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Abstract

Mammalian genomes contain numerous genes for long noncoding RNAs (lncRNAs). The functions of the lncRNAs remain

largely unknown but their evolution appears to be constrained by purifying selection, albeit relatively weakly. To gain insights

into the mode of evolution and the functional range of the lncRNA, they can be compared with much better characterized

protein-coding genes. The evolutionary rate of the protein-coding genes shows a universal negative correlation with

expression: highly expressed genes are on average more conserved during evolution than the genes with lower expression
levels. This correlation was conceptualized in the misfolding-driven protein evolution hypothesis according to which

misfolding is the principal cost incurred by protein expression. We sought to determine whether long intergenic ncRNAs

(lincRNAs) follow the same evolutionary trend and indeed detected a moderate but statistically significant negative

correlation between the evolutionary rate and expression level of human and mouse lincRNA genes. The magnitude of the

correlation for the lincRNAs is similar to that for equal-sized sets of protein-coding genes with similar levels of sequence

conservation. Additionally, the expression level of the lincRNAs is significantly and positively correlated with the predicted

extent of lincRNA molecule folding (base-pairing), however, the contributions of evolutionary rates and folding to the

expression level are independent. Thus, the anticorrelation between evolutionary rate and expression level appears to be
a general feature of gene evolution that might be caused by similar deleterious effects of protein and RNA misfolding and/or

other factors, for example, the number of interacting partners of the gene product.

Key words: long noncoding RNA, ncRNA, RNA expression, genomic alignments, introns, RNA folding.

Introduction

Traditionally, genomes have been perceived mostly as repos-

itories of protein-coding genes. Although this might be

largely true in the case of prokaryotes and unicellular eukar-

yotes, numerous recent studies on the genomes of multicel-

lular eukaryotes, particularly animals, have revealed a vast
RNome, that is, a collection of genes for noncoding RNAs

(ncRNAs) (Carninci et al. 2005; Mattick and Makunin

2006; Ponting et al. 2009). Strikingly, the total number of

genes for ncRNAs that are expressed from a mammalian ge-

nome seems to exceed the number of protein-coding genes

severalfold (Mattick and Makunin 2006). The classification

of ncRNAs, whether these loci should be considered genes

or not, and the validation of their functionality remain mat-
ters of intensive investigation and debate (van Bakel and

Hughes 2009; Ponting and Belgard 2010).

Among many distinct classes of ncRNAs, the long ncRNA

(lncRNA) are probably the most enigmatic group. The def-

inition of lncRNA is based solely on the transcript size:

lncRNAs are defined as non-coding RNAs longer than 200

nucleotides (Mattick and Makunin 2006; Ponting et al.

2009). Many lncRNAs are spliced, 5# capped, and polyade-

nylated (Okazaki et al. 2002; Carninci et al. 2005; Kapranov

et al. 2007; Ponjavic et al. 2007). Based on the localization in

the genome, lncRNAs can be divided into two distinct clas-

ses: 1) transcripts that overlap protein-coding genes and 2)

long intergenic noncoding (linc) RNAs that are transcribed

from genome regions separating protein-coding genes

(Ponting et al. 2009). Many lncRNAs that overlap protein-

coding genes are likely to be involved in a sense–antisense

regulation (Chen et al. 2005). The current knowledge on the

functions of lincRNAs is scarce because very few of the
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lincRNAs have been assigned a function experimentally, but
their functional range is believed to be broad on the basis of

indirect evidence (Bertone et al. 2004; Ponjavic et al. 2007;

Mercer et al. 2009; Ponting and Belgard 2010). It has been

suggested that lincRNAs could be involved in the regulation

of many cellular processes (Mattick and Makunin 2006). For

example, they can affect transcription locally at the gene

level (Martens et al. 2004; Martianov et al. 2007; Osato

et al. 2007; Hirota et al. 2008) as well as target transcription
regulators and thus affect transcription of many genes (Feng

et al. 2006; Goodrich and Kugel 2006; Huarte et al. 2010).

They can also target RNA polymerase II in human andmouse

(Espinoza et al. 2007;Mariner et al. 2008) and thus act on an

even broader range of genes. Furthermore, lincRNAs partic-

ipate in the regulation of splicing (Munroe and Lazar 1991;

Beltran et al. 2008) and translation (Wang et al. 2005;

Centonze et al. 2007).Well-characterized examples of lincR-
NAs involved in epigenetic processes are Xist (Clemson et al.

1996), Kcnq1ot1 (Umlauf et al. 2004; Pandey et al. 2008)

and Air (Nagano et al. 2008) (also see the review by Ponting

et al. 2009).

Compared with protein-coding sequences and small

RNAs (e.g., miRNA and snoRNA), lncRNAs are weakly con-

served: only approximately 5% of the bases have been es-

timated to be evolutionarily constrained (Marques and
Ponting 2009). Accordingly, early studies called these RNAs

‘‘transcriptional dark matter’’ that was considered to be

largely nonfunctional although a low level or even lack of

appreciable conservation do not necessarily imply lack of

function (Pang et al. 2006). A well-studied example is the

Xist RNA, which is weakly conserved but is essential for

the X chromosome dosage compensation in mammals

(Nesterova et al. 2001). Moreover, the limited overall con-
servation notwithstanding, many of the lncRNAs still contain

strongly conserved regions (Siepel et al. 2005). In general,

lncRNAs show reduced substitution and insertion/deletion

rates compared with random expectation, which has been

interpreted as a signature of purifying selection (Ponjavic

et al. 2007; Guttman et al. 2009). The recent study by

Chodroff et al. (2010) reports the first attempt to character-

ize lncRNA orthologs present in eutheria, marsupials, and
birds. Several lncRNAs analyzed in this work have been shown

to possess conserved transcript structures and expression

patterns.

