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Power enhancement of 
heat engines via correlated 
thermalization in a three-level 
“working fluid”
David Gelbwaser-Klimovsky1,2,*, Wolfgang Niedenzu2,*, Paul Brumer3 & Gershon Kurizki2

We explore means of maximizing the power output of a heat engine based on a periodically-driven 
quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal 
power output of such a heat engine whose “working fluid” is a degenerate V-type three-level 
system is that generated by two independent two-level systems. Hence, level degeneracy is a 
thermodynamic resource that may effectively double the power output. The efficiency, however, is 
not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. 
The existence of two thermalization pathways sharing a common ground state suffices for power 
enhancement.

The rapport between quantum mechanics and thermodynamics is still an open problem1,2. Its tech-
nological and fundamental implications have motivated numerous proposals of heat engines based on 
quantum systems3–22. Two main issues underlie such proposals: What are the bounds on the performance 
of quantum heat engines, i.e., their power output and efficiency1,2,23–26, and what thermodynamic proper-
ties (or resources) of quantum systems determine these bounds27–31? A pioneering approach addressing 
these issues32,33 has suggested that steady-state coherence34–36 between the levels of a quantum system is 
a thermodynamic resource.

Here we wish to elucidate these issues from first principles. To this end we resort to a fully solvable 
model of a steady-state, continuous-cycle, heat engine that is based on a periodically-driven quantum 
system (“working fluid”) constantly coupled to hot and cold baths15,21. Consistency with the first and sec-
ond laws of thermodynamics is enforced in this theory by the construction of appropriate heat currents 
flowing between the baths via the system21,37.

To account for the possible rôle of coherences we extend this theory, hitherto applied to a two-level 
system (TLS) working fluid15,21, to an analogous heat engine based on a V-type three-level system as 
depicted in Fig. 1a. We have chosen a V-system for being the simplest working fluid wherein coherences 
may persist at steady state, and possibly affect the engine performance. The performance of an engine 
based on such a V-system is compared to a TLS-based heat engine (cf. Fig.  1b), where steady-state 
coherence is absent. We show that the power output of the V-system may be boosted by up to a factor 
of 2 compared to its TLS counterpart. This boost is associated with correlations that arise between the 
possible thermalization channels in the V-system that constitute a hitherto unexploited thermodynamic 
resource. Such correlations exist even in the absence of coherence, because the degenerate excited states 
exchange populations with each other via their common ground state. However, steady-state coherence 
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does not affect the efficiency, nor does maximal power boost necessarily require coherence, since ther-
malization correlations may be incoherent.

Qubit-based heat machine revisited
A continuous-cycle quantum heat machine based on a single qubit (TLS) as working fluid has been stud-
ied in ref. 21. This TLS is simultaneously and permanently coupled to cold and hot heat baths, while its 
transition energy is periodically modulated by some external field according to the Hamiltonian

ω ω σ( ) = + ( ) . ( )ħH t t1
2

[ ] 1zS 0

This external field plays the rôle of a piston and allows for work extraction or supply. The dipolar cou-
pling of the atom to the cold and hot baths in the rotating-wave approximation reads38

∑ σ σ= ( ⊗ ⋅ + ⊗ ⋅ ),
( )∈ ,

+ −
†H d B d B
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with the transition-dipole moment d and the Pauli operator σ =+ e g:  describing the excitation of the 
atom and its adjoint σ =− g e:  describing de-excitation.

