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Abstract: Sp-family transcription factors are widely expressed in human tissues and involved in the regulation of many 

cellular processes and response to cellular microenvironment. These responses appear to be mediated by alterations in 

transcription factor affinity for DNA rather than altered protein level. How might such changes be effected? This review 

will identify the range of known post-translational modifications (PTMs) of Sp-factors and the sometimes conflicting lit-

erature about the roles of PTMs in regulating activity. We will speculate on the interaction between cell environment, 

chromatin microenvironment and the role of PTM in governing functionality of the proteins and the complexes to which 

they belong. 
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INTRODUCTION 

 The Sp/KLF family is divided into two major subgroups: 
the Sp-family, which are highly homologous to Sp1 in the 
zinc finger region; and the KLF family which are more het-
erogenous and are named after the Drosophila segmentation 
gene Kruppel which also contains 3 zinc finger motifs [1]. 
The Sp-family is made up of 8 genes Sp1-8, each located 
adjacent to a HOX gene cluster and the KLF family contains 
15 known members [2]. Specificity protein/Kruppel-like 
factor (Sp/KLF) family of transcriptions factors are charac-
terised by the presence of 3 highly conserved zinc finger 
domains which confer DNA-binding ability. Due to this con-
served DNA-binding motif, members of the Sp/KLF family 
share the same DNA recognition sites, namely GC 
(GGGGCGGGG) and GT (GGTGTGGGGG) boxes. The 
affinity of Sp/KLF proteins for these sites varies due to small 
amino acid sequence changes in the recognition domain. 

 The regulation of transcription by ubiquitously expressed 
transcription factors of this family is not generally thought to 
occur through protein turnover, thereby invoking a key role 
for post-translational modification of Sp proteins in govern-
ing transcriptional activity. 

The SP-Family 

 Sp1, the first identified member of this family [3, 4] was 
shown to be a transactivator of the simian virus 40 (SV40) 
early promoter [5, 6]. Since then seven further members of 
this family have been identified and were numbered Sp2-8, 
according to their order of discovery. The functional roles of 
the members of the Sp family have been investigated to vari-
able degrees with the most data having been collected for 
Sp1 and Sp3.  
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 Both Sp1 and Sp3 have been shown to exhibit ubiquitous 
expression, whereas Sp4 expression is restricted to brain and 
developing testis. Sp2 expression has been observed in a 
number of cell lines, however, no data is available regarding 
tissue expression levels [7]. Sp7 was identified as a bone 
specific transcription factor required for osteoblast differen-
tiation and bone formation [8]. The expression patterns of 
Sp5, Sp6 and Sp8 have yet to be investigated. The first four 
members of the Sp-family, Sp1-4, are more closely related to 
each other than to Sp5-8. Sp1-4 contain an N-terminal acti-
vation domain and a C-terminal DNA binding domain. Sp3 
also contains an inhibitory domain which is thought to medi-
ate suppression of Sp3 transcription activation. Sp3 is inac-
tive or only weakly active and is thought to act as a repressor 
for Sp1 activated genes by competing for the same binding 
sites [9]. Sp5-8 proteins are shorter, lacking the N-terminal 
activation domain of Sp1-4 which may explain their de-
creased transcription activation potential.  

 Little is known regarding the function of Sp5-8. The 
creation of knock out mice has provided some insight into 
the possible regulatory roles of Sp1-4. Sp1 null mice show 
severely retarded embryonic development and die after em-
bryonic day 10 (E10) [10]. This evidence indicates that Sp1 
is essential for normal embryonic development. Targeted 
homologous recombination of the Sp3 gene produced Sp

-/-
 

embryos which exhibited late and impaired tooth and bone 
development. Sp3

-/-
 mice survived gestation, but died of res-

piratory failure perinatally [11]. These observations suggest 
that both Sp1 and Sp3 are involved in developmental regula-
tion of gene expression. Both Sp1 and Sp3 show increased 
expression in a number of cancers suggesting that these tran-
scription factors are switched back on during cancer cell 
differentiation. Virus particles are also known to ‘hijack’ 
Sp1/3 during viral replication and Sp1 appears to be a spe-
cific target of the SV40 virus. The function of Sp2 is poorly 
understood, however, it is clearly separate from the function 
of other Sp proteins as Sp2 preferentially binds GT boxes not 
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GC boxes [7]. Sp2 overexpression has been noted in late 
stage human prostate tumours and may be oncogenic [12].  