In general, the expression levels of lncRNAs tend to be lower

than those of protein-coding genes (Mattick and Makunin

2006). A comparative analysis of the expression patterns of

intergenic transcripts in brain, heart, testis, and lymphoblas-

toid cell lines of human and chimpanzee has revealed a tis-
sue-specific conservation pattern, which is similar to that of

protein-coding genes. Altogether, approximately half of the

transcripts that showed differences in expression between

the two species come from the intergenic regions. Thus, lincR-

NAs might have played an important role in the phenotypic

differentiation between these two primates (Khaitovich
et al. 2006).

Some lncRNA genes might have evolved from protein-

coding genes as exemplified by the thoroughly characterized

Xist RNA (Duret et al. 2006; Elisaphenko et al. 2008), suggest-

ing the possibility that some properties of lncRNAs and their

genes might be similar to those of protein-coding genes. Pro-

tein-coding genes that are expressed highly and broadly

across tissues on average are more evolutionarily conserved
than genes that have lower expression level and breadth;

a significant negative correlation between the expression

and evolutionary rate of protein-coding genes has been re-

vealed for all model organisms for which extensive expression

data are available (Duret and Mouchiroud 2000; Pal et al.

2001; Krylov et al. 2003; Zhang and Li 2004). This negative

correlation extends also to 3#UTRs of protein-coding genes

although not to 5#UTRs (Jordan et al. 2004). The universal
anticorrelation between the evolutionary rate and the expres-

sion level observed for the protein-coding genes has been

explainedwithin the framework of themisfolding-driven con-

cept of protein evolution according to which the selective

pressure to minimize the misfolding is the strongest for highly

expressed proteins (Drummond and Wilke 2008, 2009; Wolf

et al. 2010; Yang et al. 2010). Here, we show that the universal

dependency between the evolution and the expression holds
also for the lincRNA genes and is comparable in magnitude to

the anticorrelation detected for protein-coding genes.

Materials and Methods

The lincRNA Sets

Complete mouse and human probe sets were downloaded

from NRED database (Dinger et al. 2009) in the tab-delimited
and BED (Browser Extensible Data, containing genomic coor-

dinates) formats. The probe sets from platform GNF Atlas 2

(Mouse and Human), with target classification ‘‘Noncoding

Only’’ were used for further analysis. This resulted in 5444

mouse and 917 human probe sets. Only the probe sets that

mapped to intergenic regions of the mouse and human ge-

nomes (i.e., between two adjacent protein-coding genes)

were used and analyzed. This was achieved by selecting only
the probe sets with the value ‘‘Intergenic’’ in both ProbeGe-

nomicContextSense and ProbeGenomicContextAntisense

fields of the tab-delimited file.

As a next step, one-to-many list of probe sets and their

corresponding Target Accession IDs (NCBI GenBank IDs of

RNAs; TargetAccessionID column of NRED file) was trans-

formed into a one-to-one list, where accession ID corre-

sponded to the single probe set, preferentially the one not
with _s_at or _x_at suffix which, according to Affymetrix,

non-uniquely map to the genomes in several locations. This

list of lincRNAs was further filtered: genes shorter than 200

nucleotides were removed. This procedure yielded the final

set of NCBI GenBank Accession IDs of 2390 mouse and
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589 human RNAs and their correspondingmicroarray expres-
sion probe sets. There were alternatively spliced isoforms in

these data sets, the fraction of such isoforms was ,10%.

To control for the possibility of contamination of the

lincRNA data set with protein-coding genes, two tests were

performed: 1) mouse lincRNA sequences were searched

against protein sequence databases using the BlastX pro-

gram, 2) the coding potential of lincRNAs was predicted

using the SYNCODE program (Rogozin et al. 1999).

Gene Expression Data

To analyze the transcriptome of normal tissues without bias

from cancerous tissues, only data for normal (non-cancerous)

tissues (73 human and 61 mouse tissues) were used. Log2-

normalized expression levels (A-values) ,7.0 (threshold

representing a conservative expression level above back-
ground, according to the NRED database) were ignored,

and median values of expression for each probe set across

the tissues were calculated and designated as probe set’s

Median Expression Level. Expression Breadth, the number

of tissues where the probe set has been expressed above

the A-value threshold (7.0), was also calculated. The probe

sets with _s_at and _x_at suffixes were discarded as promis-

cuous because they map to several regions in the genome,
and it would be incorrect to associate their expression levels

to one particular lincRNA ID.

As the final step, median expression level and breadth val-

ues of probe sets were associated with their corresponding

lincRNA IDs and used throughout the entire work. For

mouse, this data set contained 2013 lincRNAs; human data

set contained 519 lincRNAs.