As detailed in37 the periodicity of the modulation implies that the dynamics of the system’s density 
matrix in the interaction picture is governed by a linear combination of “sub-bath” Lindblad operators, 
i.e., operators associated with the two baths i ∈  {c, h}, evaluated at the harmonic (Floquet) sidebands 
q =  0, ± 1, ± 2,… of the modulation frequency Ω . The master equation in the weak-coupling limit then 
reads
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with the Liouvillian superoperators of the (i, q) “sub-baths”
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Here P(q) is the weight of the qth harmonic (determined by the modulation form)37 and the dissipator 
reads  ρ ρ ρ( , ) = − −a b a b ba ba: 2  for any system operators a, b. The factors Gi(± ω) are the coupling 
spectra to the ith bath and depend on the bath autocorrelation functions ∫ ω ( ) ( )ω

−∞

∞
e B t Bd 0i t

i
k

i
l , 

where ( )B ti
k  denotes the kth component of Bi(t) in the interaction picture. These spectra fulfill the KMS 

condition39 ω ω(− ) = ( )β ω− ħG e Gi i
i , where for a bosonic bath, ω γ ω ω( ) = ( )( ( ) + )G n 1i i i , γi(ω) being 

the frequency-dependent transition rate induced by the ith bath and ω( )ni  denoting the corresponding 
number of thermal quanta at inverse temperature βi =  1/kBTi.

The heat currents between the cold and the hot baths and the TLS evaluate to21
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and the power (time derivative of the work) according to the first law, reads

Figure 1.  (a) A heat engine based on a degenerate V-type three-level system whose upper levels undergo 
periodic modulation while simultaneously interacting with a cold and a hot bath. The ground and excited 
states are incoherently populated by absorption of quanta from and (spontaneous and stimulated) emission 
to these baths (dotted blue: cold bath, solid red: hot bath). (b) Comparison to an analogous engine based on 
two independent two-level systems subject to the same environment and modulation.
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Here ρ ρ= /w: ee gg
ss ss

 is the ratio between the excited- and the ground-state steady-state populations of the 
qubit. We here follow the convention that negative power means work extraction (operation as an 
engine).

This conceptually simple heat machine can be operated “on demand” as a heat engine (the extracted 
work is manifested by a coherent amplification of the external field) or as a refrigerator, depending on 
the modulation rate Ω . The machine behaves as an engine if the rate is below some critical value, whereas 
above this value it acts as a refrigerator21.

A detailed analysis of the heat currents (5) and the power (6) reveals that at the critical rate the 
switch-over from the engine to the refrigeration mode ensures compatibility with the second law—this 
is precisely the rate at which the engine reaches Carnot efficiency and yields vanishing power. Strikingly, 
the engine’s efficiency at maximum power can surpass the Curzon–Ahlborn efficiency40 under certain 
conditions on the bath spectra21.

This heat machine operates at the steady-state (limit cycle) of the corresponding dissipative time 
evolution of the working fluid. Naturally, coherence is absent in the system’s steady state. In order to 
study the effects of coherences, we now extend this TLS-based model to a degenerate three-level system.

Steady-state treatment of V-system heat machines.  We consider a V-type three-level system 
with degenerate excited states 1  and 2 , ground state 0  and transition frequency ω0. To operate a heat 
machine, we simultaneously connect this system to two (hot and cold) baths, which induce transitions 
↔0 1  and ↔0 2 . The “piston” periodically modulates both excited states21, which results in the 

same periodic transition frequency ω0 +  ω(t) as for a TLS (see Eq. 1), with ( )ω ω+ = ( )π
Ω

t t2 , where Ω  
denotes the modulation rate. The dipolar system–bath interaction is described by the following generic 
Hamiltonian [a generalization of the case presented in ref.  39 and in Eq. (2)] in the rotating-wave 
approximation,

( )∑ ∑ σ σ= ⊗ ⋅ + ⊗ ⋅ ,
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where σ =+ j: 0j  and σ =− j: 0j  are the excitation (de-excitation) Pauli operators for the jth transi-
tion, dj is the transition dipole between the excited state j  and the ground state 0 , and Bi is the hot (h) 
or cold (c) bath operator. For simplicity we here restrict the treatment to real dipoles of equal strength, 
= =d d d: 1 2 . These transition dipoles need not be parallel (aligned), as discussed below.
Based on the interaction Hamiltonian (7), the Floquet-expanded master equation in the weak-coupling 

limit has the same form as (3),
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but the Liouvillian superoperators for the degenerate V-type three-level system, coupled to the (i, q) 
“sub-baths” are now generalizations of (4) (see supplemental material),
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Here the dissipators  σ σ( , )− +
j j  and  σ σ( , )+ −

j j  describe emission and absorption involving separate 
transitions ( ↔1 0  and ↔2 0 ) via their common ground state, and hence population transfer 
between 1  and 2 . These processes give rise to population correlations of the two excited states. By con-
trast,  σ σ( , )− +