 Sp4 knock out mice show a complex phenotype, different 
to that observed in Sp1 and Sp3 null mice. Sp4

-/-
 mice de-

velop normally until birth, however, within four weeks two 
thirds of pups die. The surviving Sp4

-/-
 mice exhibit retarded 

growth and males do not breed due to an absence of mount-
ing behaviour, which has been shown to be linked to brain 
abnormalities [13].  

 The Sp-family transcription factors appear to have di-
verse roles which require further characterisation. This is 
especially apparent for Sp5-8 proteins which are poorly un-
derstood. 

POST-TRANSLATIONAL MODIFICATIONS 

 Transcriptional control may be exerted via shutdown of 
Sp transcription factor translation, however such a crude 
method of transcriptional control would not be immediately 
effective as proteosomal degradation of proteins is not in-
stantaneous. A more refined method would be to modify 
reversibly Sp-family proteins in a manner which affects their 
efficacy. PTMs, provide a means of changing the protein 
structure to affect transcription without having to degrade or 
create de novo transcription factor. There is a significant 
body of evidence for the post translational modification of 
Sp-family proteins in the form of phosphorylation, acetyla-
tion, glycosylation and sumolation. This evidence will be 
discussed here, however, as Sp1 and Sp3 are the best studied 
the majority of post translational modification data comes 
from these two family members. The high homology be-
tween Sp proteins, especially Sp1-4, suggests that roles of 
post translational modifications in the transcriptional control 
of one Sp member may also be relevant to others Sp pro-
teins. 

Phosphorylation 

 Phosphorylation appears to play a key role as a molecular 
‘on-off’ switch in a plethora of biological processes. There is 
a body of evidence to suggest a role for phosphorylation in 
transcription factor regulation. The initial suggestion that Sp-
family transcription factors were phosphorylated came in 
1990 from the observation that SV40 infection induced 
phosphorylation of Sp1 [14]. Since then, investigating the 
role of phosphorylation in Sp-family transcription factors has 
centred on the founder member. 

 The consensus of these studies appears to be that phos-
phorylation of Sp1 increases GC box affinity and facilitates 
transcriptional activation (see Tables). The precise mecha-
nism for this has yet to be revealed, however, the majority of 
phosphorylation sites thus identified in Sp1 are located 
within the DNA binding zinc finger domain, suggesting that 
phosphorylation produces a conformational change which 
facilitates DNA-zinc finger interaction.  

 Phosphorylation of Sp1 in response to viral infection has 
been reported in two further studies. Chun et al., reported 
that HIV-1 tat protein induces DNA-dependent kinase medi-
ated phosphorylation of human Sp1 at Ser131 [15]. A more 
recent study identified two specific sites in human Sp1 
(Ser56 and Ser101) which are hyperphosphorylated in re-

sponse to HSV-1 viral infection. This hyperphosphorylation 
requires the presence of a member of the phosphatidylinosi-
tol 3 -like kinase family, Ataxia telangiectasia mutated pro-
tein (ATM) [16]. There are multiple explanations for the 
enhanced phosphorylation state of Sp1 following viral infec-
tion. Firstly it is possible that phosphorylation may result in 
an increased DNA binding affinity, which could mediate 
viral “hijacking” of the transcriptional machinery. This 
would fit with the observed increase in activation of a HIV-1 
luciferase reporter construct following HIV-1 infection [15]. 
Conversely, enhanced Sp1 phosphorylation and DNA bind-
ing may be a protective effect to increase the transcription of 
‘cellular defence’ genes in the infected cell. Thirdly, Sp1 
increased GC-box binding may act to activate the apoptotic 
pathway and initiate death of infected cells. In support of 
this, Sp1 phosphorylation has been shown to activate RasL 
transcription [17]. However phosphorylation of Sp1 is obvi-
ously more complex than a simple on-off switch model as 
viral infection induced phosphorylation is reported to have 
either no effect or an activation effect on transcription [15, 
16].  

 Evidence regarding the role of phosphatases in Sp1 tran-
scriptional regulation is contradictory, however, the literature 
concurs that phosphatase proteins 1 and 2(A) are involved. 
The majority of evidence suggests that dephosphorylation of 
Sp1 causes a decrease in DNA binding and reduced tran-
scriptional activation, however a number of studies only in-
fer Sp1 dephosphorylation and do not specify the residues 
which are dephosphorylated [18-24]. Contradictory to the 
main body of evidence, PP2A inhibition with okadaic acid 
was shown to increase Sp1 Phosphorylation and HIV pro-
moter transcription with no observable effect on Sp1 DNA 
binding. PP2A dephosphorylation of Sp1 has also been re-
ported to increase the association of dephosphorylated Sp1 
with the chromatin fraction in a crude chromatin preparation 
[25]. Furthermore the dephosphorylation of Sp1 has been 
shown to increase Sp1 binding affinity to an inducible 
AAAT promoter element [18].  