As an alternative method of measuring expression levels,
counting of the Expressed Sequence Tags (ESTs) was em-

ployed. The sequences of lincRNAs were extracted from

the UCSC Table Browser (see Sequences, Alignments, and

Evolutionary Distances in the Materials and Methods sec-

tion). These sequences were searched against the human

and mouse subsets of EST database (archives est_human.-

tar.gz and est_mouse.tar.gz, available from the NCBI FTP site

at ftp://ftp.ncbi.nih.gov/blast/db/) using the program BlastN
2.2.24þ (Camacho et al. 2009) from the Blast package. The

number of ESTs with .97% identity and alignment length

of at least 200 nucleotides or longer was counted. The pro-

cedure was repeated twice, with and without masking the

human/mouse repeat sequences; median value was calcu-

lated and assigned to lincRNAs as an expression level based

on EST count.

The mouse RNA-seq data for eight tissues (the ENCODE pro-
ject; modENCODE Consortium, 2009) was downloaded from

the UCSC genome browser Web site (ftp://hgdownload.cse

.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeLicrRna

Seq/) and pooled together. The number of RNA-seq hits (M)

was calculated for eachmouse lincRNA. The overall expression

of each lincRNA was estimated using a log2 normalization:
Exp-RNA-seq 5 log2[(M þ 1)/L] þ 10, where L is the length

of the lincRNA. This normalization has been suggested as a ro-

bust estimator of expression using RNA-seq data (Lee et al.

2011).

Sequences, Alignments, and Evolutionary Distances

The genomic coordinates and sequences of exons and in-
trons of Target RNA Accession IDs (NCBI GenBank IDs of

RNAs; TargetAccessionID column of NRED file) were down-

loaded from the UCSC Table Browser (Karolchik et al. 2004),

from all_mrna tables of mouse mm8 and human hg18 as-

semblies. Multiple alignments of these regions were fetched

from Galaxy (Blankenberg et al. 2010; Goecks et al. 2010).

Two different 17-way multiZ alignments—with human

(hg18) and mouse (mm8) reference genomes—were used;
only mouse (mm8), human (hg18), chimp (panTro1),

macaque (rheMac2), rat (rn4), and dog (canFam2) align-

ments were downloaded. Alignments of exons and introns

,100 nt were discarded. The exon and intron alignments

for each lincRNA were concatenated, and two alignments

were produced per lincRNA: ‘‘stitched’’ exons and ‘‘stitched’’

introns.

Calculation of percentage of insertions/deletions (indels)
in the alignments was performed using an in-house tool

written in Cþþ. The program employed the following algo-

rithm: the number of indel positions of pairwise alignments

and the alignment length were computed. Finally, the ratio/

percentage of indels and alignment length were calculated.

In order to eliminate unreliable alignments containing an ex-

cess of indels, only alignments with the total length of indels

below a threshold were used for subsequent analysis; three
indel thresholds (15%, 30%, and 45%) were applied. Pair-

wise evolutionary distance matrices for concatenated align-

ments of exons or introns from human and mouse linc RNA

genes were calculated using the DNADIST program from the

PHYLIP package (Felsenstein 1996), with the Kimura nucle-

otide substitution model.

The C.A.MAM program (Bohning et al. 1992, 1998) was

used to reveal outliers in the distributions of evolutionary
distances and expression. This program attempts to decom-

pose each distribution into two ormore normal or log-normal

distributions. If the decomposition procedure produced one

distribution, no outliers were removed. If the decomposition

produced several distributions, only one distribution with

the largest number of data points was used for further

correlation analysis. The Pearson (r), Spearman (rho), and

Kendall (tau) correlation coefficients and their correspond-
ing P values were calculated using an ad hoc R-language
script. To eliminate the potential effect of contamination

by the protein-coding genes on the observed correlations,

all the lincRNAs with a similarity to the protein-coding genes

were removed from the lincRNA set and the correlation
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coefficients were recalculated. To obtain the list of lincRNAs
similar to proteins, exons (separate as well as concatenated)

were compared with the mouse RefSeq proteins using the

BlastX program. Hits with the E-value,10�4 and alignment

length .20 amino acids were considered suspect. The two

lists of suspect lincRNAs originated from the analyses of con-

catenated and separate exons (853 and 860 lincRNAs,

respectively) were merged into the final set of 907 lincRNAs

potentially containing protein-coding regions, which were
removed from the mouse lincRNA set, and the correlation

coefficients were recalculated for the remaining lincRNAs.

Gene Sequences and Alignments for Orthologous Pro-
tein-Coding Genes in Human–Mouse

To compare the results obtained for lincRNA genes with the

trends observed for protein-coding genes, a control gene set

was compiled consisting of 7,711 well-annotated ortholo-

gous human and mouse protein-coding genes that yielded

high-quality genome alignments. For each human and
mouse pair from the UCSC list of the human-mouse ortho-

logs (http://genome.ucsc.edu/cgi-bin/hgTables), we identi-

fied the best Blast hit and estimated the overlap of the

protein-coding sequences. Only full-length protein-coding

transcripts with links to the RefSeq database and with up

to 75% of protein-coding region aligned were included

in the control group and used for the subsequent analysis.

Mouse genome sequences were downloaded from ftp://
hgdownload.cse.ucsc.edu/goldenPath/mm8/chromosomes/.

Genomic coordinates of extended human gene loci were

transferred to the mouse genome sequence using the UCSC

Lift Genome Annotations tool (http://genome.ucsc.edu/

cgi-bin/hgLiftOver). Mammalian genomic repeats were

masked, and extended genomic loci of orthologous hu-

man–mouse genes were aligned using the OWEN program

(Ogurtsov et al. 2002) and annotated. In case of alternatively
spliced forms, the longest CDSs and UTRs were considered.