′≠j j j  and  σ σ( , )+ −
′≠j j j  describe cross-correlations between the two transitions, allowing 

for bath-induced quanta exchange between the two excited states and thereby generating coherences 
between these states. Thus, the effect of the degeneracy is to mix the diagonal and the off-diagonal terms, 
via the cross-correlations in Eq. (9). We note that the evolution of this degenerate system is governed by 
a well-established master equation (see supplemental material)34,35,39,41–43.

A key parameter in the ensuing analysis is the dipole-alignment factor
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Analysis
The energy that is continuously exchanged between the three-level system and the heat baths is related, 
according to the first law, to the power (the rate of work W extracted by the piston) by44

= −( + ). ( )W J J 11c h

This expression involves the sum of heat currents from both baths, which can be derived from the 
dynamical version of the second law2. Their explicit expression for the ith bath (i ∈  {c, h}) is = ∑J Ji q i

q, 
where the heat current Ji

q for the qth harmonic “sub-bath” ( ∈q ) in Eq. (9) reads2,37
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Here, ρi
q denotes the local steady state for a single heat bath at temperature Ti evaluated at the sideband 

ω0 +  qΩ , i.e.,  ρ = 0i
q

i
q . We stress that the global steady state ρss (fulfilling ρ = 0ss ) ensures the correct 

description of heat transport in this correlated three-state system, avoiding inconsistencies with the sec-
ond law due to the improper use of local variables, as discussed in45. Since every Liouvillian i

q in the 
master equation (8) has the same functional dependence (9) on the atomic operators, the correct global 
solution can be directly obtained from the local one.

We here search for the steady-state solution of the master equation (8) and the resulting expressions 
for Jh(c). At this point we still do not know the bound for these currents and its dependence on alignment. 
These heat currents are therefore compared to the corresponding expressions (5)–(6) for a two-level 
system (TLS) with the same transition-dipole strength d and modulated transition frequency ω0 +  ω(t)21.

The master equation (8) can be reduced to an analytically solvable inhomogeneous system of linear 
differential equations

= + ( )
x x b 13

for the vector of matrix elements

ρ ρ ρ ρ= ( , , , ) . ( )x: 14T
21 12 00 22

This system of ordinary differential equations (ODEs), where the matrix  and the vector b are defined 
in Eqs. (31) and (32) in the Methods section, describes two very distinct dynamical regimes correspond-
ing to aligned and misaligned transition dipoles, as detailed in what follows.

(i) Let us first consider the very general steady-state regime obtained for misaligned transition dipoles, 
∈ , )p [0 1 . Note that this regime also includes the case of orthogonal dipoles ( =p 0). The three-level 

system then thermalizes to the diagonal steady state (without coherences)
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with an effective inverse temperature βeff defined by the Boltzmann factor
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This effective temperature determines the steady-state populations of the periodically modulated system 
coupled to both baths. We can control βeff by engineering the modulation Floquet coefficients P(q) that 
determine the overlap of the sideband peaks (q =  ± 1, ± 2,…) at the frequency harmonics ω0 +  qΩ  with 
the response spectra Gi(ω) of the two baths, as sketched in Fig. 2a.

Upon computing the heat currents (12), we find that Jh, Jc and the power W  are modified (relative to 
their TLS counterparts in Eqs. (5) and (6)21) by the same factor
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This means that the power enhancement relative to a TLS heat machine is determined by the ratio of the 
steady-state ground-state population ρ00

ss in the V-system to its TLS counterpart. Namely, in this fully 
thermalized incoherent regime the enhancement factor (18) only depends on the effective temperature 
(17).

