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Abstract: Syndromic surveillance data were used to estimate the direct impact of air pollution
on healthcare-seeking behaviour, between 1 April 2012 and 31 December 2017. A difference-in-
differences approach was used to control for spatial and temporal variations that were not due to air
pollution and a meta-analysis was conducted to combine estimates from different pollution periods.
Significant increases were found in general practitioner (GP) out-of-hours consultations, including
a 98% increase (2–386, 95% confidence interval) in acute bronchitis and a 16% (3–30) increase in
National Health Service (NHS) 111 calls for eye problems. However, the numbers involved are small;
for instance, roughly one extra acute bronchitis consultation in a local authority on a day when air
quality is poor. These results provide additional information for healthcare planners on the impacts
of localised poor air quality. However, further work is required to identify the separate impact of
different pollutants.

Keywords: public health; epidemiology; health burden; air pollution; syndromic surveillance

1. Introduction

Air pollution is a major cause of health problems across the world [1,2]. In addition
to increased mortality, air pollution can increase morbidity with a range of symptoms,
including: cough and wheezing [3], childhood asthma [4,5], and cardiopulmonary [6] and
ischaemic heart disease [7]. Indeed, one study in Washington DC found that increases in
ozone (O3) were associated with increased healthcare utilisation but not hospitalisations,
whilst another study identified impacts on educational attainment, suggesting that moni-
toring just mortality or hospital admissions will underestimate the burden of impact [8,9].
Therefore, periods of poor air quality (when pollutant levels are increased) will lead to an
increased demand for healthcare services [10–12].

Many countries routinely monitor air quality for the presence of pollutants and pop-
ulation health so that they can manage healthcare demand and take appropriate action,
for example, communicating with at-risk groups [13]. The impact of infectious disease on
population health is monitored through traditional laboratory surveillance and syndromic
surveillance systems. Syndromic surveillance captures changes in symptom trends through
monitoring electronic health records or other datasets [14]. Whilst laboratory surveillance
is essential for identifying pathogens responsible for seasonal outbreaks of disease at the
national, regional, and local level, syndromic surveillance can also monitor impacts on
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public health caused by environmental factors, such as air pollution [15–17]. However,
it is unclear whether temporary increases in healthcare demand caused by localised air
pollution can be detected by existing syndromic systems.

In this study, daily air pollutant and syndromic surveillance data were collected
in England, United Kingdom (UK), to estimate the impact of periods of local poor air
quality on healthcare demand. Furthermore, confounding factors that would bias estimates,
including public holidays or deprivation, were accounted for. By using routine monitoring
data, this research has direct relevance to surveillance systems, identifying which syndromic
indicators are the most useful for the routine surveillance of air pollution.

2. Method

Data on air pollution were obtained from UK Air (uk-air.defra.gov.uk, accessed on
11 May 2019) for the following air pollutants: sulphur dioxide (SO2), nitrogen dioxide
(NO2), ozone (O3), and particulate matter at 2.5 and 10 microns (PM2.5 and PM10). Daily
data were collected between 1 April 2012 and 31 December 2017, from 96 English monitoring
sites, covering 67 upper-tier local authorities (UTLAs) (England has 152 UTLAs, ranging in
size from less than 100,000 to over 1 million population). These five pollutants are regularly
monitored with daily forecasts to provide actions and health advice when levels are high
enough to constitute a threat [18]. There are established daily air quality index (DAQI)
thresholds in the UK describing low, moderate, high, or very high levels of pollutants [19].
For this study a location was defined as ‘exposed’ to an air pollutant if a monitoring site
within the upper-tier local authority (UTLA) had recorded daily levels above the moderate
threshold. By contrast a UTLA was labelled as a control if all sites in the authority had
recorded daily levels below the moderate threshold with no missing data for any pollutant.
The moderate DAQI threshold (break points) was taken as the boundary for exposure as
this complies with existing recommendations for modifying behaviour for at-risk groups
to protect from the health threat of air pollution. Therefore, these results will have direct
relevance to current public health forecasting practice. A period of exposure was defined
as having at least one day when pollutants were at a moderate or higher level and at least
seven days prior to exposure when levels were consistently below the moderate threshold.

