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Abstract

We explored the involvement of the lectin pathway of complement in post-traumatic brain injury (TBI) pathophysiology in
humans. Brain samples were obtained from 28 patients who had undergone therapeutic contusion removal, within 12h
(early) or from > 12 h until five days (late) from injury, and from five non-TBI patients. Imaging analysis indicated that lectin
pathway initiator molecules (MBL, ficolin-1, ficolin-2 and ficolin-3), the key enzymes MASP-2 and MASP-3, and the down-
stream complement components (C3 fragments and TCC) were present inside and outside brain vessels in all contusions.
Only ficolin-1 was found in the parenchyma of non-TBI tissues. Immunoassays in brain homogenates showed that MBL,
ficolin-2 and ficolin-3 increased in TBI compared to non-TBI (2.0, 2.2 and 6.0-times) samples. MASP-2 increased with
subarachnoid hemorrhage and abnormal pupil reactivity, two indicators of structural and functional damage. C3 fragments
and TCC increased, respectively, by 3.5 - and 4.0-fold in TBI compared to non-TBI tissue and significantly correlated with
MBL, ficolin-2, ficolin-3, MASP-2 and MASP-3 levels in the homogenates. In conclusion, we show for the first time the direct
presence of lectin pathway components in human cerebral contusions and their association with injury severity, suggesting a
central role for the lectin pathway in the post-traumatic pathophysiology of human TBI.
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Introduction

Traumatic brain injury (TBI) is a common cause
of death and disability among young and old people
worldwide."? In patients who survive the primary
biomechanical impact, the secondary injury — caused

by the activation of several molecular and cellular cas-
cades — is the main contributor of brain damage.®
Secondary injury is closely associated with activation
of the inflammatory response. The complement system,
an important branch of the innate immunity response, is
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a major coordinator of post-traumatic neuroinflamma-
tion and secondary neuropathology after TBL.® ' This
system includes a heterogeneous mixture of fluid-phase
and cell-associated proteins that upon activation: (1)
increase blood-brain barrier (BBB) leakage via C3a
and C5a; (2) favor leukocyte infiltration into the injured
brain and subsequent free radical production; (3) induce
neuronal and glial apoptosis via C3a and C5a binding to
their receptors; and (4) promote neuronal lysis via the
terminal complement complex (TCC).'>'* Thus, thera-
peutic strategies aimed at blocking complement activa-
tion could potentially reduce neuroinflammation and
neurodegeneration in TBI patients.'* ¢

Depending on the danger signals, the complement
system can be activated by three pathways: the classi-
cal, the alternative and/or the lectin pathway, each
composed of specific initiators and effector enzymes.'?
Substantial involvement of the classical pathway in
post-traumatic pathology has been excluded on the
basis of studies on mice genetically deficient for Clq,
the initiator molecule of the classical pathway, which
showed neurological deficits and lesion size similar to
wild-type mice when subjected to TBI.!” There is evi-
dence that the lectin pathway plays a pathogenic role in
acute brain injury, including stroke and TBI, in
line with its ability to recognize and bind altered self-
structures.'*'® 2 In humans, the lectin pathway
uses mannose-binding lectin (MBL), ficolins (ficolin-1,
-2 and -3) as well as collectin-10 and -11 as initiator
molecules.” They act as soluble pattern recognition
receptors that circulate in complexes with MBL-asso-
ciated serine proteases (MASP-1, MASP-2 and MASP-
3).!%?° On specific binding to patterns of carbohydrates
(MBL and collectins) or acetylated residues (ficolins)
exposed on the surface of damaged cells (damaged asso-
ciate molecular patterns, DAMPs), in addition to that of
microorganisms (pathogen-associated molecular patterns,
PAMPs), the lectin pathway initiators trigger the conver-
sion of zymogen MASPs into their active state, promoting
complement activation.> *® This leads to downstream
formation of the C3 split products C3a and C3b and
activation of the terminal pathway with release of C5a
and the formation of terminal C5b-9 complement com-
plex (TCC). TCC exists as the lytic membrane attack
complex and a soluble non-lytic form sC5b-9.

Our group previously demonstrated that mice genetic-
ally deficient for MBL or treated with Polyman9 (a newly
synthesized polymannosylated compound able in vitro to
inhibit MBL binding to mannan residues) present attenu-
ated sensorimotor deficits up to four weeks post-TBL'>!*
Polyman9-treated TBI mice also showed enhanced neuro-
genesis and preservation of astrocytic endfeet at the con-
tusion site,'? suggesting lectin pathway initiators have a
direct detrimental role on brain cells. In clinical TBI, high
MBL?! and low ficolin-3*’ circulating levels appear to be

associated with the injury severity and clinical outcome.
Evidence obtained in experimental TBI suggests that
lectin pathway activators may have a role in clinical
TBI being present not only in the serum compartment —
activating the circulating complement cascade — but also
in the brain where they may also have a direct local effect.
In this study, we provide evidence of the involvement of
lectin pathway components in human TBI pathology,
assessing their presence and localization in brain contu-
sions, their ability to activate the pathway and the asso-
ciation with the severity of injury.