(ii) For fully degenerate excited states we find that the coefficient matrix (31) of the ODE above is 
singular ( ( ) =det 0) for aligned dipole moments (p =  1). The same result holds for anti-parallel dipoles, 
which justifies the restriction of p to non-negative values. This singularity implies that an infinite number 
of steady-state solutions may exist. Indeed, in this regime the dynamics is constrained by the existence 
of a dark state ψd , for which

 ψ ψ = ( )0 19d d

 ψ ψ = ∀ , , ( )i q0 20i
q

d d

which renders the steady-state solution dependent on the initial conditions (in agreement with the 
expressions found for a single bath in refs. 34 and 46). The steady-state solution now depends on the 
overlap of the initial state ρ(0) with the non-dark states (i.e., the ground state 0  and the bright state ψb ) 
of the full Liouvillian  in Eqs. (8) and (9). The rôle of these states becomes apparent upon diagonalizing 
the steady-state solution, which yields the populations
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Figure 2.  (a) “Engineering” of the effective temperature Teff by controlling the weights of harmonic 
sidebands (via the modulation) in the two bath spectra. (b) Absolute value of the maximum power 
extraction (from bottom to top: TLS, non-aligned three-level system, aligned three-level system under 
optimal initial conditions) for Tc =  0.1Th. (c) Modulus ρ21

ss  of the steady-state coherence for parallel dipoles. 
Maximal power boost [occurring for zero initial dark-state population according to Eq. (26)] corresponds to 
relatively small steady-state coherences. The highest steady-state coherence is realized for a dark initial state, 
which yields zero power.
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denote the bright and dark states, respectively. Whilst the dark-state population cannot change, i.e., it is 
a constant of motion (consistent with the one obtained in35 for a single zero-temperature bath and exter-
nal driving), the bright and ground-state populations, ρbb and ρ00, respectively, thermalize. The same 
results hold for anti-parallel dipoles (p =  − 1) upon interchanging the dark and the bright states.

Proceeding as before in the non-aligned case, we find the power ratio

ρ

ρ
ρ ρ≡ = = ( ) + ( ) ≤ .

( )





W

W

J
J
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26
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i
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Hence, the power as well as the heat currents are enhanced in the aligned regime relative to their TLS 
counterparts by at most a factor of two, just as in the misaligned regime [Eq. (18)]. Yet, contrary to the 
latter, the ratio (26) does not depend on the bath spectra or the environmental temperatures, but solely 
on the initial populations of the non-dark states. Enhancement in Eq. (26) requires ρ ρ( ) + ( ) >0 0bb 00

1
2
, 

or, equivalently, ρ ψ ρ ψ( ) ≡ ( ) <0 0dd
ss

d d
1
2
, i.e., at least half of the initial-state population has to be 

non-dark. Maximal enhancement occurs when the initial state is amenable to full thermalization, i.e., it 
is non-dark.

For a given initial ground-state population ρ00(0), the states providing the maximum possible power 
boost are characterized by ρ ρ ρ ρ( ) = ( ) = ( ) = − ( )0 0 0 [1 0 ]11 22 21

1
2 00 . These are the states with the 

maximally allowed modulus of the ρ21(0) coherence (for a fixed ground-state population) and the correct 
phase. We have plotted the maximum power output under sinusoidal modulation for a TLS, a non-aligned, 
and an aligned V-system in Fig.  2b. The spectra are chosen as in ref. 21 such that only Gc(ω0) and 
Gh(ω0 +  Ω ) contribute (as sketched in Fig. 2a) and the modulation frequency has been tuned to the value 
maximizing the power output.

