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Abstract
Due to its high proliferation capacity and rapid intracranial spread, glioblastoma 
(GBM) has become one of the least curable malignant cancers. Recently, the compet-
ing endogenous RNAs (ceRNAs) hypothesis has become a focus in the researches of 
molecular biological mechanisms of cancer occurrence and progression. However, 
there is a lack of correlation studies on GBM, as well as a lack of comprehensive 
analyses of GBM molecular mechanisms based on high-throughput sequencing and 
large-scale sample sizes. We obtained RNA-seq data from The Cancer Genome 
Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Further, differen-
tially expressed mRNAs were identified from normal brain tissue and GBM tissue. 
The similarities between the mRNA modules with clinical traits were subjected to 
weighted correlation network analysis (WGCNA). With the mRNAs from clinical-re-
lated modules, a survival model was constructed by univariate and multivariate Cox 
proportional hazard regression analyses. Thereafter, we carried out Gene Ontology 
(GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analy-
ses. Finally, we predicted interactions between lncRNAs, miRNAs and mRNAs by 
TargetScan, miRDB, miRTarBase and starBase. We identified 2 lncRNAs (NORAD, 
XIST), 5 miRNAs (hsa-miR-3613, hsa-miR-371, hsa-miR-373, hsa-miR-32, hsa-miR-92) 
and 2 mRNAs (LYZ, PIK3AP1) for the construction of a ceRNA network, which might 
act as a prognostic biomarker of GBM. Combined with previous studies and our en-
richment analysis results, we hypothesized that this ceRNA network affects immune 
activities and tumour microenvironment variations. Our research provides novel as-
pects to study GBM development and treatment.
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1  | INTRODUC TION

Glioblastoma (GBM) ranks the most prevalent malignant cancer 
of the central nervous system and has a mortality rate of approx-
imately 3.19 per 100 000.1 Intensive therapy is considered to be 
the standard treatment of GBM.2 However, to date, although the 
standard treatment has been applied, its high proliferative capacity 
and fast intracranial dissemination make it the least curable cancer, 
with a median overall survival of approximately 15 months.3 In re-
cent years, vast quantities of valuable information have accumulated 
by expanding big data analyses in molecular biology and developing 
targeted therapy techniques, which has laid a solid foundation for 
cancer research.4 However, the detailed molecular mechanisms of 
GBM still remain unclear, which brings difficulties to its diagnosis 
and treatment. Thus, finding novel molecular mechanisms and bio-
markers of GBM to enable the early diagnosis and treatment preci-
sion has become a hotspot in GBM research.

Currently, studies on competing endogenous RNA (ceRNA) 
co-expression networks are providing new perspectives on cancer 
pathogenesis at the molecular level. Acting as the key link in ceRNA 
co-expression networks, lncRNAs regulate gene expression through 
competitive binding with specific miRNAs, sequestering RNA-
binding proteins and influencing nuclear transcription.5,6 Through 
their roles in ceRNA co-expression networks, lncRNAs signifi-
cantly affect the biological processes of brain cancer. For example, 
Zhang found GBM cells remodel the tumour microenvironment to 
promote tumour chemotherapy-resistance by secreting oncogenic 
lncSBF2-AS1-enriched exosomes.7 LncRNA AC016405.3 was found 
to suppress proliferation and metastasis through modulating TET2 
by sponging of miR-19a-5p in GBM cells.8 The sponging of miR-
885-3p by lncRNA HOXB-AS1 could further affect the expression of 
HOXB2, and this process regulates the proliferation and migration 
of GBM.9 Other evidence showed that LINC01579 could compet-
itively bind with miR-139-5p to regulate EIF4G2 and thus lead to 
cell proliferation and apoptosis in GBM.10 Therefore, these studies 
have shown that the lncRNA-miRNA-mRNA ceRNA co-expression 
network is implicated in the development of GBM. However, publi-
cations on GBM are limited, and a comprehensive analysis of GBM 
molecular mechanisms based on high-throughput sequencing and on 
a large-scale sample size is lack.