 Although there appear to be exceptions, generally phos-
phorylation acts to increase DNA binding and transcriptional 
activation, whilst dephosphorylation has the opposite effect. 
The discrepancies between results may suggest further levels 
of transcriptional control, although the possibility cannot be 
excluded that the observations are experimental artefacts due 
to the different conditions used for the promoter assays. It is 
also possible that these contrasting data may reflect differing 
roles of phosphorylation in different cellular contexts. Fur-
ther work is required to clarify the role of transcription factor 
phosphorylation in viral infection and transcriptional control. 

Acetylation 

 The histone acetyl transferases (HATs) and histone 
deacetylases (HDACs) were originally named after their 
ability to introduce or remove acetyl groups (-CH3CHO) at 
lysine residues of histone proteins. It has since become clear 
that the function of these proteins is not restricted to his-
tones.  

 Site directed mutagenesis, coupled with an in vitro acety-
lation assay has demonstrated that Sp1 is acetylated at a sin-
gle lysine, K703 [26]. Sp3 has also been shown to be acety-
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Table 1. Phosphorylation of Sp Proteins 

DNA Binding Transcription Effects 

Initiation Signal Cell/Tissue 

Associated 

Kinase/  

Phosphatase 

Effect on  

Phosphorylation 

Including  

Residues/Location 
Probe/Assay Effect Promoter 

Activation/ 

Repression 

Ref. 

SV40 infection HeLa 
DNA dependent 

protein kinase 

Phosphorylation of 

Sp1 N-terminal 610aa 

(DNA binding domain 

and transcriptional 

activation domains) 

SV40 pro-

moter 
No change - - [14] 

HIV-1 Tat protein HeLa 
DNA dependent 

protein kinase 
Ser131 - - 

HIV1-

luciferase 

reporter 

construct 

Activation [15] 

Terminal differentia-

tion 
Rat liver tissue Casein Kinase II 

Thr579 and additional 

sites in the C-terminus 

aa521-696 

Consensus 

Sp1 sequence 

10 fold de-

creased affinity 
- - [49] 

Cyclin A 
NIH3T3 (mouse cell 

line) 

Cyclin A-Cyclin 

Dependant Kinase 

2 

Ser59 (corresponds to 

human Ser61) in N 

terminal 

DHFR pro-

moter frag-

ment 

Increased 

binding 

Hamster 

DHFR 
Activation [50] 

Cyclin A 

Mouse: U2OS 

(osteosarcoma); 3T6 

(embryonic fibro-

blast) 

CDK2 but CDC2 

not excluded 

Increased Sp1 phos-

phorylation at zinc 

finger domain 

Murine TK 

promoter 

Increase both 

sp1 and sp3 

consensus 

Sp1 site used 

in a luciferase 

assay 

Activation [51] 

 

Human fibrosar-

coma and human 

renal carcinoma cell 

lines 

Atypical protein 

kinase C, PKC-  

Overexpression of 

PKC- increases SP1 

phosphorylation 

- - 

VPF/VEGF 

promoter 

luciferase 

reporter 

construct 

Activation2-

4 fold 

increased 

expression 

[52] 

CAM induced 

apoptosis 

WKY12-22 and 

WKY3M-22 (rat 

aortic smooth mus-

cle cells) 

Atypical protein 

kinase C, PKC-  
Phosphorylates Sp1 

FasL pro-

moter 

Increased 

phosphorylated 

Sp1 binding 

FasL promo-

ter luciferase 

reporter 

construct 

Activation [17] 

Angiogenin II 

WKY12-22 (rat 

aortic smooth mus-

cle cells) 

Atypical protein 

kinase C, PKC-  

Thr668, Ser670, and 

Thr681 in zinc finger 

domain 

ChIP 

p676/686 Sp1 

Increased 

binding at 

platelet-

derived growth 

factor-D pro-

moter 

Platelet-

derived 

growth 

factor-D 

Activation [48] 

P42/p44 MAPK 

stimulation using 

estradiol-inducible 

raf-1 CCL39 cells 

CCL39 hamster 

fibroblast (for 

EMSA), SL2 Dro-

sophila (for pro-

moter assays) 

P42/p44 MAPK 

Thr453 (Glutamine 

rich transactivating 

domain) and Thr739 

(C-terminal D do-

main) in vitro and in 

vivo 

Human 

VEGF pro-

moter 

Increased 

recruitment to 

promoter 

Human 

VEGF pro-

moter 

Activation [53] 

HSV-1 viral infec-

tion 

Hela; HFF2 (immor-

talised human fore-

skin fibroblasts) 

Ataxia telangiecta-

sia mutated protein 

(ATM) 

hyperphosphorylates 

Ser-56 and Ser-101 
- - CAT assay No Change [16] 

- 

CCRF-CEM a 

human T-cell leu-

kaemia line and its 

antifolate resistant 

sublines 

? 