Materials and methods
Study design

Brain samples were obtained from 28 patients with
TBI admitted to the neuroscience ICU of the
Fondazione IRCCS Ca’ Granda—Ospedale Maggiore
Policlinico, who underwent therapeutic neurosurgical
intervention involving the removal of contused tissue
(Supplementary Table 1). Biopsies obtained within
12h from injury were considered “‘early” (21), while
those obtained from >12h until five days as “‘late”
(7). Immediately after removal, the tissue that appeared
necrotic and frankly hemorrhagic (contusion core) on a
gross eye examination was separated from the contused
surrounding tissue (pericore). These latter portions
were collected and immediately stored at —80°C until
use.*” Brain samples from two non-TBI patients oper-
ated for brain tumors (glioma) and three autopsies
from individuals who died of extracranial causes
(collected at the Azienda Ospedaliero-Universitaria
Parma) were used as non-TBI  controls
(Supplementary Table 2). The study on human tissue
samples was approved by the local research ethics com-
mittee of the Fondazione IRCCS Ca’ Granda—
Ospedale Maggiore Policlinico (Session 28 January
2005, with final deliberation on 4 February 2005) and
the Azienda Ospedaliero-Universitaria Parma (Session
10 December 2015, with final deliberation on 11
February 2016). The study was conducted according
to Helsinki declaration and to the national ethical
guidelines for the good clinical practice (D.M. 15
luglio 1997) that are in compliance with the European
Union guidelines (CPMP/ICH/135/1995). Informed
consent for using human samples for research purposes
was obtained from the next of kin. Outlier values were
handled as reported in the ‘Statistical analysis’ section.

Immunofluorescence and confocal analysis

Immunofluorescence was done on 20-pum coronal sec-
tions. Sections were thawed by 5min washing with
0.05M triphosphate-buffered saline (TBS) at room
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temperature (RT) and then post-fixed by 15min incu-
bation with 4% PAF. After thorough washings
with PBS (0.0l M phosphate buffer, 0.0027 M potas-
sium chloride and 0.137 M sodium chloride, pH 7.4 at
RT), sections were incubated with blocking solution
(10% normal goat serum, 0.3% Triton) for 1h at
RT and then with primary antibodies in the same solu-
tion overnight at 4°C. Primary antibodies used were:
mouse anti-human iC3b/C3b (clone 3E7, 1: 100, a
kind gift provided by Drs. Ronald Taylor and
Margaret Lindorfer, University of Virginia School of
Medicine),>' mouse anti-human TCC (clone aEll,
1:10032), mouse anti-human MBL (1:50, Abcam, UK),
mouse anti-human Ficolin-1 (1:50 FCN-166*), mouse
anti-human Ficolin-2 (1:50, FCN-219*), mouse anti-
human Ficolin-3 (1:50, Hycult Biotechnologies), mouse
anti-human MASP-2 (1:50, Hycult Biotechnologies,
The Netherlands) and mouse anti-human MASP-3
(clone 7D8, 1:50*). Sections were then incubated with
a biotinylated secondary anti-mouse antibody (1:200,
Vector Laboratories, UK) for 1h at RT, followed
by fluorescent signal coupling with a streptavidin TSA
amplification kit (fluorescein or cyanine 5, Perkin
Elmer, MA, USA). Alexa647- or Alexa488-conjugated
Isolectin B4 from Griffonia Simplicifolia (1:100, 2h at
RT, Invitrogen, MA, USA) was used to label vessels.
Sections were then incubated with True-Black quencher
(1:20 in 70% Ethanol, Biotium, USA) to quench
non-specific fluorescent signals. Appropriate negative
controls were run without the primary antibodies.
None of the immunofluorescence reactions gave any
unspecific fluorescence signal in the negative controls
(Supplementary Figure S1). Immunofluorescence was
acquired using a scanning sequential mode to avoid
bleed-through effects with an IX81 microscope equipped
with a confocal scan unit FV500 with three laser lines:
Ar-Kr (488 nm), He-Ne red (646 nm), and He-Ne green
(532nm, Olympus, Tokyo, Japan) and an UV diode.
Three-dimensional images were acquired over a 10 pm
z-axis with a 0.23um step size and processed using
Imaris software (Bitplane, Zurich, Switzerland) and
Photoshop cs2 (Adobe Systems Europe Ltd). Semi-
quantitative investigation of complement protein local-
ization in cerebral tissues was done on three fields of
view sized 184 x 138 x 10 um per patient, two patients
per group. The analysis was done independently by
three investigators blinded to the experimental group.
The data reported in Table 1 are the median of the
three evaluations.