In the present study, we extracted RNA-seq data from Genotype-
Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA). 
Furthermore, differentially expressed mRNAs were identified and 
applied to weighted correlation network analysis (WGCNA) for 
screening modules related to clinical traits. Among these modules, 
we set up a survival model by Cox proportional hazard regression 
analysis to predict GBM outcomes. Finally, combining information 
from multiple databases, we predicted key lncRNAs and miRNAs to 
weave a ceRNA network for explaining the molecular mechanism of 
GBM.

2  | MATERIAL S AND METHODS

2.1 | Data processing and differential expression 
analysis

The RNA sequence data of 5 normal brain tissues and 168 GBM 
tissues were obtained from TCGA database (https://portal.gdc.can-
cer.gov/). Clinical data such as patient age, gender, overall survival 
time and overall survival state were also downloaded from TCGA. 
Expression data of 105 normal brain tissues were obtained from the 
GTEx (https://gtexp ortal.org/home/datasets) database. Complete 
descriptions of the donor's age, gender, biospecimen procurement 
methods and sample fixation were presented in the GTEx official 
annotation. With the assistance of the R package (limma), differently 
expressed mRNAs were retrieved according to P < .05 and absolute 
log2-fold change (FC) > 2.11 For excluding non-coding mRNA inter-
ference, Ensembl ID was used to identify and obtain protein-coding 
mRNA information for further study. To visualize the differentially 
expressed mRNAs, volcano plots were generated using the ggplot2 
package for the R platform.

2.2 | GO and KEGG pathway enrichment analyses of 
differentially expressed mRNAs

We performed the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses and Gene Ontology (GO) 
with the R package (clusterProfiler).12-14 The biological processes, 

Alive (n = 30) Dead (n = 137) Total (n = 167)

Gender

Female 12 (40%) 47 (34%) 59 (35%)

Male 18 (60%) 90 (66%) 108 (65%)

Age

Mean (SD) 54.37 (16.41) 60.30 (12.68) 59.23 (13.56)

Median [MIN, MAX] 54 [21, 82] 62 [21, 89] 60 [21, 89]

Overall survival time

Mean (SD) 334.27 (261.24) 447.42 (404.76) 427.10 (384.76)

Median [MIN, MAX] 220 [13, 958] 382 [5, 2681] 360 [5, 2681]

TA B L E  1   The clinical characteristics of 
GBM patients

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://gtexportal.org/home/datasets
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cell components, molecular function and KEGG pathways of the 
differentially expressed mRNAs were retrieved with a cut-off cri-
terion of P < .05 and visualized by the R packages ggplot2 and 
GOplot.

2.3 | Weighted correlation network analysis

We integrated the data from the differentially expressed mRNAs 
to perform weighted correlation network analysis (WGCNA). The R 
package ‘WGCNA’ was adopted to detect traits-related modules.15 
Herein, we set the soft-thresholding power as 6 and scale-free R2 
as >0.85 to figure out key modules. The modules were then applied 
to analyse their relationship with GBM clinical traits using Pearson's 
correlation test, and adjusted P < .05 was considered significant. GO 
enrichment analysis was applied in order to explain the biological 
role of the modules.

2.4 | Cox proportional hazard regression analysis

First, we conducted a univariate Cox proportional hazard regression 
analysis to determine the relationship of the expression levels of 
mRNAs from modules related to clinical traits with overall survival 
(OS). Second, multivariate Cox proportional hazard regression analy-
sis was carried out for setting up a survival model. Finally, survival 
analysis and receiver operating characteristic (ROC) analyses of the 

F I G U R E  1   Volcano plot of differentially expressed mRNAs. 
Red spots represent up-regulated mRNAs, and green spots 
represent down-regulated mRNAs

F I G U R E  2   GO enrichment analyses of differentially expressed mRNAs
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model were performed. The forest plots, risk score plot, heat map, 
area under the receiver operating characteristic curve (AUC) and 
survival curve of the survival model were visualized.