Nuclear proteins 

purified from antifo-

late resistant cells 

contained 8 fold more 

phosphor Sp1 

GC box 

consensus 

sequence 

Dramatic loss 

of binding 

Reduced 

folate carrier 

(RFC) 

Reduced 

expression 
[54] 
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(Table 1) contd…. 

DNA Binding Transcription Effects 

Initiation Signal Cell/Tissue 

Associated 

Kinase/  

Phosphatase 

Effect on  

Phosphorylation  

Including  

Residues/Location 
Probe/Assay Effect Promoter 

Activation/ 

Repression 

Ref. 

Glutaminase 

antisense RNA 

EATC Erlich tumor 

cells 
? 

3 fold increase in Sp1 

phosphorylation 

Sp1 consen-

sus 

Inhibition of 

Sp1–DNA 

binding 

Luciferase 

reporter 

construct 

containing 

Sp1 consen-

sus ans 

TATA box 

Activation [55] 

Noglamycin  

treatment 

WKY12-22 (rat 

aortic smooth 

muscle cells) 

PKC-  
Induced Sp1 phosphory-

lation 

Sp1/Sp3 

consensus 

sequence 

Increased Sp1 

binding 

Platelet 

derived 

growth factor 

B chain 

Activation [56] 

Scleroderma Human fibroblasts ? 

Dermal fibroblasts from 

patients with Scleroderma 

show an increased level 

of Sp1 phosphorylation 

with no observed differ-

ence in overall Sp1 levels 

this increased phosphory-

lation is associated with 

increased expression of 

the alpha2(I) gene 

- - - - [57] 

Okadaic acid  

stimulation  

(PP2A inhibitor) 

Lymphoblastoid 

Tcell line 
PP2A? 

OKA treatment resulted 

in Sp1 phosphorylation 

HIV pro-

moter 
No change HIV promoter Activation [58] 

T-cell receptor 

stimulation (TCR) 
Human T-cells 

PP1 and PP2 

INHIBITION by 

calculin A or 

okadaic acid 

Blockade of PP1 and PP2 

increased Sp1 phosphory-

lation 

IL-21R 

promoter 
Decreased 

Real time 

PCR quantifi-

cation of IL-

21R mRNA 

levels 

Reduced 

TCR-

induced IL-

21R expres-

sion 

[59] 

Glucose 
30A5 (mouse 

preadipocytes) 
PP1 - 

Acetyl-CoA 

carboxylase 

promoter II 

Decrease 

Acetyl-CoA 

carboxylase 

promoter II 

Repression [19] 

Glucose Hepatoma cells PP1 - 

Aldolase and 

pyruvate 

kinase pro-

moters 

Decrease 

Aldolase and 

pyruvate 

kinase pro-

moters 

Repression [20] 

Mp1 ligand  

(thrombopoietin) 

Y10/L8057 (mega-

karyocytic cells) 
PP1 - Cyclin D3 Decrease Cyclin D3 Repression [21] 

Lysophosphatidyl-

choline 
HUVEC PP2A - 

Nitric-oxide 

synthase 
Decrease 

Sp1 consen-

sus 
Repression [23] 

Adipocyte differ-

entiation 

3T3-L1  

preadipocyte 
? 

Dephosphorylation of 

Sp1 

Amino acid 

adipocyte 

transporter 

(AAAT) 

promotor 

Increased 

binding 
- - [18] 

CD2/CD28  

costimulation 

Human T lympho-

cytes, 

Kit225 cells 

PP2A 
Dephosphorylation of 

Sp1 

HIV-1 LTR 3 

Sp motif 
Decrease 

SV40 early 

promoter, 

HIV-1 LTR 

Repression [22] 
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(Table 1) contd…. 

DNA Binding Transcription Effects 

Initiation Signal Cell/Tissue 

Associated 

Kinase/  

Phosphatase 

Effect on  

Phosphorylation 

Including  

Residues/Location 
Probe/Assay Effect Promoter 

Activation/ 

Repression 

Ref. 

Lipopolysaccharide 

(LPS) insult 
Mouse lung ? 