Syndromic data were obtained from three national Public Health England syndromic
surveillance systems, including family doctor, known as general practitioners (GPs) in
the UK, consultations (in hours and out of hours with unscheduled care), and calls to
a National Health Service (NHS) telephone helpline (NHS 111) [20] Harcourt, 2012 #11
Harcourt, 2016 #846. Existing syndromic indicators which were routinely monitored in
each system were selected based on expert clinical and epidemiological knowledge of those
indicators which may be sensitive to air pollution, including: GP consultations for stroke,
chest pain, eye irritation, cardiac problems, acute bronchitis, acute presenting asthma,
difficulty breathing, pharyngitis, conjunctivitis, or allergic rhinitis; also, NHS 111 calls for
sore throat, eye problems, difficulty breathing, and cough. In addition, as a sensitivity
analysis one gastrointestinal indicator was included from each system (gastroenteritis from
GP systems and 111 calls for diarrhoea), which should not be affected by air pollution.

To estimate the direct effects of air pollution on health indicators it was necessary to
compare with controls where high levels of air pollution were not present. Controls can
either be defined spatially, as other UTLAs during the same period that are not exposed,
or as the same exposed UTLAs at different time periods (when not exposed). However,
syndromic indicators may vary systematically between different locations and rates can
change over time due to reasons other than air pollution. Therefore, in this study, a
‘difference-in-differences’ (DiD) method was applied to estimate and account for separately
spatial and temporal effects and, thus, enable a direct estimate of the impact of air pollution.
For each ‘period of exposure’ a UTLA was defined as a control if all its monitoring sites
had levels below the moderate threshold, with no missing data either during the exposure
period or for the 7 days before. The advantage of the DiD method is in accounting for
spatial variables (e.g., deprivation) that cause differences between UTLAs which should
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not vary in the short term, and temporal variables (e.g., day of the week) that are likely
to have similar effects across all UTLAs. This is important as it simplifies the analysis,
particularly where variables are difficult to measure.

Each of the ‘periods of exposure’ was treated as a separate study, with regression
models used to estimate the direct impact of exposure to air pollution. Furthermore,
explanatory variables included lags of up to three days to allow for delays in their impact
on pollution or syndromic data. Lags were investigated using separate models to allow
for the possibility of a delay between exposure to pollution and presenting with health
problems. Regression was carried out in R using the MASS package [21], using a negative
binomial of syndromic count data with total system activity as an offset. Equation (1) shows
the general form for models:

yst = ln(Nst) + Est + Ls + Pt + Xst + Dt (1)

The suffix, s represents the spatial dimension (UTLA) and t the temporal dimension
(date). y is the daily count within the UTLA. N is the total activity in the syndromic
system. E represents exposure to air pollution and is 1 for exposed UTLAs during the
period of exposure, 0 otherwise. E gives the direct estimate for impact of air pollution.
L represents location, 1 for those UTLAs that experienced levels above the moderate
thresholds, 0 otherwise. L provides the estimate for differences between UTLAs that do not
vary over time. P is 1 during the exposure period and 0 for the 7 days prior. P represents
any temporal differences that are not due to air pollution. X is a matrix of other explanatory
variables, including lags of up to 3 days. D is a factor for each date, to allow for day of
week and other temporal effects.

Individual periods of exposure could be as short as one day and could involve a small
number of UTLAs being exposed. Low numbers of data points result in considerable
uncertainty for estimates of the direct effects of air pollution. Therefore, meta-analysis was
used to combine the estimates and reduce the overall uncertainty. For each syndromic
indicator, the estimates for each exposure period were combined to give a joint estimate
for the impact of air pollution that was more precise. Estimates for each exposure period
were inversely weighted by its standard deviation, thus, more weight was given to the
more precise estimates. Separate meta-estimates were created for different possible lags
between exposure and seeking healthcare as whilst it was not known whether lags would
be important, it was likely that the same delays would apply to each period. Meta-analysis
was appropriate for this study because, although different exposure periods would involve
different UTLAs as cases or controls, the methodology is the same in each case.