2.5 | Construction of ceRNA co-expression network

Combining the above research results, we predicted targeting miR-
NAs of the mRNAs with high prognosis values by using the online 
bioinformatics tools TargetScan (https://www.targe tscan.org/), 
miRDB (https://www.mirdb.org/miRDB/) and miRTarBase (https://

mirta rbase.mbc.nctu.edu.tw/). Different algorithms and predic-
tion models are used by these databases for predicting miRNAs. 
TargetScan operates by searching for conserved sites and ranks the 
results by predicted targeting efficacy.16,17 By analysing thousands 
of miRNA-target interactions (MTIs) from high-throughput sequenc-
ing experiments, miRDB can predict biologically relevant interac-
tions between miRNAs and genes.18 The miRTarBase contains more 
than three hundred and sixty thousand MTIs that have been vali-
dated experimentally by reporter assays, Western blots, microarrays 
and next-generation sequencing experiments.19 We merged these 
predicted miRNAs to improve the reliability of the results. Millions of 

F I G U R E  3   KEGG pathway enrichment analyses of differentially expressed mRNAs

https://www.targetscan.org/
https://www.mirdb.org/miRDB/
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RNA-binding sites from 108 CLIP-seq data sets have been analysed 
and deposited in starBase (https://starb ase.sysu.edu.cn/), which 
provides tools to predict relevant lncRNA-miRNA interactions.20 
Ultimately, a ceRNA co-expression network containing lncRNAs, 
miRNAs and mRNAs was constructed and visualized by Cytoscape 
software.

3  | RESULTS

3.1 | Identification of differentially expressed 
mRNAs in GBM

The general condition and clinical characteristics of the GBM pa-
tients are presented in Table 1. The expression of mRNAs level in 
110 normal brain tissue samples and 168 GBM cases was explored 
for further study. When P < .05 and |log2 FC|>2 were used as cut-
off criteria, 1347 differentially expressed mRNAs were standardized 

and identified via the limma R package, which included 516 up-reg-
ulated and 831 down-regulated mRNAs. A volcano plot was applied 
to illustrate the down-regulated and up-regulated mRNAs (Figure 1).

3.2 | GO, KEGG pathway enrichment analyses

To explore the biological characteristics of the differentially expressed 
mRNAs, GO enrichment analyses were performed with a cut-off crite-
rion of P < .05. As shown in Figure 2, in the ‘biological processes’ group, 
differentially expressed mRNAs were mainly enriched in synapse and 
vesicle-mediated transport, such as ‘regulation of vesicle-mediated 
transport’, ‘synaptic vesicle cycle’ and ‘modulation of chemical synaptic 
transmission’. Moreover, in the ‘cell component’ group, differentially 
expressed mRNAs were identified to related to transmembrane trans-
port-related structures, for instance ‘synaptic membrane’, ‘transport 
vesicle’, ‘transmembrane transporter complex’ and ‘synaptic vesicle’. In 
addition, ‘molecular function’ analysis verified that these differentially 

F I G U R E  4   WGCNA identified critical 
modules correlating with GBM clinical 
traits. A, Analysis of the scale-free fit 
index for various soft-threshold powers 
and mean connectivity for various soft-
threshold powers. B, Cluster dendrogram 
of the co-expression network modules 
was produced based on topological 
overlaps in the mRNAs. C, Heat map of 
topological overlap matrix in the mRNA 
modules is shown. D, Correlation between 
modules and traits. The number on the 
left in each cell refers to the correlation 
efficient of each module in the trait, 
and the number on the right is the 
corresponding P-value. E, Clustering plot 
describing the top 10 results of the GO 
enrichment analysis

https://starbase.sysu.edu.cn/
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expressed mRNAs were correlated with all kinds of channel activity: 
‘substrate-specific channel activity’, ‘voltage-gated ion channel activ-
ity’ and ‘voltage-gated cation channel activity’. KEGG pathway enrich-
ment analysis using P < .05 as a cut-off criterion demonstrated that the 
differentially expressed mRNAs were related to the complex biologi-
cal behaviour of GBM such as ‘retrograde endocannabinoid signalling’, 
‘phagosome’, ‘GABAergic synapse’, ‘synaptic vesicle cycle’ and ‘gluta-
matergic synapse’ (Figure 3). These most significantly enriched GO 
terms and KEGG pathways indicated the interactions of differentially 
expressed mRNAs at the functional level.