Tissue homogenization

Seventy milligrams of each frozen cerebral sample were
homogenized in 1% Triton X-100 lysis buffer supple-
mented with protease (1 x complete protease inhibitor

Table I. Semi-quantitative investigation of complement protein
localization in cerebral tissues.

Vascular Parenchymal

Non-TBI TBI Non-TBI TBI
MBL - ++ - -
Ficolin-1 ++ +++ ++ ++
Ficolin-2 + +++ - ++
Ficolin-3 + +++ — ++
MASP-2 + +++ - ++
MASP-3 + +++ - -
iC3b/C3b + +++ - ++
TCC ++ + - +++

Note: The distribution of complement proteins in relation to 1B4 labeled
blood vessels was assessed on the basis of confocal microscopy images
(Figures |, 2, 4 to 7). Scores were assigned blinded to the patient’s group,
as follows: — = no positivity, + = low positivity, 4+ = intermediate posi-
tivity, +-+-+=high positivit. Three fields of view sized
184 x 138 x 10 um per patient, two patients per group. TBI: traumatic
brain injury.

cocktail, CPIC, Roche, USA) and phosphatase (1 uM
4-nitrophenyl phosphate 4-NPP, Roche, USA) inhibi-
tors.* Homogenate was then centrifuged for 15min at
10,000 r/min at 4°C and stored at —80°C until use.

ELISA for lectin pathway mediators

Ninety-six-well Nunc Maxisorb microtiter plates were
coated with 1pg/well mannan (for hMBL and
MASP-2), or with 2.5, 12.5, 0.5pg/well acetylated
BSA (for ficolin-1, ficolin-2 or MASP-2 and ficolin-3,
respectively) diluted in coating buffer (15 mM Na,COs;,
35mM NaHCOj;, pH 9.6). Residual protein binding
sites were saturated by incubating the plates with 1%
BSA (bovine albumin serum)-TBS blocking buffer (1%
(w/v) BSA in 10mM Tris-HCI, 140 mM NaCl, 1.5mM
NaNs, pH 7.4), for 1h RT.* The ELISA plates were
then washed with washing buffer (TBS with 0.05%
Tween 20 and 5mM CaCl,). Homogenates from
brain specimens were thawed on ice and solutions of
50% (for MBL or ficolins) or 25% (for MASP-2) final
homogenate concentration prepared in barbital-
buffered saline (BBS; 4mM barbital, 145mM NaCl,
2mM CaCl,, ImM MgCl,, pH 7.4) on ice. Wells
receiving only BBS buffer were used as negative con-
trols. Homogenate solutions were incubated on man-
nans or on acetylated BSA as described previously.*’
The plates were then washed and incubated for 1h
30min at RT with mouse polyclonal anti-human
MBL (HM2061, Hycult Biotechnologies, The
Netherlands), anti-human ficolin-1 FCN-166 *%), anti-
human ficolin-2 (FCN-219°%), anti-human ficolin-3
(HM2089, Hycult Biotechnologies, The Netherlands),
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anti-human MASP-2 (HM2190, Hycult
Biotechnologies, The Netherlands) antibodies diluted
1:100 in washing buffer. After washing, the plates
were incubated for 1h 30min at RT with an HRP
labeled goat anti-mouse IgG antibody (Santa Cruz,
TX, USA) diluted 1:1000 in washing buffer. After
washing, the assay was developed by adding 100 uL
substrate solution TMB (TMB Substrate Kit; code
34021; Thermo Scientific, MA, USA; 1:1 con H,O,
solution). The reaction was stopped by adding 100 uL
H>SO,4 2 M and absorption at OD450 nm was measured
using the InfiniteM200 spectrofluorimeter managed by
Magellan software (Tecan, CH). MASP-3 levels in
homogenates (1:8 dilution) were measured by ELISA
according to the method described in Skjoedt et al.¢
C3 fragments (iC3b/C3b) were measured by ELISA.
Briefly, plates were coated with polyclonal anti-C3 anti-
body diluted 1:9600 in TBS. After 2h incubation with
blocking buffer (see above), brain homogenates diluted
1:8 in BBS were incubated for 1 h at 37°C. The plates
were then washed and incubated for 1 h 30 min at RT
with mouse anti-human iC3b/C3b (1: 500, 3E7, a
kind gift provided by Drs. Ronald Taylor and
Margaret Lindorfer, University of Virginia School of
Medicine).>' After washing, the plates were incubated
with an HRP labeled goat anti-mouse IgG antibody
and developed by TMB as described above. TCC was
measured by ELISA as described previously.?’ Briefly,
brain homogenates were diluted 1:2 in PBS with 10 mM
EDTA and 0.05% Tween 20 and incubated on ELISA
plates coated with a monoclonal antibody (aE11) spe-
cific for a neo-epitope exposed when C9 is incorporated
into the TCC. For detection, a monoclonal biotinylated
anti-C6 antibody (clone 9C4) and subsequent enzyme-
linked streptavidin were used.