For the protein-coding regions, the alignment of nucleotide

sequences was guided by the amino acid sequence align-

ment. Core hits with E-values ,10�3 produced by OWEN

program were extracted for analysis as described previously

(Ogurtsov et al. 2008). Synonymous and nonsynonymous

divergence (Ks and Ka, respectively) were calculated using

the PAML program (ftp://abacus.gene.ucl.ac.uk/pub/paml)
with default parameters and the yn00 estimation method

(Yang 1997).

RNA Secondary Structure Prediction

RNA secondary structures were predicted using two meth-
ods, which are based on the global and local free energy

estimations, respectively. The lincRNAs were computation-

ally ‘‘folded’’ and the predicted minimum free energy of

the secondary structure was calculated, using our imple-

mentation of the algorithm that employs nearest neighbor

parameters for evaluation of free energy (Zuker 2003). En-
ergy minimization was performed by the dynamic program-

ming method that finds the secondary structure with the

minimum free energy with sums contributing from stacking

loop length using an improved algorithm for evaluation of

internal loops; this program ‘‘folds’’ sequences up to the

28,000 nucleotide long (Ogurtsov et al. 2006). Local free

energy was estimated for the pairs of highly similar slow

evolvind sequences, extracted from the human–mouse
alignments (Kondrashov and Shabalina 2002). The second-

ary structure of the expressed lincRNAs was inferred by in-

tersecting their chromosomal positions with the positions of

the RNAz structural predictions made across the entire

mouse genome, as previously described in the NRED data-

base (Washietl et al. 2005; Mercer et al. 2008; Dinger et al.

2009). Conserved RNA secondary structures were consid-

ered significant at the confidence threshold level of P .

0.5, where P is the significance of the classification, which

is quantified as ‘‘RNA-class probability’’ (Gruber et al. 2007).

Results

The Mouse and Human lincRNA Sets

To avoid potential complications caused by the coordinated

expression of protein-coding genes and lncRNAs, we chose

to analyze only the sets of mammalian lincRNAs. The data

of 5,444 ‘‘Noncoding Only’’ mouse probe sets were down-

loaded fromNREDdatabase (Dinger et al. 2009). After discard-

ing the probe sets that did not map to intergenic space and

establishing one-to-one relationship between RNA IDs and
their corresponding probe set IDs (seeMaterials andMethods),

we obtained the final set of 2,390mouse lincRNAs (NCBI Gen-

Bank Accession IDs of RNAs) of which 977 contained introns.

After discarding the probe sets with very low median expres-

sion levels and those with equivocal genome mapping, the

final set of 2,013 mouse lincRNAs, including 918 intron-

containing ones, was obtained (for details, see Materials

and Methods). For humans, the data for 917 probe sets were
downloaded, and the same procedure of removing low-

expressed or equivocally mapped lincRNAs yielded the final

set of 519 lincRNAs, including 211 intron-containing genes.

Thus, the current set of experimentally verified human

lincRNAs was several times smaller than the corresponding

mouse set, in agreement with previous observations (e.g.,

Rearick et al. 2010). Most likely, this difference reflects

the different states of lncRNA annotations rather than a gen-
uine excess of lincRNAs in rodents.

Table 1 summarizes the characteristics of the sets of

mouse and human lincRNAs analyzed here.

Evolutionary Rates and Expression of lincRNA

The traditional gauge of selection in protein-coding genes is

the ratio of nonsynonymous (Ka) over synonymous (KS)

Negative Correlation between Expression Level and Evolutionary Rate GBE

Genome Biol. Evol. 3:1390–1404. doi:10.1093/gbe/evr116 Advance Access publication November 9, 2011 1393

http://genome.ucsc.edu/cgi-bin/hgTables
ftp://hgdownload.cse.ucsc.edu/goldenPath/mm8/chromosomes/
ftp://hgdownload.cse.ucsc.edu/goldenPath/mm8/chromosomes/
http://genome.ucsc.edu/cgi-bin/hgLiftOver
http://genome.ucsc.edu/cgi-bin/hgLiftOver
ftp://abacus.gene.ucl.ac.uk/pub/paml


substitutions. Ka/KS , 1 is thought to indicate purifying se-

lection, whereas Ka/KS . 1 is construed as the signature of

positive selection (Hurst 2002). In the case of lncRNA genes,

the substitution rate of exons (Ke) may be considered anal-

ogous to Ka, whereas the substitution rate in intronic se-
quences (Ki) is a logical choice of the proxy for neutral

evolution, analogously to the traditional use of KS. Indeed,

apart from pseudogenes, introns are among the best can-

didates for neutrally evolving sequences (Louie et al.

2003; Hoffman and Birney 2007; Resch et al. 2007). Purify-

ing selection in lncRNA exons potentially can be defined by

Ke/Ki , 1.