3.3 | WGCNA analysis applied to differentially 
expressed mRNAs

In the present work, mRNA modules among the 1347 differen-
tially expressed mRNAs were analysed using the WGCNA R 

package. As shown in Figure 4A, softpower 6 and scale-free R2 
as > 0.85 were chosen as the thresholds to identify co-expressed 
mRNA modules. Five mRNA colour modules were identified and 
the heat maps of topological overlap matrix (TOM) are presented 
in Figure 4B and Figure 4C. Then, mRNAs in the 5 different col-
oured modules were continuously used to analyse their corre-
lation with GBM clinical traits using Pearson's correlation test 
and P < .05 was considered significant. The green module and 
turquoise module, which included 83 mRNAs, displayed strong 
relationships with the overall survival state of the GBM cases 
(Figure 4D). These 83 mRNAs were further subjected to GO en-
richment analyses for explaining their biological roles. As shown 
in Figure 4E, the enrichment analysis revealed that the mRNAs 
from the modules were most related to ‘phagocytosis’, ‘neutrophil 
mediated immunity’ and ‘immune response-regulating cell surface 
receptor signalling pathway’.

3.4 | Identification of prognosis-related genes

Next, we randomly selected 80% of all of the GBM samples 
(n = 134) from TCGA database as the test group. A univariate 
Cox proportional hazard regression analysis was applied to de-
termine the relationship of the expression levels of 83 mRNAs 
with overall survival (OS). A total of 28 mRNAs were obtained by 
the threshold of P-value < .05 (Table 2). The abovementioned 28 
mRNAs were subjected to a multivariate Cox proportional hazard 
regression analysis. We then set up a survival model for OS with 
13 mRNAs as follows: LYZ + FPR3 + FBP1 + GPSM3 + CCR1 + H
AVCR2 + MNDA + MSR1 + PIK3AP1 + LCP1 + C-3AR1 + SAMS
N1 + BCL2A1 (Figure 5A). The GBM samples were divided into pre-
dicted low- (n = 67) and high-risk groups (n = 67) according to the 
multivariate Cox score result as shown in Figure 5B. Moreover, 
the expression heat map of the 13 mRNAs in the high-risk or 
low-risk groups is shown in Figure 5C. We further estimated 
the accuracy of the 13-mRNA signature for predicting survival. 
Kaplan-Meier survival curves depicted that, compared with low-
risk patients, those predicted high risk had significantly shorter 
OS (P = 1.94e − 07, Figure 5D). Receiver operating characteristic 
(ROC) analysis to compare the sensitivity and specificity of the 
survival prediction of our models was subsequently carried out. 
TCGA data set indicated that AUC of the 13-mRNAs signature 
was 0.751, showing high sensitivity and specificity for prognosti-
cation (Figure 5E).

3.5 | Construction of the ceRNA co-
expression network

Combining the above research results, we predicted targeting miR-
NAs of the 13 mRNAs in the survival model by TargetScan, miRDB 
and miRTarBase. Furthermore, mRNAs without predicted miRNA 

TA B L E  2   The results of univariate Cox proportional hazard 
regression analysis

ID HR
P-
value

LYZ 1.187 .013

SPI1 1.286 .032

FPR3 1.256 .008

TYMP 1.244 .030

FBP1 1.234 .047

FERMT3 1.397 .008

APOC1 1.251 .021

CTSS 1.236 .023

FCGR2A 1.203 .049

GPSM3 1.290 .047

CCR1 1.322 .007

MAFB 1.199 .044

PLEK 1.334 .011

HAVCR2 1.311 .015

MNDA 1.239 .035

MSR1 1.206 .042

PIK3AP1 1.268 .039

UCP2 1.347 .014

NPC2 1.278 .032

C1QA 1.226 .039

LCP1 1.256 .042

PTAFR 1.282 .037

SLC7A7 1.282 .041

C3AR1 1.291 .017

ABI3 1.338 .031

SAMSN1 1.279 .035

LAPTM5 1.268 .045

BCL2A1 1.240 .006
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intersections in the three databases were discarded (Figure 6A). 
Targeted lncRNAs of these predicted miRNAs were screened by 
starBase and overlapped for seeking co-regulatory pathways 
(Figure 6B). We merged these predicted results, found LYZ was re-
lated to hsa-miR-3613, hsa-miR-371, hsa-miR-373 and hsa-miR-32 