Statistical analysis

All quantifications were done by investigators blinded
to patients’ clinical information. Column analysis after
patient stratification was done by Mann—Whitney test
after examination of the data distribution with the
Shapiro—Wilk normality test. Correlations were then
done by computing the Spearman r. As the non-TBI
data sets for MASP-3, iC3b/C3b and TCC showed a
possible outlier, Dixon’s Q-test for small data sets was
applied using the formula for r;q with a critical value
of 2 =0.05,*%3" and the outlier was excluded from stat-
istical analysis (Supplementary Table 3). Statistical
analysis was done using standard software packages
GraphPad Prism (GraphPad Software Inc., USA, ver-
sion 6.0). All tests were two-sided and p values lower
than 0.05 were considered statistically significant.
Details of the statistical analysis for each experiment
are reported in figure legends.

Results
Patients

Twenty-eight patients, 17 males and 11 females,
were included in this study (Supplementary Table 1).
The median age was 58. All these patients had severe
TBI as documented by the post-stabilization motor
Glasgow Coma Scale (GCS) median score of 4
and needed surgical intervention for contusion
removal, either early (within 12h, 21 patients) or late
(from >12h until 5 days, 7 patients) after admission.
The causes of TBI were motor vehicle accidents
(7 patients), falls (18) or assaults (3). Six-month out-
comes were assessed with the Glasgow Outcome Scale
(GOS) in 23 of the 28 patients. Eighteen patients had an
unfavorable outcome (GOS: 1-3) and five either good
recovery or moderate disability (GOS: 4-5). Brain sam-
ples from non-TBI patients are listed in Supplementary
Table 2.

The lectin pathway initiators MBL, ficolin-1,
ficolin-2 and ficolin-3 are present in TBI
contusions

MBL was present in early and late removed cerebral
contusions (Figure 1(a) and (b)). As demonstrated
by the xy plane views with z projections in the confocal
images and 3D renderings, MBL was mostly localized
inside and outside cerebral vessels, with no difference
between early and late removed contusions.
Immunofluorescence for ficolin-1, ficolin-2 and ficolin-
3 showed their presence in TBI specimens. All ficolins
were located near cerebral vessels and also in the par-
enchyma with no differences in distribution between
early (Figure 1(c), (e) and (g)) and late (Figure 1(d),
(f) and (h)) samples. No MBL staining was found in
non-TBI specimens (Figure 2(a)). Ficolin-1 was present
in non-TBI cerebral tissues (Figure 2(b)), where it was
located near cerebral vessels and in brain parenchyma,
as further supported by 3D renderings. Ficolin-2
(Figure 2(c)) and ficolin-3 (Figure 2(d)) levels were
low in non-TBI cerebral tissues, mostly located near
cerebral vessels.

The lectin pathway initiators MBL, ficolin-2 and
ficolin-3 are increased in TBI contusions

Plates coated with mannans or acBSA (the best ligands
for MBL and ficolins, respectively) were incubated with
human cerebral homogenates to quantify MBL or fico-
lins. MBL, ficolin-2, and -3 (Figure 3(a), (c¢) and (d))
were 2.0, 2.2 and 6.0 times higher, respectively, in hom-
ogenates from TBI than non-TBI specimens (p <0.05
and p <0.01). No difference was found for ficolin-1
(Figure 3(b)).
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Figure I. Lectin pathway initiators are present in human cerebral contusions after TBI. Representative images of human MBL (red, a,
b), ficolin-1 (red, c, d), ficolin-2 (red, e, f), ficolin-3 (red, g, h), vessels (IB4, green) and nuclei (Hoechst, blue) in the contusional tissues
removed early (3, c, e, g) or late (b, d, f, h) after TBI. Single xy plane views with z projections (merge image) and 3D renderings are
presented. MBL appears mainly present inside cerebral vessels both in early (a) and late (b) removed contusions. Ficolins are present