We stress that a non-dark initial state does not correspond to a steady state with maximal coherence 
ρ21

ss  when rotating Eq. (21) back to the original basis spanned by , ,{ 0 1 2 }. In fact, the coherence 
ρ21

ss  is maximized for an initial dark state, which does not exchange energy with the baths and gives zero 
power, see Fig. 2c.

It is natural to ask: How much initial overlap with the dark state is allowed such that the aligned 
configuration still outperforms its misaligned counterpart? The answer is, for

ψ ρ ψ( ) < ( + ) . ( )β ω −ħe0 2 27d d
1eff 0

The value on the r.h.s. is the initial overlap for which the steady-state coherences vanish in the aligned 
case (see Fig. 2c).

So far we have made the comparison between the heat currents and the power, respectively, obtained 
for a three-level system relative to a two-level system. We now strive for a direct comparison of the 
enhancement factors (18) and (26) for the misaligned (p <  1) and aligned (p =  1) regimes. Their ratio is 
determined by the respective steady-state populations in the ground state, which is directly related to the 
power or heat-current ratio via

ρ
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1

1

1
00
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00
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We consider this ratio in two limiting cases (assuming no initial overlap with the dark state in the aligned 
case):

(i) As βeff →  0 (high effective temperature) the thermalized state corresponds to equipartition amongst 
the levels. For parallel dipoles, the thermalized three-level system behaves as a TLS (formed by the 
ground and the bright states) with an effective dipolar transition enhanced by the number of thermali-
zation pathways, in this case two. Hence, in steady state half of the population is found in level 0  (if the 
initial state had no dark component). For misaligned dipoles, by contrast, thermal equilibrium corre-
sponds to the equipartition amongst the three levels 1 , 2  and 0 . Consequently, only a third of the 
population is found in the ground state. The 3/2 ratio of the respective ground-state populations accord-
ing to Eq. (28) explains the ratio of the maximal enhancement factors in the aligned and misaligned 
regimes at high Teff.

(ii) For large βeff, i.e., low Teff, however, Eq. (28) implies that the maximal enhancement for misaligned 
dipoles coincides with its counterpart for aligned dipoles (the latter is maximized for an initial state 
perpendicular to the dark state), since only 0  is then appreciably populated in either regime.

Both regimes still retain the maximal enhancement factor of 2, stemming from their double thermal-
ization pathways instead of one for a genuine TLS. We have summarized these results in Fig. 3. A ben-
eficial influence of alignment on power output is only expected for effective temperatures  ω /ħk T 10B eff 0 . 
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For optical transitions this corresponds to a few hundred Kelvin, whereas for microwave transitions the 
benefit of alignment is already expected for a few hundred milli-Kelvin.

Realization considerations
V-systems with degenerate upper states are commonly found in atoms free of hyperfine interactions,  
e.g., mercury (Hg) or hydrogen (H). In particular, the three transitions 
= , = , = ± , ↔ = , = , =n l m n l m2 1 1 0 1 0 0  in such atoms are degenerate but have orthogonal 

transition dipoles. However, even such misalignment (orthogonality) does not hamper the V-system 
power boost at low Teff (see above). The simultaneous coupling of such systems to hot and cold baths 
with controlled spectra can realize the misaligned case.

The case of degenerate upper states and parallel transition dipoles (which, as discussed, is beneficial 
for power enhancement only at high Teff), is obtainable only for transitions between a lower state with 
angular momentum l and magnetic number m and degenerate upper states with the same m46. In atomic 
degenerate V-systems such parallel transition dipoles are forbidden by selection rules. However, dressed 
states stemming from driven Λ -systems may effectively realize such parallel V-systems46 (see Fig.  4). 
Unfortunately, if we examine this system more closely, we see that it presents several difficulties: (i) The 
resulting transitions between the excited state doublet

( )








= ϑ − ϑ

ϑ ϑ









 ( )

g
e

1
2

cos sin
sin cos 29

and the ground state, where ϑ is the mixing angle determined by the Rabi frequency Ω R of the splitting 
field46, occur at rates that scale with γ γ= ϑsin1

2  and γ γ= ϑcos2
2 , where γ is the decay rate of the 

bare excited state e . For maximal splitting (ϑ =  π/4), γ1 =  γ2 =  γ/2. Hence the power boost is canceled 

Figure 3.  Limiting regimes of the heat currents for high (left panel) and low (right panel) effective 
temperatures. In case of parallel dipoles (p =  1) we assume an initial state orthogonal to the dark state to 
ensure maximal thermalization capability. The heat currents are related to the steady-state population of the 
ground state via Eq. (28).