and found that hsa-miR-92 regulated PIK3AP1. Moreover, lncRNAs 
XIST and NORAD were targeted to all of the 5 predicted miRNAs. 
Ultimately, a ceRNA co-expression network containing lncRNAs, 
miRNAs and mRNAs was constructed and visualized by Cytoscape 
software (Figure 6C).

F I G U R E  5   The establishment of a 
prognostic assessment model by Cox 
proportional hazard regression analysis. 
A, Related mRNA parameters in the 
prognostic assessment model calculated 
by multivariate Cox proportional hazard 
regression analysis. B, The GBM samples 
were divided into low- and high-risk 
groups based on the multivariate Cox 
score. C, An expression heat map of the 
13 mRNAs in the high-risk or low-risk 
groups is shown. D, Receiver operating 
characteristic analysis of the 13-mRNA 
model was performed. E, Kaplan-Meier 
survival analysis of the 13-mRNAs model 
was performed
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4  | DISCUSSION

Glioblastoma is considered as an incurable disease because of its high 
proliferative capacity and active infiltrative growth.21 Finding possible 
molecular mechanisms and potential biomarkers of GBM is the urgent 
task at hand.22 With the development of human genome research, 
the importance of non-coding genes’ regulatory effects is becoming 
increasingly clear. LncRNAs acts as a critical role in the occurrence, 
growth, metastasis, prognosis and treatment of cancers.23,24 The 
ceRNA hypothesis describes regulatory networks among protein-cod-
ing mRNAs and non-coding RNAs, bridges the gap between lncRNA 
unconventional expression and mRNA expression regulation and lays 
a foundation for studying the mechanisms of specific lncRNAs.5

The rapid development of bioinformatics methods provides 
methodological support for exploring high-throughput sequenc-
ing data. We applied WGCNA and Cox proportional hazard re-
gression analysis for processing and analysing GBM sequencing 
and clinical data. It is estimated that on average each mRNA in-
teracts with four to eight other mRNAs and is involved in 10 bi-
ological functions.25,26 Based on that, WGCNA established the 
incorporating modules and exploring clinical trait relevance as its 
core algorithms. Through soft-threshold filtering, co-expression 
matrix constructing, weighted network establishing and hierarchi-
cal clustering, module-trait networks can be constructed for un-
derstanding the clinical relevance of biomarkers accurately.27 Cox 
proportional hazard regression models have the function of pro-
cessing truncated survival time, simultaneously analysing various 

variables, and has no requirement on the distribution type of the 
survival function of data.28 All of these advantages make it the 
most common modelling tool in survival analysis. In the evaluation 
of cancer prognosis, univariate and multivariate Cox proportional 
hazard regression analysis has been widely used to screen prog-
nostic related mRNAs and construct survival models.

Herein, based on the RNA-seq data and clinical data from GBM 
patients, 1347 differentially expressed mRNAs were screened out and 
incorporated into WGCNA to obtain prognostic related modules. To 
demonstrate the biological functions of the differentially expressed 
mRNAs and mRNA modules, enrichment analysis was conducted. In 
addition, we established a survival model though univariate regression 
analysis and multivariate regression analysis of mRNAs derived from 
the clinically relevant modules. A ceRNA co-expression network for 
prognostication was finally constructed by querying online databases 
and overlapping the prediction results. Ultimately, 2 lncRNAs, 5 miR-
NAs and 2 mRNA were identified as prognosis biomarkers.