inside and near cerebral vessels and in cerebral parenchyma early (c, €, g) and in late (d, f, h) samples. Images are representative of at
least two specimens per group. Scale bars 20 um, thicks in 3D renderings [0 um.
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Figure 2. Lectin pathway initiators present different patterns in non-TBI human cerebral tissues. Representative images of human MBL
(red, ), ficolin-1 (red, b), ficolin-2 (red, c), ficolin-3 (red, d), vessels (IB4, green) and nuclei (Hoechst, blue) in non-TBI cerebral tissues. Single
xy plane views with z projections (merge image) and 3D renderings are presented. MBL is hardly detectable in non-TBI cerebral
tissues (a). Ficolin-1 is present nearby cerebral vessels and in parenchyma (b). Ficolin-2 (c) and -3 (d) are scarcely present inside or
nearby cerebral vessels. Images are representative of at least two specimens. Scale bars 20 pm, thicks in 3D renderings 10 um.

MASP-2 is present in TBI and non-TBI cerebral
tissues and its levels are associated with more
severe clinical conditions

We focused on MASP-2, the key enzyme driving lectin
pathway activation in cerebral injury.** MASP-2 stain-
ing was observed both in TBI (Figure 4(a) and (b)) and
in non-TBI (Figure 4(c)) specimens. In early contu-
sions, MASP-2 was located near cerebral vessels
and in brain parenchyma (Figure 4(a)), while in late
ones, staining was mostly in cerebral parenchyma
(Figure 4(b)). In non-TBI tissues, MASP-2 staining
was mostly located near cerebral vessels (Figure 4(c)).
We then quantified MASP-2 deposition on plates
coated with mannans (Figure 4(d) to (f)) or acBSA
(Figure 4(g) to (1)) to establish the extent of MASP-2
deposition by MBL or ficolins. Homogenates from
TBI specimens showed a tendency toward an increase
in MBL-dependent MASP-2 deposition compared to
non-TBI ones (Figure 4(d)). In addition, patients with
traumatic subarachnoid hemorrhage (tSSAH, Figure 4(¢))

or altered pupils’ reactivity (one or none reactive, Figure
4(f)) had significantly increased M BL-dependent MASP-
2 levels compared to patients without tSAH or with
normal pupil reactivity (1.8-fold or 1.7-fold, respect-
ively). MASP-2 deposition driven by ficolins was signifi-
cantly higher (6.7-fold) in homogenates from TBI than
in non-TBI specimens (Figure 4(g)), with no association
with TBI severity (Figure 4(h) and (1)).

Six-month clinical outcome (by GOS) was available
for 23 of the 28 patients (Supplementary Table 1).
When lectin pathway protein brain levels were stratified
in relation to outcome categories,*' no clear pattern
was found (Supplementary Figure 2).

MASP-3 is present in TBI and non-TBI cerebral
tissues and its levels are increased in TBI contusions

MASP-3 staining was observed in every specimen but
was stronger in TBI (Figure 5(a) and (b)) than non-TBI
specimens (Figure 5(c), Table 1). In every case, MASP-
3 was located mainly in cerebral vessels. Homogenates
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Figure 3. MBL, ficolin-2 and -3, but not ficolin-1, in homogenates of human cerebral contusions increase after TBI. MBL (a), ficolin-2
(c) and ficolin-3 (d) levels are significantly higher in TBI (n =28) than non-TBI (n =5) patients. Data are reported as box plots and 10th

and 90th percentiles. Mann—Whitney test: *p < 0.05; **p < 0.01.

from TBI specimens showed a 2.1-fold increase in
MASP-3 (Figure 5(d)), with no association with TBI
severity (Figure 5(e) and (f)).

Downstream products of complement activation
(C3 fragments, TCC) are deposited in TBI contusions

Downstream along the complement cascade, we
focused on C3 active fragments (iC3b/C3b) resulting
from C3 cleavage and on TCC, the final component
of the complement cascade. C3 active fragments were
detected in every contusion (Figure 6(a) and (b)).
As supported by 3D renderings, they were localized
both inside and outside cerebral vessels and in the
brain parenchyma, with no difference between early
and late removed contusions, indicating acute and per-
sistent complement activation after the injury. TCC
was present in cerebral contusions as a measure of
full complement activation. TCC staining was found
both in early (Figure 6(c)) and in late (Figure 6(d))
contusions. It was present around cell bodies in the cere-
bral parenchyma, indicating the formation of the lytic
membrane attack complex version of TCC. In non-TBI
cerebral tissues, C3 active fragments (Figure 6(¢)) and
TCC (Figure 6(f)) were in close association with the
cerebral vessels, with no parenchymal presence. iC3b/
C3b and TCC levels in brain homogenates, measured
by ELISA, were, respectively, 3.5 and 4.0-times higher

in TBI compared to non-TBI controls (Figure 6(g) and
(h)) suggesting that TBI favors full activation of the
complement system.