3. Results

To create a directed acyclic graph (DAG) for the analysis, expert opinion and pub-
lished literature were elicited to list many different factors that could have an impact on
either the level of air pollution in a UTLA or the incidence of healthcare-seeking behaviour.
These factors included socio-economic variables (e.g., deprivation), environmental factors
(e.g., weather and pollen), respiratory pathogens (e.g., influenza), and the potential impact
on healthcare-seeking behaviour from media reporting of pollution forecasts. A DAG
was created using these variables to describe the understanding of their causal relation-
ship (Figure 1). Many variables were considered unlikely to change in the short term,
between exposure periods and the preceding control period of 7 days, e.g., deprivation
or seasonality [22]. Therefore, these variables could be accounted for by measuring the
difference between case and control UTLAs, both before and during the exposure periods.
Additionally, some variables were likely to vary between the exposure period and during
the previous day’s control period, e.g., public holidays but have similar effects across all
UTLAs. Therefore, these variables could be accounted for by the estimates for the difference
between the exposure period and preceding days across all UTLAs. The main remain-
ing confounding factors potentially impacting on both pollution levels and syndromic
data (and differing across time and space) were weather and pollen [23,24]. Therefore,
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explanatory weather variables were included based on daily rainfall (mm), humidity (%),
and temperature (◦C). In addition, temperature extremes were considered an important
factor and, therefore, ‘temperature squared’ was included to allow for a more complex
relationship than a simple linear variable [22]. The potential confounding effects of pollen
and spores were accounted for by being included in the PM10 pollutants variable.

Figure 1. DAG to investigate impact of air pollution on GP consultations. Red boxes depict confound-
ing variables that affect both the exposure of air pollution and the outcome, GP consultations. Blue
boxes show variables that are competing exposures, affecting GP consultations but not pollution.

Pollutant data were available across all 2101 days included in the study, including over
193,000 site readings (Table 1). However, no readings were available where SO2 exceeded
the moderate threshold and NO2 reached the moderate threshold of 201 µg/m3 in only one
reading (Table 1).

It was not possible to calculate separate estimates for the impact of each type of
pollutant. Firstly, there were no examples of SO2 or NO2 pollution during the study period
that were above the moderate threshold. Secondly, periods with high PM10 pollution
were found to be coincidental with PM2.5. PM10 and PM2.5 have a strong correlation as
they are fractions of the same pollutant (often the same source), so high PM10 readings
will normally occur in parallel to high PM2.5 (and same for the reverse). Finally, because
one pollutant could act as a competing exposure when trying to estimate the impact of
another pollutant [22], a UTLA was only included as a control when estimating the impact
of O3 if corresponding data, confirming that its readings for particulate pollutants were
below the moderate threshold, were available. Unfortunately, eliminating the possibility of
one pollutant being a confounder when measuring another meant excluding a very high
proportion of the data. Figure 2 shows the daily readings for O3, with non-grey markers
showing data points that could be used to estimate the specific impact of O3. Whilst many
days are excluded because levels everywhere were below the moderate threshold, most
readings above the threshold could not be included because particulate levels might also be
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high in the same UTLA on the same day. Therefore, air pollution exposure was defined as a
day when the moderate DAQI was exceeded for any pollutant. Table A1 lists the exposure
periods and the number of UTLAs available for cases and controls. Further, 78 separate
exposure periods were identified with pollutant levels above moderate thresholds; however,
24 of these could not be used because of missing exposure data during the preceding 7-day
control period.

Table 1. Summary of pollutant data illustrating the threshold levels and the number of days when
these were exceeded during the study period (1 April 2012–31 December 2017).

Pollutant
Daily Air Quality Index (DAQI)

Max Value Recorded
Moderate High Very High

Lower threshold for DAQI
level (µg/m3)

NO2 201 401 601 201
O3 101 161 241 144

PM10 51 76 101 210
PM2.5 36 54 71 102
SO2 267 533 1065 73

Moderate High Very High All levels

Number of site readings within
DAQI band

NO2 1 0 0 193,098
O3 196 0 0 114,952

PM10 1109 98 7 83,888
PM2.5 2006 345 57 99,725
SO2 0 0 0 36,657

Number of unique days with a
reading within DAQI band

NO2 1 0 0 2101
O3 67 0 0 2101

PM10 215 32 6 2101
PM2.5 212 51 17 2101
SO2 0 0 0 2101

Pollutants: sulphur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and particulate matter at 2.5 and 10 microns
(PM2.5 and PM10).

Figure 2. Daily maximum readings for O3 by local authority.

Syndromic data were available for every day of the study period, including a variable
of ‘total activity’ for each surveillance system, which was used as a proxy for system cover-
age (as this can vary daily). Daily syndromic counts can vary considerably as underlying
incidence of syndromes varies, some indicators are more specific than others, and coverage
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can vary by UTLA. The smallest mean daily count was 0.2 for GP out-of-hours stroke con-
sultations and the highest 19.4 per 1000 registered patients for GP in-hours gastroenteritis
consultations (Table 2).

Table 2. Meta analysis results—estimate of rate ratios for direct effect of air pollution on syndromic
indicators. Results where lower 95% confidence interval is at least 1 are highlighted in bold.