Substitution rates for exons and introns in intron-containing
lincRNA genes (;41% human and mouse lincRNAs contain

introns; see table 1) are shown in table 2 and supplementary

table S1, Supplementary Material online. The indel cutoff (we

used alignmentswith the total length of indels below a thresh-

old of 15%, 30%, or 45%) employed to vary alignment strin-

gency does not qualitatively influence the results although

higher statistical significance was observed under the more

stringent criteria (15% and 30% indels) (table 2 and supple-
mentary table S1, Supplementary Material online). The substi-

tution rate of mouse lincRNA exons was found to be

significantly lower compared with mouse introns (Ke/Ki ,

1; table 2 and fig. 1). These results suggest that purifying se-

lection acts on exons of lincRNA genes and are consistent with

earlier observations (Ponjavic et al. 2007; Guttman et al.

2009). Additionally, the distribution of substitution rates

was notably wider for concatenated exons of mouse lincRNAs

than it was for concatenated introns (fig. 1 and supplementary

figure S1, Supplementary Material online), indicative of the

variance in the intensity of the purifying selection on mouse

lincRNA genes. The lower substitution rates of the exons com-

pared with the introns were observed for human lincRNA
genes as well (supplementary table S1, Supplementary Mate-

rial online) although the statistical support was weaker due to

the smaller size of the human lincRNA set. The significantly

reduced substitution rate in the mouse and human lincRNA

exons was reproduced when all lincRNAs (intron containing

and intronless) were used for the calculation of exon substi-

tution rates (supplementary tables S2 and S3, Supplementary

Material online). The reduced substitution rate of the lincRNA
exons compared with the adopted neutral baseline (in this

case, the substitution rate for introns) and the broad distribu-

tion of Ke values qualitatively resemble the case of protein-

coding exons, which are almost universally subject to purifying

selection of widely varying strengths (Ka/KS ,1) (Koonin and

Wolf 2010). However, the purifying selection on the exons in

the lincRNAs is much weaker than on nonsynonymous posi-

tions in the protein-coding genes (supplementary figure S1,
Supplementary Material online). Both the strength and the

shape of the distribution of the substitution rates in lincRNA

exons more closely resemble synonymous than nonsynony-

mous substitutions in protein-coding genes (supplementary

figure S1, Supplementary Material online) although the differ-

ences in methods used to estimate substitution rates in non-

coding and coding sequences preclude a direct quantitative

comparison (Resch et al. 2007). As is the case with KS, neutral

Table 1

Statistics of lincRNA Data Sets

Mouse Human

Probe sets 5444 917

All lincRNAs 2390 589

Median length, nt 2,535 2,626

Average length, full lincRNA 11,775 16,855

Fused exons 1,843 1,998

Fused introns 24,246 36,686

GC% (aggregatea/median), full length 0.42/0.44 0.42/0.44

Fused exons 0.45/0.45 0.45/0.45

Fused introns 0.42/0.44 0.41/0.43

Intron-containing (introns with length,40 nt discarded) 979 245

Exons in intron-containing lincRNAs 3,439 1,194

Introns in intron-containing lincRNAs 2,462 949

Introns shorter than 40 nt 424 94

Exons shorter than 15 nt 41 7

Introns per lincRNA 2.52 3.86

Exons per lincRNA 3.52 4.85

Average length, nt 25,816 38,264

Average exon length 478 383

Average intron length 9,574 9,435

Intronless genes (one exon only) 1411 344

lincRNAs with A � 7.0, uniquely mapping to genomes 2,013 519

Intron-containing 918 211

a
Aggregate GC% is calculated from the sequences of all samples concatenated together.
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evolution of intron sequences is only an approximation be-
cause some introns contain embedded genes (e.g., coding

for microRNAs) and can be constrained for other reasons

as well (Haddrill et al. 2005; Gazave et al. 2007). Therefore,

the estimates obtained here represent the low bound of the

selective pressure affecting exons of lincRNAs.

Negative Correlation between Evolutionary Rates and
Expression Levels of lincRNAs

The range of expression levels of lincRNAs measured using

microarrays is narrow, with the vast majority of lincRNAs

having median expression ,9 (log2-normalized A-values,

see Materials and Methods) (supplementary figure S2,

SupplementaryMaterial online). This distribution is quite dif-

ferent from the distribution of the expression levels of pro-

tein-coding genes, which includes a much greater fraction
of highly expressed genes (supplementary figure S3, Supple-

mentary Material online). In addition to microarrays, we also

used the raw number of ESTs hits as an alternative measure

of expression level (supplementary figure S4 and tables S4

and S5, Supplementary Material online). There was a strong

highly significant correlation between the expression levels

extracted from the microarray data and those obtained us-

ing EST (Pearson CC 5 0.39, P , 10�62) (supplementary
figure S5, Supplementary Material online).

Table 3 summarizes the Pearson, Spearman, and Kendall

correlation coefficients between evolutionary distances and

the median expression levels of lincRNAs estimated using

microarrays. For the exons of mouse lincRNAs, statistically
significant negative correlation was consistently observed

between the sequence evolution rate and the expression

level, with correlation coefficients mostly in the range of

0.1–0.16 (table 3, figs. 2A–C, and supplementary figure

S6, Supplementary Material online). In contrast, for introns,

the correlation coefficients were very low and statistically

not significant, that is, therewas negligible or no connection

between evolutionary rate and expression (table 3). The re-
sults for the human lincRNAs corroborated the mouse data

and also revealed negative correlations for exons but not for

introns, although the statistical significance of the results

was inevitably lower due to the smaller size of the data

set (fig. 2D, supplementary figure S7 and table S6, Supple-

mentary Material online). As an alternative measure of ex-

pression level, we employed ESTcounts and showed that the

rate-expression correlation pattern obtained using this ap-
proach was similar to the microarray results, that is, there

was a significant negative correlation for human and mouse

lincRNA exons but not for introns (supplementary tables S7

and S8, Supplementary Material online). Using maximum

expression levels or the 75% quantile of the distribution

of the expression levels instead of the median produced

similar results, confirming that the observed negative

correlation between expression and evolutionary rate is a ro-
bust property of lincRNAs (supplementary tables S9 and