The immunostaining and confocal microscopy
results are summarized in Table 1 which compares the
different distributions of the complement components
in TBI and non-TBI patients. Thus, ficolin-2 and -3,
MASP-2, C3 fragments and TCC showed parenchymal
presence only in TBI patients. Only MBL localized
selectively on vessels and was present only in TBI spe-
cimens. MASP-3 was localized on vessels in every
specimen.

Correlations between brain levels of lectin proteins
and C3 fragments (iC3b/C3b) or TCC

The significant positive correlations of MBL, ficolin-2,
ficolin-3, MASP-2 and MASP-3 with iC3b/C3b and/or
TCC (Supplementary Table 4) indicate that the lectin
and possibly the alternative pathway contribute to
brain full complement activation in TBI contusions.

Discussion

This study demonstrates that in human brain contu-
sions: (1) the complement system is fully activated
down to the level of the TCC formation and depends
on the lectin and possibly on amplification via the
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Figure 4. MASP-2 is higher in TBI than non-TBI human cerebral tissues and its levels are associated with more severe clinical
conditions. Representative images of MASP-2 (red), vessels (IB4, green) and nuclei (Hoechst, blue) in early and late removed contusions
(a, b) and in non-TBI cerebral tissues (c). Single xy plane views with z projection (merge images) and 3D renderings demonstrate
MASP-2 in the surroundings of cerebral vessels and in cerebral parenchyma both in early (a) and late (b) contusions. It can be detected
near cerebral vessels also in non-TBI (c) cerebral tissues. Images are representative of at least two specimens per group. Scale bars
20 pum, thicks in 3D renderings 10 um. MBL-mediated MASP-2 deposition (MASP-2 on mannans) showed a tendency toward an
increase in TBI specimens compared to non-TBI ones (non-TBI: n =5, TBI: n =28, d). It was significantly higher in homogenates from
patients with tSAH (no tSAH: n=11, tSAH: n=17, e) and/or none/one reactive pupils (both reactive: n =17, none/one reactive:
n= 11, f). Ficolin-mediated MASP-2 deposition (MASP-2 on AcBSA) was significantly higher in TBI than non-TBI specimens (non-TBI:
n=>5, TBI: n=28, g). No difference was found on stratifying TBI patients for tSAH (no tSAH: n= 11, tSAH: n=17, h) and/or pupil
reactivity (both reactive: n= 17, none/one reactive: n= 11, i). Data are reported as box plots and 10th and 90th percentiles. Mann—
Whitney test: *p < 0.05; *p < 0.01.
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Figure 5. MASP-3 is higher in TBI than in non-TBI human cerebral tissues. Representative images of MASP-3 (red), vessels (IB4,
green) and nuclei (Hoechst, blue) in early and late removed contusions (a, b) and in non-TBI cerebral tissue (c). Single xy plane views
with z projection (merge images) and 3D renderings indicate that MASP-3 is present in cerebral vessels both in early (a) and late (b)
contusions. A weak positive signal was detected also in non-TBI (c) cerebral tissues. Images are representative of at least two
specimens per group. Scale bars 20 um, thicks in 3D renderings 10 pm. Homogenates from contusions had higher MASP-3 levels than
non-TBI tissues (non-TBI: n=4, TBI: n =28, d). Data are reported as box plots and 10th and 90th percentiles. Mann—Whitney:
*#p < 0.001. No difference was found on stratifying TBI patients for tSAH (no tSAH: n=1 I, tSAH: n= 17, e) and/or pupil reactivity
(both reactive: n= 17, none/one reactive: n= 11, f). Data are reported as box plots and [0th and 90th percentiles. Mann—Whitney

test: ns.

alternative pathway; (2) the lectin pathway components
are persistently present, up to five days post-TBI; (3)
the levels of MASP-2, a key enzyme driving lectin path-
way activation, are increased and significantly asso-
ciated with TBI severity.

This study stems from our previous findings that the
lectin pathway of complement system activation is impli-
cated in experimental TBI and that its functional inhib-
ition is protective.'*'* In fact mice genetically deficient
for MBL, one of the activators of the lectin pathway,

show attenuated sensorimotor deficits after TBL.'* In
addition, administration of a polymannosylated com-
pound, which inhibits MBL, has similar protective prop-
erties thus indicating that the lectin pathway is
potentially eligible for drug targeting in TBI."?