The GO and KEGG enrichment analyses suggested that the dif-
ferentially expressed mRNAs and clinically related modules were ex-
tensively associated with ‘regulation of vesicle-mediated transport’, 
‘synaptic vesicle’, ‘voltage-gated ion channel activity’ and ‘neutrophil 
degranulation’. Existing evidence shows these processes and struc-
tures affect the occurrence, metastasis, prognosis and treatment of 
GBM in various aspects. For instance, researchers reported extracel-
lular vesicles have the dual function of diagnosing GBM at an early 
stage and delivering Sema3A, which elevates vascular permeability, 
promoting invasion.29 The crosstalk between synaptic vesicles and 

F I G U R E  6   Construction of the 
ceRNA co-expression network. A, The 
relationship between the mRNAs and 
their corresponding miRNAs is shown. 
B, Overlapping lncRNAs were analysed 
by the predicted lncRNAs of 5 miRNAs. 
C, The lncRNA-miRNA-mRNA ceRNA 
co-expression network was constructed 
via 2 lncRNAs, 5 miRNAs and 2 mRNAs 
for GBM prognosis
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the tumour microenvironment has a significant effect on the invasion 
and proliferation of high-grade gliomas. For example, studies have re-
ported that synaptic molecule neuroligin-3 (NLGN3) could promote 
glioma proliferation by the PI3K-mTOR pathway.30 Under the bridge 
of the ion channel, the interaction of GBM with reactive astrocytes 
was found to be closely related to the decrease in sensitivity to TMZ 
and the enhancement of cancer progression and aggression.31,32

The phenomenon of neutrophil degranulation has been reported 
in GBM and several other human cancers.33-35 Furthermore, neutro-
phil degranulation mediated T cell functional inhibition was found to 
promote the growth of GBM and that immunosuppression could be 
blocked through arginine supplementation.33

In the ceRNA co-expression network, LYZ was found to be dif-
ferently expressed in several cancers.36,37 Through participating 
in immunization activities by presenting antigens, LYZ regulates 
the tumour microenvironment and influences cancer processes.38 
PIK3AP1 is implicated in the activation of the PI3K/AKT pathway 
through phosphorylation of AKT mediated by B cells and natural killer 
cells.39,40 This process is also essential for cell proliferation, metabo-
lism, cancer inhibition and oxaliplatin resistance.41,42 These identified 
mRNAs are all potential biomarkers for predicting the prognosis of 
cancers. Previous reports have indicated that miR-3613, miR-373, 
miR-32 and miR-92 participate in the cancer epithelial-mesenchy-
mal transition (EMT) process, which is critical for cancer migratory 
and invasive capabilities.43-46 MiR-371 has been found to promote 
the proliferation and cell cycle of GBM cells, acting as a proto-onco-
gene.47 Several lines of evidence suggest that lncRNA-XIST induces 
macrophage polarization, promotes the EMT process and stimulates 
the progression of cancers.48,49 LncRNA NORAD was found to be 
significantly associated with cell proliferation, migration and invasion, 
affecting apoptosis and EMT.50 In terms of function and structure, 
our enrichment analysis results are consistent with the above studies.

Previous studies have provided an experimental basis for our 
predicted ceRNA network. Combined with the existing research 
results, we speculate that the molecular mechanism of our ceRNA 
network might be associated with immune activities and tumour 
microenvironment variations. The mechanisms of the immune and 
tumour microenvironment in GBM are important from its initiation, 
and the studies of interactions among mRNAs, miRNAs and lncRNAs 
are currently limited. Our research has provided novel aspects to 
promote the study of GBM development and treatment. However, 
further verification experiments should be carried out in the near 
future to demonstrate the current conclusion.

5  | CONCLUSIONS

In conclusion, in our ceRNA co-expression network, the interaction of 
lncRNAs and miRNAs leads to the differential expression of LYZ and 
PIK3AP1, which then leads to a worse prognosis of GBM. We suspect 
the poor prognosis is mainly related to immune activities and tumour 
microenvironment variations. Our findings will shed light to under-
standing the underlying molecular mechanism of GBM and will provide 

new biomarkers for clinical diagnosis and treatment, and our results can 
be used to guide future in-depth studies of GBM. However, its practical 
application value, such as sensitivity, specificity and price, has yet to be 
verified by laboratory studies and large-scale clinical studies.
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