Figure 4.  Scheme suggested in ref. 46. The ↔g e  transition in a Λ -system is off-resonantly driven (left) 
to yield an effective nearly-degenerate V-system formed by the dressed states 1  and 2  (right) with parallel 
transition-dipole momentes.
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by the reduction of the decay rate. (ii) In order to periodically modulate the transition frequency, we 
need an auxiliary field that induces an ac Stark shift only on the ground state. (iii) The dressed states are 
non-degenerate, which limits our results to time scales shorter than the inverse level splitting ∝Ω−R

1. The 
latter, however, can be longer than the experimental time scale.

Molecules may be a more promising possibility due to their rich level structure involving rotational 
and vibrational degrees of freedom, as discussed in (See supplementary information in ref. 47).

Discussion
Regardless of the transition-dipole misalignment or alignment, the maximally enhanced power output of 
a degenerate V-system heat engine is that generated by two independent two-level systems. The key to 
enhancement is the system to have degenerate upper levels sharing a common ground state. Hence, level 
degeneracy is found to be a thermodynamic resource that may effectively boost the power output. Yet, it 
does not affect the efficiency: Since the same modifying factors [Eqs. (18) and (26)] are obtained for the 
heat currents and the power, the efficiency

η = − / ( )W J: 30h

of the degenerate three-level heat machine is the same as for a two-level system. Thus, the same universal 
dependence of the efficiency on the modulation rate found in ref. 21 holds for the present system. In 
particular, as the heat currents (12) (by construction) fulfill the second and the first laws, they adhere 
to the Carnot bound26.

As shown in refs. 28 and 29, the efficiency of a continuous-cycle heat engine based on a TLS cou-
pled to a quantized harmonic-oscillator “piston” is determined by the effective temperature and 
entropy-production rate of the piston: This efficiency may surpass the standard Carnot bound over many 
cycles if the piston is initially prepared in a small-amplitude coherent state. It is therefore possible that 
the extension of this model to a V-system may allow not only for a power boost but also an efficiency 
higher than the Carnot bound.

At effective temperatures significantly larger than the level spacing, the aligned-dipoles regime, where 
steady-state coherences arise, can outperform all misaligned cases. On the other hand, as discussed here, 
aligned transition dipoles can only be realized in a field-dressed atom, but such dressing divides the 
transition-dipole strength of the bare atom between two dressed-state transitions, and thereby cancels 
the power boost of the dressed-atom machine compared to its bare-atom counterpart.

This limitation of field-dressed atoms prompts the need for an alternative realization of aligned 
dipoles, free of such limitations, e.g., in molecules. Let us, however, assume that such a scheme can be 
realized and focus on conditions under which the aligned regime is advantageous in terms of its power 
boost compared to a TLS. We may not attribute the power enhancement to steady-state (or initial) coher-
ences between the excited states but rather to the ability of the initial state to completely thermalize. We 
therefore conclude that (initially induced or steady-state) coherences are not an essential asset in the con-
sidered three-level-based heat machine. The existence of two thermalization pathways sharing a common 
ground state, regardless of whether they are coherent or incoherent, suffices for power enhancement.

Methods
The coefficients of the ODE = +x x b for x: =  (ρ21, ρ12, ρ00, ρ22)T read
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Note that the coherences between the ground and the excited states (ρ10 and ρ20) do not appear as they 
follow a decoupled dynamics (leading to vanishing steady-state values).
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