Dephosphorylation at 

serine and threonine 

residues and phos-

phorylation at a 

tyrosine residue 

Sp1 consen-

sus 

Decreased 

binding 
- - [24] 

Cell cycle interphase 
Human cell lines 

and T cells 
PP2A 

Dephosphorylation at 

Ser59, and Thr681 

Cell lysis and 

analysis of 

chromatin 

containing 

fraction 

Increased 

association of 

dephosphory-

lated Sp1 with 

chromatin 

- - [25] 

In vitro treatment of 

nuclear extracts with 

dephosphotase 

HT29 - 
Inferred decreased Sp 

phosphorylation 

AKR1C1 

promoter 
Decrease - - [60] 

 

lated using pan-acetyl antibodies [27]. Mutation of a lysine 
residue in the Sp3 inhibitory domain can dramatically reduce 
but not abolish Sp3 acetylation, indicating that Sp3 is acety-
lated at further lysine residues [27]. Our data (Waby, 
Chirakkal & Corfe unpublished) indicate that the long form 
of Sp3 is the actylated form and the shortform is not acety-
lated, possibly suggesting a role for N-terminal acetylation in 
Sp3 regulation, at least in colorectal cells. 

 Whilst it is evident that both Sp1 and Sp3 are acetylated 
in vivo, the functional relevance of this is unclear. Treatment 
of cells with the HDAC inhibitor trichostatin A (TSA) has 
been shown to increase Sp1 acetylation levels resulting in 
increased expression of the TGF beta type II receptor [28]. 
Specific silencing of each of HDAC1, HDAC2 or HDAC3 
using siRNA resulted in increased p21 promoter activity and 
expression in an Sp3-dependent manner, suggesting that in-
creased acetylation caused increased activation of Sp3 con-
trolled genes [29]. In support of a role for acetylation in 
Sp1/3 transactivation, increased acetylation of Sp1 by the 
DNA topoisomerase II poison TAS causes increased GC-box 
dependent transcription in MCF7 cells [30]. 

 However, recent work has cast doubt upon this simplistic 
‘more acetylation = more transcription’ model. Expression of 
a recombinant K703A Sp1, which cannot be acetylated at 
lysine 703, leads to increased expression of the 12(s)–
lipoxygenase gene [26]. Treatment with the HDAC inhibi-
tors has also been shown to attenuate the expression of cy-
cloxygenase 2 (COX-2) and insulin like growth factor bind-
ing protein 3 (IGFBP3) [31, 32]. One possible explanation 
for these apparently contrasting data, may reside in the fact 
that Sp1 and Sp3 compete for GC-box binding sites, this 
competition could potentially be swayed by acetylation 
modifications. Sp3 is normally a poor transcriptional activa-
tor, however, recombinant Sp3, expressed in a system which 
lacks acetyltransferases, was found to act as a transcriptional 
activator with similar potency to Sp1 [33]. This hypothesis is 
further supported by the observation that GAL4-Sp3 but not 

GAL4-Sp1 is able to induce p21 in a TSA-dependant man-
ner, indicating that the acetylation of Sp3 is important [34]. 

 Transcription factor activity can also be modulated by 
altered affinity to the binding site. Again, as Sp1 and Sp3 
compete for GC-boxes, small alterations in binding affinity 
could result in altered occupancy at the promoter and alter 
the gene expression according to whether the resident tran-
scription factor is an activator or repressor. Chromatin im-
munoprecipitation (ChIP) assays have demonstrated a reduc-
tion in binding of Sp1 accompanied by an increase in Sp3 
binding at the major vault protein (MVP) promoter following 
treatment with either TSA or butyrate [35]. A similar switch 
of Sp1 for SP3 has been observed at the promoter for the 
pro-apoptotic protein BAK following butyrate treatment 
[36]. 

 In summary, acetylation of Sp1/3 has profound effects 
upon gene transcription. These effects seem to be exerted 
through a combination of altered binding affinity and 
changes in transactivation potential which alter the balance 
between Sp1 activation and Sp3 repression.  

Glycosylation 

 Glycosylation has long been recognised as a PTM of 
transcription factors associated with regulation of activity 
[37]. Glycosylation of Sp1 is most widely studied in regula-
tion of glucose-responsive genes stimulated by deprivation 
or through insulin response pathways. Goldberg et al. (2006) 
reported glycosylation of Sp1 altered transcriptional activity 
of Sp1 in glomerular mesangial cells at the PAI-1 promoter 
[38]. Sp1 became glycosylated in high-glucose conditions. 
This did not appear to alter the binding affinity for the pro-
moter by EMSA but was associated with increased transcrip-
tional activity of PAI-1. Contrastingly, Sp1 was downregu-
lated by by glucose inhibition in HeLa cells. In this cell line 
and context the glycosylation of Sp1 was shown to be recip-
rocal with threonine phosphorylation [39]. In addition to 
regulating transcriptional activity of Sp1 at specific loci, 
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Table 2. Other Post Translational Modifications of Sp Proteins 

Acetylation 

DNA Binding Transcription Effects 

Treatment Cell/Tissue 
Associated 

HAT/HDAC 

Effect on  

Acetylation  

Including  

Residues/Location 
Probe/Assay Effect Promoter 

Activation/ 

Repression 

Ref. 