In clinical TBI, circulating lectin pathway initiators
appear to be associated with injury severity and can
predict unfavorable outcome in patients.>'** Thus,
high serum levels of MBL or low serum levels of fico-
lin-3 appear to be associated with injury severity and
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Figure 6. C3 active fragments and TCC are present and increased in TBlI human contusions. Representative images of C3 active
fragments (iC3b/C3b, red) or terminal complement complex (TCC, red), vessels (IB4, green) and nuclei (Hoechst, blue) in the
contusional tissues removed early (a, ) or late (b, d) after TBI and in non-TBI tissues (e, f). Single xy plane views with z projections
(merge images) and 3D renderings are presented. C3 active fragments are present inside and outside cerebral vessels both in early (a)
and late (b) samples, while they are located mainly inside cerebral vessels and are weaker in non-TBI brain tissue (e). TCC is present
extravascularly in TBI contused tissues where it localizes around cell bodies (white arrows in ¢, d), which are not observed in non-TBI
tissues (f). Images are representative of at least two specimens per group. Scale bars 20 um, thicks in 3D renderings 10 pm.
Homogenates from contusions had higher levels of C3 fragments and TCC than non-TBI brain tissues (non-TBl: n=4, TBI: n =28, g, h).
Data are reported as box plots and 10th and 90th percentiles. Mann—Whitney: *p < 0.05; **p < 0.001.
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act as independent predictors of outcome. However,
since circulating complement components may be
subject to rapid turnover and consumption due to the
activation of pathway, affecting the overall circulating
concentrations, there is still no clear picture on the role
of the lectin pathway in clinical TBI. Here we report
MBL in TBI contusions — with no difference between
those removed within 12 h or from >12h until five days
after TBI — thus expanding our previous observa-
tions.'* In addition, for the first time we document
the presence of ficolin-1, ficolin-2 and ficolin-3 in
contused brains. Unlike MBL whose presence is limited
to TBI contusions, ficolins are also seen in non-TBI
specimens. Ficolin-1 can be clearly observed near the
vasculature and in brain parenchyma, while ficolin-2
and -3 are scarcely present and mostly located in prox-
imity of brain vessels. Again, unlike MBL, ficolins
appear to extravasate more than MBL in TBI patients.
This different behavior may possibly be due to:
(1) MBL’s ability to bind to epitopes expressed on acti-
vated endothelial cells which are not recognized by fico-
lins; (2) larger MBL circulating complexes which thus
have less access to the brain parenchyma through the
injured BBB; (3) lower circulating levels of MBL than
ficolins. Overall, all lectin pathway initiators appear to
be present in the brain parenchyma in the vicinity of
vessels thus suggesting that the blood compartment is a
major source, although a contribution of direct brain
cell synthesis cannot be excluded.

Quantification of the levels of lectin pathway acti-
vators in contusion homogenates showed that MBL,
ficolin-2 and ficolin-3 are significantly higher in TBI
patients than individuals with no TBI. The lower fico-
lin-3 circulating levels after TBI reported by Pan et al.>’
may depend on protein consumption due to brain accu-
mulation, as shown here, contributing to full comple-
ment activation at the site of cerebral contusion, as
indicated by the central presence of iC3b/C3b and
TCC. Unlike the other initiators, ficolin-1 does not
appear to be a specific marker for TBI. Differently
from ficolin-2 and -3 that are mainly produced by the
liver and lung and circulate in the bloodstream, ficolin-
1 is primarily synthesized and presented on the surface
of circulating monocytes and neutrophils, promoting
their adhesion, aggregation and migration.”* Thus,
the ficolin-1 in our specimens may be triggered by
inflammatory mechanisms related to immune cell
recruitment and leukocyte activation, similarly to
what has been reported in stroke patients.*?

Lectin pathway initiators circulate in blood associated
with serine proteases (MASPs). On binding their targets,
MASPs become activated, promoting downstream com-
plement activation. Of the three known MASPs, MASP-
2 is the key enzyme driving lectin pathway activation in
acute brain injury.** MASP-2 is present in TBI

