables the PA to be
used as a predictive tool to motivate new experiments
in neuroscience, and novel experimental findings can
be incorporated into the PA.

The comparison shown in the results is intended as
an additional step in evaluating the PA’s performance,
not as a full benchmarking, which is outside the scope
of this study. Aside from constraining all the algo-
rithms to be “binaural-only,” we did not change the
model structure or the parameters for MESSL and
DNN (see “Methods”). Thus, it is possible that the
relative performance of these algorithms could be
improved further by adjusting their parameter values,
or operating on different kind of sound mixtures.
Depending on the context and objective measure
used, our results demonstrate that the segregation
performance of the PA can be either better or worse
than the state-of-the-art engineering algorithms
(Table 2). In the next section, we discuss some
limitations to the PA and how its performance could
be improved.

Limitations

Aside from the training, two notable factors greatly
impact the performance of the PA. The PA relies on
the midbrain model to perform spatial segregation of
sound mixtures. Therefore, its segregation perfor-
mance depends on the correct computation of
binaural cues and the localization accuracy of the
midbrain model. The correct calculation of binaural
cues is, in turn, dependent on the number of sources
present and the signal-to-noise ratio. This bottleneck
is unavoidable without using additional cues (e.g.,
monaural cues to aid in the grouping of sounds). The
second big factor is stimulus reconstruction. The
process of stimulus reconstruction results in noisy
artifacts, and severely degrades the reconstruction
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sound quality and intelligibility. This may explain why
even though ASTOI of PA is higher than the two
algorithms compared here, its intelligibility scores are
much lower (Table 2). We suspect that the perfor-
mance of the PA as a sound segregation algorithm can
be improved by addressing this point.

Conclusion and Future Directions

Many other facets of complex cortical circuitry and
processing exist, €.g., laminar processing (Atencio and
Schreiner 2010a, 2010b). These processes have also
been shown to play important roles in solving the CPP.
Monaural processing, such as temporal coherence
(Elhilali et al. 2009; Shamma et al. 2011) and pitch
tracking, has been frequently used in engineering
algorithms for CPP processing. Experiments have
shown that attention (i.e., top-down control) also plays
an important role (McDermott 2009; Bronkhorst 2015).
Although the exact neural mechanisms responsible for
each of these processes are still not entirely clear, one
can imagine modeling each process in a spiking neural
network, each of which can be linked to the spatial
processing model described here to construct a com-
prehensive physiological model of CPP processing. For
now, we have not included any of these other processes
because it is beyond the scope of this work.

Our focus in this study was on the spatial response
properties of the cortical neurons in CPP-like settings.
In this work, we demonstrated that the PA can adjust
its spatial tuning based on whether competing objects
are present in the auditory scene. We tested its
performance as a sound segregation algorithm, com-
pared these performances to other, non-physiology-
based algorithms, and suggest how it can be im-
proved. We also discussed its biological implications
and how its principles can be used to model other
experimental observations (i.e., in the visual cortex).

The interneurons in our cortical model play a
critical role in realizing the flexible spatial tuning
behavior of the PA. Does the same network architec-
ture exist in mammals? If the interneurons were
silenced, e.g., with optogenetics, will the animal be
unable to solve the CPP? We plan to extend our
experimental paradigm to the mouse model, where
the availability of optogenic tools enables us to
conduct appropriate experiments to answer these
questions.
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