S10, Supplementary Material online). Analysis of the expres-

sion breadth across the tissues also showed a significant

negative correlation between the breadth and the lincRNA

Table 2

Evolutionary Rates of Mouse Intron-Containing lincRNA Genes

Species Pair Threshold (Indel %)a

Exons Introns

Student

t-test

Data Points Mean Rate Variance Data Points Mean Rate Variance H P Value

Mouse–Human 15 290 0.375 0.012 141 0.425 0.012 1 1.4E-05

30 468 0.394 0.011 259 0.430 0.009 1 6.0E-06

45 599 0.404 0.010 458 0.439 0.006 1 1.9E-05

100 871 0.418 0.011 863 0.449 0.006 1 1.9E-12

Mouse–Chimp 15 270 0.375 0.013 117 0.431 0.010 1 6.5E-15

30 444 0.398 0.012 230 0.431 0.008 1 2.5E-07

45 582 0.405 0.011 433 0.438 0.006 1 4.5E-06

100 863 0.417 0.011 840 0.448 0.006 1 4.0E-12

Mouse–Macaque 15 251 0.374 0.013 115 0.428 0.012 1 7.2E-05

30 408 0.392 0.011 221 0.434 0.009 1 9.8E-07

45 540 0.403 0.011 375 0.442 0.007 1 2.0E-15

100 847 0.419 0.012 829 0.451 0.006 1 1.2E-11

Mouse–Rat 15 840 0.149 0.002 815 0.168 0.003 1 3.1E-10

30 878 0.150 0.002 887 0.169 0.003 1 8.9E-10

45 890 0.151 0.002 897 0.169 0.003 1 3.6E-08

100 910 0.152 0.003 913 0.171 0.003 1 1.2E-13

Mouse–Dog 15 191 0.387 0.015 91 0.475 0.021 1 1.1E-09

30 355 0.429 0.017 195 0.502 0.016 1 1.0E-14

45 483 0.445 0.015 321 0.503 0.013 1 4.0E-11

100 816 0.467 0.018 823 0.509 0.010 1 7.9E-13

a
We used alignments with the total length of indels below a threshold; three indel thresholds (15%, 30%, 45% and 100%, that is, no threshold) were applied.
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evolutionary rates although the typical correlation coeffi-

cients (0.04–0.12) were smaller compared with the median

of expression and EST counts (results not shown).

Further analysis using the mouse RNA-seq data strongly

supported the consistent negative correlation between the
expression of lincRNAs and the rate of evolution of lincRNA

exons (fig. 3 and table 4). In this case, the observed corre-

lations were a uniformly highly statistically significant

support: all P values were ,0.000001. The correlation co-

efficients obtained when the RNA-seq data were used as the

measure of expression (table 4) were larger than the corre-

sponding correlation coefficients obtained with the micro-

array data (table 3). This difference could be due to the
truncation of microarray data (the threshold 7.0 was ap-

plied, see Materials and Methods) because of which the dis-

tributions of expression data were asymmetrical (fig. 2),

causing problems for correlation analysis. The RNA-seq data

showed no such asymmetry (fig. 3).

The authors of the NRED database have employed differ-

ent techniques to remove contaminating protein-coding

genes from the lincRNA data set (Dinger et al. 2009). Nev-
ertheless, to control for the possibility that the observed cor-

relations were caused by a contamination of the set of

lincRNAs with protein-coding genes, we removed all se-

quences with significant similarity to protein-coding genes

from the mouse lincRNA data set and recalculated the
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FIG. 1.—Distribution of evolutionary distances for exons (A) and

introns (B) of the orthologous lincRNAs from human and mouse. All

exon and intron sequences from each gene from the respective data sets

were concatenated prior to the analysis.