  P300/ HDAC1 Sp1 K703 - - 

In vitro BCAT-

2 reporter  

transcription 

assay (using 

Hela nuclear 

extract)- 

Activation- [27] 

Trichostatin A  

(TSA)  

treatment- 

MCF-7L breast 

cancer cell lineHela 

and SL2 Drosophila 

cells 

Both Sp1 and Sp3 

associate with 

HDAC1 and 

p300P300 and 

CBP (braun 2001) 

 

TSA is a HDAC inhibitor 

and therefore would be 

expected to increase Sp1/3 

actetylation, however, this is 

not shown directlySp3 

inhibitory domain lysine is 

acetylated and acts as a 

repressor, Sp3 purified from 

transfected insect cells lacks 

this acetylation and acts as a 

transcriptional activator 

EMSA using 

Sp1 consen-

sus sequence; 

ChIP 

No change 

in Sp1/Sp3 

binding 

RII promoter 

luciferase 

reporter con-

struct trans-

fected into cells 

TSA treatment 

enhanced 

activity 

[61] 

- 
MCF-7 (T5) cell 

lysate 

HDAC1 and 

HDAC2 are 

associated with 

Sp1 and 

Sp3HDAC2 

(davie 2003 Nutr 

prot in cancer 

prevention) 

- - - - - [62] 

TSA 
MIA PaCa-2 pancre-

atic cancer cells 

Sp1 forms a 

multiprotein 

complex with NF-

Y, P300, PCAF 

and HDAC1 

TSA treatment enhanced the 

acetylation of Sp1 
- - 

T RII promoter 

luciferase 

construct 

Activation [28] 

TAS-103  

treatment 

Human epidermoid 

cancer KB cells; 

Human glioblastoma 

T98G cells; MCF-7 

breast cancer cells 

P300 Acetylation of Sp1 - - SV40 promoter Activation [30] 

Phorbol  

12-myristate  

13-acetate  

(PMA) 

Human epidermoid 

carcinoma A431 

cells 

HDAC1;  p300 

Sp1 is acetylated at K703 

and is deacetylated upon 

PMA treatment 

- - 

12(S)-

lipoxygenase 

promoter -

luciferase 

reporter con-

struct 

Mutant K703A 

Sp1 (deacety-

lated) showed 

reduced acti-

vation capacity 

[26] 

Butyrate  

treatment 
Caco-2 cells P300 Sp3 acetylation 

GC box from 

the hIGFBP-

3 promoter 

Increased 

binding of 

acetylated 

Sp3 

hIGFBP-3 

mRNA levels 
Repression [31] 

Butyrate  

treatment 
HCT116 cells - 

Acetylation of Sp1 reduces 

binding, increased Sp3 

binding 

EMSA - BAK Activation [36] 
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(Table 2) contd…. 

Glycosylation 

DNA Binding Transcription Effects 

Treatment Cell/Tissue 
Interacting  

Proteins 

PTM Including 

Residues/ 

Location Probe/Assay Effect Promoter 
Activation/ 

Repression 

Ref. 

Wheatgerm agglu-

tinin (WGA) 

binding of glyscoy-

lated Sp1 

Hela cell nuclear 

extracts 
- 

Glycosylation at 

Sp1 Ser-

ine/Threonine 

residues 

DNAse I pro-

tein experi-

ments 

No effect 

on DNA 

binding 

SV40 
Decreased transcrip-

tion 3-4 fold 
[37] 

Under glucose 

starvation, cAMP 

stimulation with 

forskolin treat-

ment, results in 

nearly complete 

deglycosylation of 

Sp1. 