specimens, where it appears to be located both in par-
enchyma and near the vessels, as well as in non-TBI
specimens, where its location is mainly on vessels.
MASP-2 tissue distribution mirrors that of C3 fragments
and TCC, suggesting that local complement activation
comes from the lectin pathway. Using ELISA to meas-
ure MASP-2 deposition on mannans (the MBL pre-
ferred ligand) or on acBSA (the ficolins’ preferred
ligand), we show that ficolin-driven MASP-2 deposition
is significantly higher in TBI vs. non-TBI homogenates.
Importantly, MBL-driven MASP-2 deposition is
increased in TBI patients with more severe trauma, indi-
cated by abnormal pupil reactivity and/or traumatic
SAH.*** These factors are strong predictors of worse
outcome in a well-validated prognostic model.****
We did not detect any significant association between
lectin pathway protein cerebral levels and outcome six
months after TBI. This might be due to the limited
number of cases with favorable outcome, which can be
explained by a possible selection bias. In fact, we
included only patients with large mass lesions and
related extended brain injury, needing lifesaving neuro-
surgery. The cohort analyzed also had a high median age
(58) and rate of pupillary abnormality (39%) — two
strong predictors of poor outcome.*** In fact, 78% of
our patients had an unfavorable outcome (GOS: 1-3) six
months after TBL. A recent study by Osthoff et al.*> on a
younger and less severe cohort of TBI patients reported
that circulating MASP-2 levels were associated with
poor outcome at 90 days, thus lending further support
to the hypothesis of the lectin pathway, particular by
MASP-2, as involved in the pathology. The molecular
basis of the detrimental effects of the MBL:MASP-2
complex still needs to be fully elucidated. Data in experi-
mental models of stroke helped identify several down-
stream vascular effects associated with the complex
activation.*® Similar mechanisms might be involved in
the traumatic pericore tissue, an area subjected to post-
injury hypoxia.*’

The exact physiological role of MASP-3 is still largely
unknown. This protease circulates in association with
lectin pathway initiators, but is required for alternative
pathway activation, acting as a major activator of pro-
FD.** We report high levels of MASP-3 in TBI com-
pared to non-TBI homogenates, implying a possible role
for the alternative pathway too in TBI pathophysiology,
as reported in experimental models.>*>!

Downstream in the complement cascade, C3 conver-
tase cleaves C3, forming C3 active fragments. Previous
studies reported higher serum and cerebral spinal fluid
levels of total C3 (complete protein and fragments) in
TBI than in non-TBI patients.’>> C3 fragments were
reported on presumed neuronal cell surfaces in human
contusions.® Here, using an antibody specific for C3
activation fragments, we found iC3b/C3b fragments
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in TBI contusions located both close to brain vessels and
in the parenchyma, and more than non-TBI specimens.
Immediately after the impact and persistently up to five
days, C3 products are present, and may opsonize cells
and trigger the subsequent phagocytosis of damaged
cells. Although local C3 synthesis may contribute to
the presence of C3 in the brain tissue, C3 cleavage prod-
ucts may rapidly gain access to the brain parenchyma
through a damaged BBB. In non-TBI specimens, where
the BBB is expected to be intact, iC3b/C3b fragments are
located only inside cerebral vessels, and to a lesser extent
than in contused cerebral tissues.

The formation of TCC, the complex that damages
cell membranes causing their final lysis, is the final step
of the complement cascade. An early study by
Bellander et al.® reported increased immunoreactivity
for TCC in contused human tissues. Using immuno-
assay and confocal analysis, we found higher levels of
TCC in cerebral homogenates from TBI compared to
non-TBI patients. No difference in TCC staining was
found between human contusions removed early or late
after TBI, indicating strong and persistent activation of
the terminal pathway of the complement cascade after
the injury. TCC appeared to surround cellular bodies,
possibly neurons, one of the main targets of comple-
ment after TBI.®

The non-TBI group included a sample with outlier
values for iC3b/C3b and TCC levels which were
excluded from the statistical analysis. Interestingly,
this was a tumor biopsy (patient: Tumor 2) which
had low MASP-2 and high MASP-3 levels, in line
with high expression of alternative pathway compo-
nents and specific induction of the alternative pathway
reported in glioma cell lines.”*>> The non-TBI controls
might fail to represent the healthy population, but they
allowed us to define a specific pattern of complement
activation in TBI. A possible limitation of using non-
TBI autoptic tissues is the occurrence of post mortem
autolysis. However, the neuronal structures (targets of
iC3b/C3b and TCC) are known to be preserved till 48 h
post mortem.>®

Clinical and experimental data indicate that the
complement system is implicated in post-injury inflam-
mation and neuropathology after TBL.® '%141317 Of the
three activation pathways, there is no evidence for a
role of the classical pathway,'” while the alternative
one, in addition to the lectin pathway, may also be
involved in TBI neuropathology. This study docu-
mented the presence of the lectin pathway components
in human cerebral contused tissue. Once in the brain
parenchyma, the lectin pathway drives full complement
activation which may lead to neuroinflammation and
tissue injury.?”**’ Since the lectin pathway after TBI is
associated with injury severity, is persistent and drug-
gable — as indicated by experimental data'*** — this

offers an opportunity for the development of pharma-
cological interventions.
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