System: Syndrome Lag (Days) Rate Ratio 95% Confidence Interval

GPOOH: acute bronchitis 0 1.98 1.02 3.86

GPOOH: Stroke 1 1.45 0.40 5.34

GPOOH: Eye irritation 4 1.35 1.01 1.80

GPOOH: chest pain 3 1.27 1.01 1.58

GPOOH: Cardiac 0 1.26 1.06 1.49

GPOOH: Asthma/Wheeze/DB 2 1.17 1.00 1.35

NHS 111: eye problems 0 1.16 1.03 1.30

GPOOH: Gastroenteritis 1 1.13 1.02 1.25

GPIHSS: allergic rhinitis 3 1.07 0.96 1.20

NHS 111: sore throat 1 1.07 0.97 1.19

GPIHSS: acute presenting asthma 2 1.06 0.95 1.17

NHS 111: diarrhoea 4 1.06 0.96 1.16

GPIHSS: pharyngitis or scarlet fever 3 1.04 0.98 1.10

NHS 111: cough 1 1.04 0.95 1.13

NHS 111: difficulty breathing 0 1.03 0.95 1.12

GPIHSS: gastroenteritis 4 1.02 0.98 1.07

GPIHSS: conjunctivitis 0 1.00 0.95 1.06
Syndromic Surveillance Systems: GP out-of-hours and unscheduled care (GPOOH), GP in hours (GPIHSS),
National Health Service telephone helpline (NHS 111).

Estimates for the direct impact of air pollution for individual exposure periods were
calculated and visualised using forest plots. There was a lot of uncertainty and the 95%
confidence intervals were wide. Figure 3 shows a forest plot for the individual estimates of
each exposure period on GP out-of-hours consultations for acute bronchitis (with a lag of
0 days). The meta-analysis estimate combining all periods has a much shorter confidence
interval, representing the greater certainty achieved by combining data from all periods.

The meta-analysis resulted in estimates for the rate ratio (RR) of the direct effect of air
pollution, which ranged from RR 0.55 (0.12–2.28) for same day GP out-of-hours (GPOOH)
stroke consultations, to RR 1.98 (1.02–3.86) for same day GP out-of-hours acute bronchitis
consultations. All confidence intervals in this study were calculated to be statistically
significant at a 95% level. Table 2 shows the lags with the highest estimates for each
indicator, with all lags available in Table A3. The highest RR was GPOOH acute bronchitis
with the next highest estimate GP out-of-hours stroke consultations at a 1-day lag (RR 1.45
[CI 0.40–5.34]; however, the uncertainty around GPOOH stroke estimates was very high
(Table 2). Statistically significant estimates were obtained for other GPOOH indicators,
including cardiac consultations (0-day lag); acute presenting asthma, wheeze, and difficulty
breathing problems (+2-day lag); chest pain (+3-day lag); and eye irritation (+4-day lag).
There was also a significant association between air pollution and NHS 111 calls for eye
problems at both 0- and +1-day lag. Estimates for the impact on GP in-hours consultations
were smaller and none of them were statistically significant at the 95% level.

Comparisons for the meta-analysis across all syndromes are shown visually in a Forest
plot, Figure 4. Whilst some of the highest effects were measured for GPOOH syndromes, the
sparse data resulted in much wider confidence intervals, as depicted by smaller box sizes.
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Figure 3. Forest plot showing estimates of rate ratio for the impact of air pollution on GP out-of-hours
acute bronchitis consultations. Dates are the first day of each exposure period. Larger boxes depict
more precise estimates which contribute more weight.

Figure 4. Forest plot of estimates for rate ratio of impact of air pollution on syndromic indicators
with a zero lag. Box size is proportional to estimate precision.
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4. Discussion

In this paper the direct impact of air pollution on the number of patients presenting
with a range of different symptoms was estimated. Many of the symptoms included in this
study (e.g., difficulty breathing and eye irritation) can have multiple aetiologies, including
infectious diseases and environmental factors other than air pollution, e.g., pollen and
spores. It is, therefore, important to try and disentangle the direct impact of air pollution
from other confounding variables to understand its contribution. Historically, researchers
built predictive models, including confounding variables, to assess the relative contribution
of air pollution. However, these predictive models are limited in their interpretation for
individual coefficients. For example, the impact of an increase in air pollution can only be
compared to the idealised, and potentially unrealistic, scenario where all other coefficients
are kept constant. Therefore, there has been a lot of interest in the development of causal
inference methods to provide estimates of the direct effects of air pollution [25]. The
approach used in this study was to use two causal inference techniques, DAGs and DiD.