NRK cells - 

Sp1 deglycosyla-

tion, leading to 

proteosome target-

ing 

EMSA using an 

Sp1 consensus 

sequence 

Virtual loss 

of DNA 

binding 

activity 

- - [63] 

Mutation of a 

glycosylation site 

in a fragment of 

Sp1 

Hela - 

Mutation of the 

glycosylation site 

should cause degly-

cosylation of the 

Sp1 fragment 

- - 

Gal4 depend-

ant luciferase 

reporter con-

struct 

Activation with both 

mutant and wild type 

Sp1 fragments. How-

ever in an in vitro 

assay only the glyco-

sylated form could 

bind to TAF-110 

[43] 

Glycolysis inhibi-

tion by 2-DG (non 

metabolizable 

glucose analogue) 

Hela - - 

HPV18 URR 

Sp1 binding 

sequence 

No effect 

on DNA 

binding 

Luciferase 

reporter assay 
Repression [39] 

Glutamine or 

glucosamine 

treatment 

Caco-2 - 

Increased O-

glycosylation of Sp1 

leading to its trans-

location into nu-

cleus 

GC boxes of 

the ASS pro-

moter used as a 

probe for 

EMSA 

Increased 

binding 
- - [40] 

Insulin treatment 

H-411E rat  

hepatoma cell line 

Drosophila SL2 cells 

used for reporter 

assay 

- 

Increased total and 

O-GlcNAc-

modified Sp1 pri-

marily in the nu-

cleus and induced 

CaM I gene tran-

scription 

- - 

Cotransfection 

of Sp1 and rat 

CaM I pro-

moter contain-

ing Sp1 sites 

in SL2 cells 

Activation 
[41, 

64] 

Glucose depriva-

tion or treatment of 

cells with 6-diazo-

5-oxo-L-norleucine 

NB4 cells - 
Deglycosylation of 

Sp1 

ChIP for 

hTERT pro-

moter 

No effect 
qRT-PCR for 

hTERT gene 

No effect on transcrip-

tion 
[44] 

Insulin treatment 

H-411E rat hepatoma 

cell line 

 

- 

Glycosylation 

followed by phos-

phorylation at 

Serines 613, 642, 

699, 703 and 

threonine 641. 

- - CaM I mRNA 

Levels of CaM I 

mRNA increased 

steadily with time 

following insulin 

exposure 

[42] 

High glucose 
Glomerular mesan-

gial cells 
- 

Glycosylation of 

Sp1 

PAI-1 promoter 

used in EMSA 

No effect 

on DNA 

binding 

PAI-1 pro-

moter 
Activation [38] 
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(Table 2) contd…. 

Sumoylation 

DNA Binding Transcription Effects 
Sp-Protein 

 
Cell/Tissue 

Interacting 

Proteins 

PTM Including  

Residues/ 

Location Probe/Assay Effect Promoter 
Activation/ 

Repression 

Ref. 

Sp3 MCF-7E  

Sp3 and it’s 

shorter isoforms 

(M1 and M2) are 

sumolyated at 

K551 

  
PSA  

promoter 

K551R substitution led to a marginal increase 

of transactivation for full length Sp1. 

The same substitution in the M1 isoform 

markedly enhanced transactivation 

[46] 

Sp1 MCF-7E  

Sp1 is sumolated 

at K16, governing 

processing 

- - 
Synthetic,  

p21 

Sumolation of Sp1 is repressive of transcrip-

tion 
[45] 

Sp3 SW480   - - 
SRC-1A  

promoter 
Differential according to isoform [47] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). Alignment of Sp-family DNA binding Zinc finger domains. Shaded residue = known post translational modification g= Glycosyla-

tion; a=Acetylation sites; p=Phosphorylation sites (nb ser670 and thr668 inferred from rat data). *=conserved residue.  

glycosylation has been implicated in the shuttling of Sp1 
between nucleus and cytoplasm, a further mechanism of 
regulation analogous to NFkB. Brasse-Hagnel et al. (2003) 
demonstrated that upregulation of arginosuccinate synthetase 
by both glutamine and glucosamine was associated with gly-
cosylation of Sp1 in the cytosol and subsequent translocation 
to the nucleus for binding to the ASS promoter [40]. A simi-
lar observation was made by Majumdar et al. (2003) who 
identified cytosolic glycosylation of Sp1 in H-411E rat hepa-
toma cell lines underwrote translocation to the nucleus and 
activation of calmodulin transcription in response to insulin 
(but not glucagon) [41]. In an elegant follow-up study the 
same group identified sequential and reciprocal glycosyla-
tion of Sp1 following insulin treatment of cells. Sp1 was 
glycosylated in the cytosol, but this appeared to be a tran-
sient effect which was subsequently replaced by phosphory-

lation. The reciprocity of serine/threonine phosphorylation 
observed by Kang et al. (2003) was elucidated by Majumdar 
as replacement of glycosylation by phosphorylation at the 
following sites: serine 613, 642,699, 703 and threonine 641 
[42]. 