Table 3

Correlations between Evolutionary Rates and Expression Levels

(Microarrays) of Mouse lincRNAs

Species Human Chimp Macaque Rat Dog

Exons, Indels: 15%

Pearson �0.105 �0.157 �0.139 �0.113 �0.143

P value 0.0040 ,0.0001 0.0003 ,0.0001 0.0009

Spearman �0.112 �0.132 �0.121 �0.107 �0.142

P value 0.0017 0.0004 0.0016 ,0.0001 0.0008

Kendall �0.074 �0.087 �0.080 �0.070 �0.093

P value 0.0019 0.0005 0.0018 ,0.0001 0.0011

Datapoints 779 720 684 1735 558

Exons, Indels: 30%

Pearson �0.103 �0.128 �0.108 �0.099 �0.114

P value 0.0006 ,0.0001 0.0007 ,0.0001 0.0009

Spearman �0.102 �0.112 �0.095 �0.099 �0.123

P value 0.0005 0.0002 0.0022 ,0.0001 0.0003

Kendall �0.067 �0.074 �0.064 �0.065 �0.082

P value 0.0006 0.0003 0.0023 ,0.0001 0.0003

Datapoints 1148 1096 1027 1930 877

Exons, Indels: 45%

Pearson �0.113 �0.117 �0.103 �0.098 �0.105

P value ,0.0001 ,0.0001 0.0003 ,0.0001 0.0005

Spearman �0.098 �0.097 �0.091 �0.097 �0.100

P value 0.0002 0.0003 0.0010 ,0.0001 0.0007

Kendall �0.065 �0.064 �0.060 �0.064 �0.066

P value 0.0003 0.0003 0.0012 ,0.0001 0.0008

Datapoints 1411 1381 1286 1950 1138

Introns, Indels: 15%

Pearson �0.014 0.004 �0.004 �0.011 �0.009

P value 0.8696 0.9646 0.9653 0.7617 0.9322

Spearman �0.018 �0.001 �0.026 �0.029 �0.043

P value 0.8345 0.9922 0.7823 0.4053 0.6907

Kendall �0.010 0.005 �0.015 �0.019 �0.028

P value 0.8655 0.9324 0.8071 0.4202 0.7019

Datapoints 141 117 115 814 89

Introns, Indels: 30%

Pearson �0.014 �0.017 �0.038 �0.015 �0.038

P value 0.81701 0.7919 0.5721 0.6525 0.5952

Spearman �0.021 �0.063 �0.047 �0.031 �0.067

P value 0.7424 0.3421 0.4890 0.3592 0.3511

Kendall �0.013 �0.041 �0.031 �0.020 �0.045

P value 0.7571 0.3532 0.4869 0.3782 0.3569

Datapoints 259 230 221 885 194

Introns, Indels: 45%

Pearson �0.009 �0.013 �0.025 �0.010 �0.043

P value 0.8450 0.7926 0.6252 0.7540 0.4421

Spearman �0.003 �0.021 �0.056 �0.024 �0.046

P value 0.9529 0.6700 0.2814 0.4777 0.4086

Kendall �0.001 �0.012 �0.038 �0.015 �0.029

P value 0.9625 0.6993 0.2735 0.5041 0.4341

Datapoints 458 433 375 895 320
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correlation coefficients (see Materials and Methods). The

correlation between the evolutionary rate and expression

level remained negative and statistically significant in all

cases (supplementary table S11, Supplementary Material

online). We then performed an additional experiment to con-

trol for a possible admixture of protein-coding genes in the

analyzed lincRNA data sets: the coding potential
of lincRNAs was predicted using the SYNCOD program

(Rogozin et al. 1999). This method has been shown to pro-

duce a relatively low rate of overpredicted protein-coding re-

gions (Rogozin et al. 1999). The SYNCOD analysis identified

94 potential protein-coding regions in 2390 lincRNAs (exons

only) and 527 potential protein-coding regions in 2462 introns

of lincRNA genes. Themean density of protein-coding regions

in lincRNAs (one potential protein-coding region per 47 Kb)
was close to that in introns (one per 45 Kb). The frequency

of potential protein-coding regions was similar in the direct

and complementary strands for both sets (;50%, all differ-

ences are not statistically significant). The false positive rate

for the SYNCOD method has been estimated at ;0.06–

0.07 (Rogozin et al. 1999), which is similar to the fraction

of potential protein-coding regions in the exons (94/2390

5 0.04). Thus, taken together, the results of these analyses
appear to effectively rule out a significant contamination of

the analyzed lincRNA data set with protein-coding genes.

To control for the possibility that the observed negative

correlation could be (at least, partially) due to regional sub-

stitution biases across the genome (Resch et al. 2007), we

analyzed the substitution rate of exons divided by the sub-

stitution rate of introns within the same gene (Ke/Ki, supple-

mentary table S12, Supplementary Material online). This

ratio is analogous to Ka/KS and is expected to reflect the
strength of purifying selection that affects the exons of

lincRNAs. Negative correlation between the Ke/Ki ratio

and the expression level was consistently observed although

some values were not statistically significant due to small

sample sizes (supplementary table S12, Supplementary Ma-

terial online). Thus, a moderate but highly significant neg-

ative correlation between the evolutionary rates (or

selection strengths) and the expression levels of human
and mouse lincRNA exons is a consistent feature of the evo-

lution of lincRNAs.

We further sought to compare themagnitude of the neg-

ative correlation between the evolutionary rate and the ex-

pression level for lincRNAs and for protein-coding genes.

Rates of nonsynonymous substitutions and synonymous

substitutions were calculated using human–mouse pairwise

alignments of protein-coding genes. For the purpose of this
comparison, we used a sampling procedure that was re-

peated 1,000 times (for details, see table 5). Each sample

FIG. 2.—Correlation between the expression level and evolutionary rate for mouse (A–C) and human (D) lincRNAs based on microarray data. The

data are for the indel threshold 5 15%.

Negative Correlation between Expression Level and Evolutionary Rate GBE

Genome Biol. Evol. 3:1390–1404. doi:10.1093/gbe/evr116 Advance Access publication November 9, 2011 1397

http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr116/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr116/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr116/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr116/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr116/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr116/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr116/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr116/-/DC1


of the orthologous protein-coding genes from the human

and mouse had the size and the mean evolutionary distance

approximately equal (according to the Student’s t-test,
table 5) to those for lincRNA pairwise comparisons (table 2).