One of the main problems in estimating the impact of poor air quality using healthcare
data is the number of other variables that may also trigger similar clinical presentations or
symptoms, for instance, seasonal influenza epidemics. Furthermore, seasonal and socio-
economic factors will result in temporal and spatial variations in syndromic data. Therefore,
DAGs [25] were used to identify variables that could bias the estimates for the impact of air
pollution. Using DAGs helps to formalise the assumptions behind a study and identify the
role of different variables. For instance, do variables affect both the exposure (air pollution)
and the outcome (syndromic data)? If so, they are ‘confounders’ or just affect the outcome
as ‘competing exposures’. Importantly, failing to account for confounders can lead to bias
in estimates for direct effects (of air pollution), whilst competing exposures can increase the
uncertainty around the size of estimates. Furthermore, if there had been any variables that
acted as ‘mediators’ between the exposure and outcome, these would have to be excluded
from the analysis to avoid introducing ‘collider bias’ to the estimates of the direct effects of
air pollution [26].

The DAG enabled consideration and identification of the causal effects of various
factors, which were either stable in the short term (e.g., deprivation) or stable across location
(e.g., public holidays in England). Consequently, by applying a DiD method to compare
cases with both control locations and control time periods, it was possible to account
for many of the confounding factors. Finally, the DAG identified the factors that were
not stable across time or space (e.g., weather) and, therefore, needed to be included in
regression models.

The object of public health surveillance is to provide useful information for action.
Therefore, we used routinely available data, including meteorological metrics and ongoing
syndromic surveillance systems. Consequently, the results can validate the usefulness of
syndromic surveillance for monitoring the impact of days of poor air quality, as currently
measured using the DAQI. Furthermore, the syndromic indicators give an estimate for the
impact on health services of air pollution, enabling pollution forecasts to be turned into
forecasts of changes in demand for health services.

The largest estimated increase in syndromic rates due to poor air quality was 1.98
(1.02, 3.86) for the GP out-of-hours acute bronchitis indicator. A typical UTLA with good
coverage will record around 430 GPOOH consultations a day, of which 0.7 will have acute
bronchitis and 8.2 cardiac symptoms. This central estimate for the impact of a day with poor
air quality would translate to an extra 0.7 (0.0, 2.0 95% CI) acute bronchitis consultations
and an extra 2.1 (0.5, 4.0 95% CI) cardiac patients. However, days with poor air quality
were relatively rare in the period studied.

A range of syndromic indicators were compared across three syndromic systems.
Almost all the significant increases were detected in the GP out-of-hours system; no GP
in-hours syndromes giving increases were statistically significant. This could reflect differ-
ences in the case mix of patients or the availability of services. GP in-hours services require
booking an appointment in advance, limiting the availability of same-day consultations,
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and are only open during office hours. By contrast, GP out-of-hours services are available
at weekends and evenings. It is likely, that patients use these services differently, perhaps
using out-of-hours for urgent acute health needs and using in-hours for chronic disease
management. Similar syndromic indicators in different systems have similar names but dif-
ferent underlying codes; for example, the ‘asthma/wheeze/difficulty breathing’ GPOOH
indictor represents different conditions to the GPIHSS ‘acute presenting asthma’ indicator.
It is unlikely, that the lack of significant results for GPIHSS indicators is due to data volume,
as coverage is greater than for GPOOH. Significant increases were found for a range of
GPOOH indicators, including respiratory, cardiac, and eye irritation syndromes. However,
for NHS 111 calls, the only significant indicator was for eye problems.

The importance of the impact of air pollution on public health is reflected in the number
and range of studies in recent years. Bae et al. reviewed research papers in South Korea into
the mortality and morbidity of air pollution [27]; symptoms of morbidity included asthma,
respiratory and cardiovascular hospitalization, upper and lower respiratory symptoms, low
birth weight, depression, insulin resistance, allergic diseases, airway hyperresponsiveness,
and new episodes of wheezing. A similar country-wide review found evidence of increased
respiratory and cardiovascular disease in China associated with air pollution [1].

An important limitation in population studies, particularly involving syndromic data,
is that no direct link can be shown between exposure and morbidity. There is uncertainty
around whether the patients presenting with symptoms have been exposed to high levels
of the pollutants recorded in their locations and, therefore, a causal link for individuals
cannot be proven. Similarly, there may be very complex causal interactions, for example,
between weather and pollutant variables, that have not been accounted for. Finally, there is
always the possibility of other unknown or unmeasured variables, e.g., indoor pollutants
that could bias results.