 Glycosylation of Sp1 has also been implicated in the 
regulation of protein-protein interactions. Roos et al. (1997) 
used a glycosylated or unglycosylated fragment of Sp1 (SpE 
aa378-495) to show that binding to TAF-110 and Sp1 was 
blocked by glycosylation in this region [43]. Further con-
flicting data over the role of glycosylation was provided by 
Chou et al. who showed that arsenic-responsive gene expres-
sion is modulated through and Sp1 response. This was asso-
ciated with altered glycosylation, but glycosylation of Sp1 
alone was insufficient to drive expression of an arsenic re-
sponse gene (hTERT) [44]. 
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 Taken together, the data suggest that glycosylation has a 
potentially important role in the wider regulation of Sp1 
through governing its cellular location and potentially regu-
lating its binding to co-factors. The data seem to suggest that 
beyond this level, glycosylation may be replaced by phos-
phorylation as the key regulator of transcriptional activity at 
the promoter level. 

Sumoylation 

 SUMO (small ubiquitin-like modifier) is a PTM of pro-
teins occurring at lysines within a recognised motif: I/V-K-
X-E. SUMO-1 adds 9kDa to proteins following modifica-
tion; SUMO2 and 3 may polymerise and thereby add more 
mass. Sumoylation is implicated in the regulation of protein-
protein interactions, cellular localisation and has been impli-
cated in regulation of a number of transcription factors as 
both activator and repressor. 

 Sumoylation has been observed in both Sp1 and Sp3 [45, 
46]. Using MCF-7E cells Spengler et al. (2005) showed that 
Sp3 and its shorter isoforms (M1, M2) were modified by 
SUMO through a combination of immunoprecipitaion and 
overexpression analyses. Their predictions suggested that 
Sp3 has three potential sumoylation sites: K9, K120 and 
K551. Site directed mutagenesis identified K551 as the af-
fected residue in Sp3. K551R substitutions made in full-
length Sp3 led to only a marginal increase in transactivation 
of the PSA promoter (ibid.). In contrast the same mutation in 
the M1 isoform led to a markedly enhanced transactivation 
activity. This finding was consolidated with a similar study 
examining the roles of Sp3 isoform sumoylation on transac-
tivation of the SRC-1A promoter [47].  

 There are fewer reports of the effect of sumoylation on 
Sp1 activity. Spengler and Brattain followed up their Sp3 
analysis with identification of sumoylation of Sp1 at K16. 
The sumoylation is also associated with activation but 
through enhanced proteolytic cleavage of the inhibitory do-
main at the N-terminus of Sp1 leading to activation [45].  

 Clearly there is potential for several members of the Sp1 
family to be regulated via sumoylation, but no consistent 
picture emerges: for Sp3 effects are isoforms-specific and 
the known sumoylation site of Sp3 is absent from Sp1. In 
Sp1 sumoylation regulates other post-translational modifica-
tion (proteolytic cleavage) which in turn is activating. 

SUMMARY & FUTURE WORK 

 This review has highlighted the need for further research 
in this area. Research thus far has been restricted to the 
founder family member Sp1 with some attention paid to Sp3. 
However, the majority of PTMs identified are restricted to 
the highly conserved DNA binding domain which suggests 
that as these residues are conserved within the Sp family, the 
PTMs identified for Sp1 and Sp3 may also apply to other Sp 
proteins. The mechanism of action for these PTMs has yet to 
be discovered, however the observation of a high density of 
PTMs in the DNA binding domain suggests that PTMs could 
act to structurally alter the zinc fingers to increase or de-
crease DNA binding affinity. PTMs which are located within 
the DNA binding face of the protein may be more difficult to 
identify and most certainly will be unable to be purified us-

ing ChIP. However, a recent study by Tan et al. was able to 
ChIP phosphorylated Sp1 suggesting that in some cases the 
phosphorylation is not present in the DNA binding face but 
may facilitate a conformational change which affects binding 
efficiency [48]. 

 The observed reciprocity between glycosylation and 
phosphorylation suggests that post-translation control may 
not be as simple as PTMs acting as switches. It seems likely 
that combinations of phosphorylation, acetylation, sumoyla-
tion cooperate to produce subtle changes in transcriptional 
activation, possibly acting more like a rheostat than a binary 
switch. Future work will need to examine the combinations 
of effects of PTMs on binding. A further, as yet unexplored 
area is the effect of local chromatin architecture and whether 
the same combinations of PTMs in the same cell may have 
distinct effects on activity at different chromosomal loci. 
Addressing these questions will require state-of-the-art 
chromatin immunoprecipitation approaches.  
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