Whilst many of the studies mentioned in the literature reviews above provide estimates
for specific pollutants, this study has not attempted to distinguish between the impacts
of different pollutants. Primarily, this was due to limitations in the available data, with
no examples of periods with high levels of nitrogen dioxide NO2 or sulphur dioxide
SO2. It was not possible to disentangle the impact of PM10 from PM2.5 because high
levels of these pollutants usually occurred concurrently in both time and place. Finally, a
conservative approach to missing data was taken, only including UTLAs as controls when
there was evidence of low pollutant levels for particulate matter and O3. Thus, there were
limited examples available and insufficient data to provide separate estimates for O3 and
particulate matter.

To validate the approach, a sensitivity analysis included gastrointestinal indicators,
which would not normally be affected by air pollution. GPOOH gastroenteritis consulta-
tions had an estimate that was just statistically significant at the 95% level. This was the
only gastrointestinal indicator with a significant result. It suggests that results should be
interpreted with some caution, particularly estimates for indicators where the increases
are small and the confidence intervals are wide. However, it does not invalidate the esti-
mates for GPOOH acute bronchitis or cardiac indicators, which were considerably larger
than gastroenteritis.

The methodology was chosen to address the limitations in the study. The causal
inference DiD method addressed the issues of confounders and bias due to the many
factors affecting morbidity. Furthermore, this approach makes modelling assumptions
explicit and transparent and provides a clearer interpretation of results than is possible
with predictive modelling approaches. Similarly, the use of meta-analysis enabled more
precise estimates to be obtained by combining results across different periods of poor air
quality in different locations. Meta-analysis has often been criticised for combining results
that are not comparable, but it is appropriate in this setting, where the same methodology
and data collection is used throughout.

The impacts of air pollution across three national syndromic surveillance systems in
England were studied. In future, this analysis could be repeated across the newer English
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syndromic systems, incorporating data from emergency departments, ambulance dispatch
calls, and an online symptom checker. These systems would provide additional information
on a different case-mix of patients, including those with more severe symptoms who need to
attend hospital. Furthermore, the difference-in-differences approach used here to compare
local areas with each other and with control periods could be extended into a more general
surveillance tool to measure the impact of exposures with a wide range of causes.

5. Conclusions

The research has shown that syndromic systems are sensitive to the local impacts of air
pollution, with increases seen in a range of indicators, including respiratory, cardiac, and
eye irritation. Furthermore, the best indicators are likely to be from the GP out-of-hours
(not GP in-hours) system. This information will have a direct impact on how syndromic
surveillance is conducted and the interpretation of real-time surveillance for decision
makers during air pollution episodes. Further, for some indicators, lags can be expected for
up to four days, which again, are useful for interpreting daily statistical alarms following
forecasts of periods of poor air quality. Finally, there is increasing interest in local authorities
producing health warnings to their residents when air pollution is forecast, and it would be
possible to use this approach to evaluate and monitor the impact of these warnings.
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Appendix A

Table A1. Exposure periods.

Exposure Period
Number of Upper Tier Local Authorities

At Least 1 Day with Moderate or Higher
DAQI Level Low DAQI Levels Only

Start Date End Date At Least 1 Day
with Data

No Missing
Data (Cases)

At Least 1 Day
with Data

No Missing
Data (Controls)

4 May 2012 6 May 2012 1 0 52 12

21 May 2012 30 May 2012 30 3 22 3

24 July 2012 27 July 2012 10 0 44 3

19 August 2012 19 August 2012 1 0 51 9

11 October 2012 11 October 2012 1 0 53 15

22 October 2012 24 October 2012 22 9 31 6

04 November 2012 06 November 2012 14 5 39 10

15 November 2012 16 November 2012 13 6 40 8

29 November 2012 02 December 2012 10 3 44 9
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Table A1. Cont.

Exposure Period
Number of Upper Tier Local Authorities

At Least 1 Day with Moderate or Higher
DAQI Level Low DAQI Levels Only

Start Date End Date At Least 1 Day
with Data

No Missing
Data (Cases)

At Least 1 Day
with Data

No Missing
Data (Controls)

11 December 2012 13 December 2012 14 3 40 8

11 January 2013 25 January 2013 20 3 34 2

11 February 2013 8 March 2013 42 4 12 0

20 March 2013 12 April 2013 39 10 16 0

7 May 2013 7 May 2013 1 0 52 9

19 May 2013 19 May 2013 2 1 50 9

19 June 2013 20 June 2013 9 2 45 5

6 July 2013 22 July 2013 6 0 49 2

23 August 2013 24 August 2013 14 4 40 6

04 September 2013 05 September 2013 7 1 47 10

24 September 2013 01 October 2013 30 6 25 4

18 October 2013 18 October 2013 1 1 55 12

5 November 2013 5 November 2013 1 0 54 15

16 November 2013 28 November 2013 2 1 54 11

10 December 2013 13 December 2013 21 10 35 3

20 January 2014 21 January 2014 9 4 46 6

30 January 2014 30 January 2014 2 0 53 8

28 February 2014 28 February 2014 1 0 53 8

08 March 2014 14 March 2014 37 7 18 1

28 March 2014 04 April 2014 40 11 16 1

20 April 2014 30 April 2014 22 6 34 2

18 May 2014 20 May 2014 8 1 47 9

11 June 2014 12 June 2014 1 0 54 6

11 July 2014 21 July 2014 5 0 50 5

30 July 2014 7 August 2014 1 0 52 3

5 September 2014 29 September 2014 34 3 21 0

30 October 2014 6 November 2014 18 4 38 6

19 November 2014 21 November 2014 20 6 34 6

29 November 2014 04 December 2014 8 2 46 13

29 December 2014 31 December 2014 9 4 47 13

22 January 2015 23 January 2015 16 5 38 3

09 February 2015 15 February 2015 18 4 37 2

24 February 2015 24 February 2015 1 0 53 10

12 March 2015 20 March 2015 43 12 12 0

8 April 2015 10 April 2015 41 12 13 0

23 April 2015 24 April 2015 2 2 53 12

21 May 2015 22 May 2015 1 0 56 11

12 June 2015 02 July 2015 30 4 27 5

23 August 2015 23 August 2015 5 2 52 8

25 September 2015 25 September 2015 1 0 56 11

3 October 2015 6 October 2015 26 6 31 3

22 October 2015 5 November 2015 18 1 38 4

17 December 2015 17 December 2015 1 1 56 8

27 December 2015 02 January 2016 18 5 39 3

19 January 2016 21 January 2016 23 5 32 3

11 February 2016 11 February 2016 1 1 55 6

24 February 2016 25 February 2016 2 0 53 10
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Table A1. Cont.

Exposure Period
Number of Upper Tier Local Authorities

At Least 1 Day with Moderate or Higher
DAQI Level Low DAQI Levels Only

Start Date End Date At Least 1 Day
with Data

No Missing
Data (Cases)

At Least 1 Day
with Data

No Missing
Data (Controls)

10 March 2016 23 March 2016 40 10 18 0

05 May 2016 12 May 2016 23 4 35 11

07 June 2016 07 June 2016 1 0 56 12

19 July 2016 20 July 2016 3 0 53 7

08 August 2016 08 August 2016 1 0 56 6

14 September 2016 15 September 2016 7 0 50 9

25 October 2016 10 November 2016 21 7 36 4

25 November 2016 06 December 2016 32 7 25 3

16 December 2016 19 December 2016 15 5 42 9

27 December 2016 06 January 2017 10 5 46 6

18 January 2017 27 January 2017 43 9 15 0

09 February 2017 15 February 2017 40 8 19 1

27 March 2017 28 March 2017 28 10 32 8

08 April 2017 09 April 2017 6 4 54 13

30 April 2017 30 April 2017 1 0 59 14

11 May 2017 11 May 2017 4 1 55 15

18 June 2017 21 June 2017 6 0 49 11

25 September 2017 27 September 2017 11 5 45 6

16 October 2017 18 October 2017 1 0 57 12

02 November 2017 06 November 2017 18 6 42 12

19 December 2017 19 December 2017 4 2 57 17

11 December 2017 11 December 2017 1 0 59 20

Table A2. Volume of daily syndromic UTLA data 2012–2017 by syndrome.

System Syndrome Daily Mean Counts in UTLAs Minimum Maximum

GP out of hours consultations

Total with a clinical code 99.1 1 1766

Stroke 0.2 0 10

Acute bronchitis 0.2 0 38

Eye irritation 0.9 0 34

Chest pain 1.0 0 29

Cardiac 1.7 0 38

Asthma/Wheeze/DB 2.3 0 68

Gastroenteritis 4.6 0 130

GP in-hours consultations

Registered patients in GP practices (thousands) 188.0 0.4 1284

Acute presenting asthma 2.6 0 113

Allergic rhinitis 5.8 0 463

Conjunctivitis 8.6 0 160

Pharyngitis or scarlet fever 15.1 0 289

Gastroenteritis 19.4 0 287

NHS 111 telephone calls

Total calls 198.4 1 3364

Eye problems 2.7 0 64

Diarrhoea 4.1 0 81

Sore throat 4.5 0 149

Difficulty breathing 7.0 0 233

Cough 7.0 0 467
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Table A3. Meta analysis results—estimate of rate ratios for direct effect of air pollution on syndromic
indicators, all lags. Results where lower 95% confidence interval is at least 1 are highlighted in bold.

System System: Syndrome Lag (Days) Rate Ratio 95% Confidence Interval

GP out of hours consultations

Asthma/Wheeze/DB

0 1.06 0.91 1.24

1 1.09 0.93 1.27

2 1.17 1.00 1.35

3 1.05 0.91 1.22

4 1.01 0.87 1.17

Acute bronchitis

0 1.98 1.02 3.86

1 1.00 0.54 1.87

2 1.53 0.82 2.84

3 1.11 0.58 2.12

4 1.62 0.87 3.01

Cardiac

0 1.26 1.06 1.49

1 1.11 0.93 1.31

2 1.15 0.97 1.36

3 1.17 0.99 1.38

4 1.09 0.92 1.30

Eye irritation

0 0.98 0.74 1.32

1 0.72 0.53 0.96

2 0.83 0.62 1.10

3 1.10 0.82 1.48

4 1.35 1.01 1.80

Gastroenteritis

0 1.07 0.96 1.18

1 1.13 1.02 1.25

2 1.08 0.98 1.19

3 1.08 0.98 1.18

4 1.07 0.97 1.18

Chest pain

0 1.23 0.97 1.54

1 1.09 0.87 1.37

2 1.19 0.95 1.49

3 1.27 1.01 1.58

4 1.12 0.89 1.41

Stroke

0 0.52 0.12 2.26

1 1.45 0.40 5.34

2 0.69 0.20 2.39

3 0.94 0.27 3.30

4 0.74 0.20 2.71
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Table A3. Cont.

System System: Syndrome Lag (Days) Rate Ratio 95% Confidence Interval

GP in-hours consultations

Allergic rhinitis

0 0.99 0.89 1.10

1 1.04 0.93 1.16

2 1.00 0.90 1.12

3 1.07 0.96 1.20

4 0.97 0.86 1.09

Conjunctivitis

0 1.00 0.95 1.06

1 1.00 0.94 1.06

2 0.97 0.92 1.04

3 0.98 0.93 1.05

4 1.00 0.93 1.06

Gastroenteritis

0 0.98 0.94 1.02

1 0.98 0.94 1.03

2 1.00 0.95 1.04

3 0.97 0.93 1.01

4 1.02 0.98 1.07

Pharyngitis or scarlet fever

0 0.98 0.93 1.04

1 0.98 0.92 1.03

2 1.04 0.98 1.10

3 1.04 0.98 1.10

4 1.02 0.96 1.08

Acute presenting asthma

0 1.02 0.93 1.11

1 1.03 0.94 1.14

2 1.06 0.95 1.17

3 0.97 0.87 1.07

4 0.96 0.87 1.07

NHS 111 telephone calls

Cough

0 1.00 0.92 1.09

1 1.04 0.95 1.13

2 1.00 0.92 1.09

3 1.02 0.94 1.11

4 1.01 0.93 1.10

Diarrhoea

0 1.06 0.96 1.17

1 1.05 0.95 1.16

2 0.98 0.89 1.08

3 1.03 0.94 1.14

4 1.06 0.96 1.16

Difficulty breathing

0 1.03 0.95 1.12

1 1.01 0.92 1.09

2 1.01 0.93 1.10

3 1.00 0.92 1.08

4 1.01 0.93 1.10
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Table A3. Cont.

System System: Syndrome Lag (Days) Rate Ratio 95% Confidence Interval

Eye problems

0 1.16 1.03 1.31

1 1.16 1.03 1.30

2 1.09 0.97 1.23

3 1.08 0.96 1.21

4 1.09 0.97 1.22

Sore throat

0 1.02 0.92 1.14

1 1.07 0.97 1.19

2 1.05 0.94 1.16

3 1.02 0.92 1.13

4 1.03 0.93 1.14
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