For all genes used to draw these control samples, the Ka/KS

values were below unity (supplementary figure S8, Supple-

mentary Material online) indicating that these were bona

fide protein-coding genes. Analysis of correlations between

the evolutionary rate and the expression level for these

protein-coding genes showed that Pearson correlation

coefficient values for lincRNAs were well within the distribu-
tions of correlation coefficients for nonsynonymous substi-

tution rates (Ka) across the samples of protein-coding genes,

and in some cases, on the negative tail of these distributions

(table 5 and fig. 4). Thus, the negative correlation between

the evolutionary rate and expression level of lincRNAs is at

least as strong as that for nonsynonymous substitution rates

in the mammalian protein-coding genes at the same level of

divergence. When compared with the synonymous rates in
the same samples of protein-coding genes, lincRNAs

showed a stronger correlation (table 5 and fig. 4).

Connections between Secondary Structure and Expres-
sion of lincRNAs

The demonstration that the magnitude of the correlation be-

tween the evolutionary divergence and the expression level is

similar for lincRNAs and for protein-coding genes raises the key

question about the biological factors underpinning such corre-

lations. It has been shown that RNA folding is crucial formRNA

stability and functionality and is correlated with the expression

level and breadth (Nackley et al. 2006; Shabalina et al. 2006;

Parmley and Hurst 2007; Zhang et al. 2010). Herewe analyzed

folding characteristics of lincRNAs and the connections be-

tween predicted lincRNA secondary structure stability, expres-

sion level, and the rate of evolution. We found an abundance

of predicted stable folding (calculated as the fraction of paired

nucleotides in the optimal folding of the full-length transcript)

in the lincRNA data set. The distributions of the fraction of

base-paired nucleotides were similar for lincRNAs and the

mRNA control set (supplementary figure S9, Supplementary

Material online), which was compiled taking into account

the nucleotide content, length, and gene structure of the lincR-

NAs (Shabalina et al. 2006). A significant positive correlation

was detected between the fraction of paired nucleotides in the

predicted optimal folding of mouse lincRNAs and their expres-

sion level, which was calculated from the EST counts (fig. 5A)

or from GenAtlas 2 database of the microarray data (fig. 5B).

A similar connection between the folding and the expression

level was observed for the human lincRNAs (supplementary

table S13, Supplementary Material online). Free energy (DG)
normalized against the transcript length in the optimal folding

showed the same trend (data not shown).
To disentangle the relationships between the structural

features, evolution and expression of lincRNAs, we con-

structed a linear regression model to predict gene expression

patterns based on RNA folding and/or evolutionary rates. Tak-

ing into account the connection between the expression level

and the evolutionary rate of lincRNA genes, linear regression

analysis showed that the evolutionary variable (Ke for the

mouse–rat comparison) was predictive with respect to the ex-

pression level of the mouse lincRNA genes (EST abundance),

independent of RNA structural features (R 5 0.122 on the

validation set and R5 0.105 on the training set). Conversely,

a model that used the RNA structural parameter (fraction of

paired nucleotides in the mouse lincRNA folding, PRF) alone

yielded R 5 0.167 on the validation set and R 5 0.14 on the

training set. The two variables had orthogonal predictive

power, that is, R2 values for cumulative structural and evolu-

tionary predictions (R2 5 0.033 5 0.1822) were close to

the sum of R2 (0.033–0.0365 0.023 þ 0.013) values for in-

dependent structural (R25 0.0235 0.1522) and evolutionary

(R25 0.0135 0.1122) predictions. Thus, the multiple regres-

sion models indicate that the two variables, Ke and PRF,

independently correlatewith lincRNA gene expression (F-test,

P , 0.01). These findings are in agreement with the

FIG. 3.—Correlation between expression level and evolutionary

rate for mouse lincRNAs based on RNA-Seq data. The data are for the

indel threshold 5 15%.
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corresponding observations for mRNAs (SAS, unpublished

data). Consistent with these observations, we did not find

significant correlations between the evolutionary rates of

lincRNAs and the predicted folding.

Discussion

The lincRNAs comprise a substantial part of the mammalian

RNome but very little is currently known about their functions

and evolution. Together with previous observations, the re-

sults described here suggest (even if indirectly) that many

lincRNAs are indeed functional molecules that are subject

to relatively weak but significant purifying selection as de-

termined from the Ke/Ki ratio. As such, lincRNAs genes pro-

vide evolutionary biologists with a unique data set to

investigate the general and more idiosyncratic features of
evolution by comparing their evolutionary patterns with

those of protein-coding genes. Unlike the highly conserved

Table 4

Correlation between the Evolutionary Rates and Expression Levels (RNA-seq) for Mouse

Species Human Chimp Macaque Rat Dog

Exons, Indels: 15%

Pearson �0.224 �0.256 �0.223 �0.178 �0.252

P value ,0.000001 ,0.000001 ,0.000001 ,0.000001 ,0.000001

Spearman �0.247 �0.279 �0.236 �0.203 �0.280

P value ,0.000001 ,0.000001 ,0.000001 ,0.000001 ,0.000001

Kendall �0.168 �0.190 �0.162 �0.138 �0.190

P value ,0.000001 ,0.000001 ,0.000001 ,0.000001 ,0.000001

Data points 772 712 678 1766 547

Exons, Indels: 30%

Pearson �0.248 �0.242 �0.249 �0.171 �0.278

P value ,0.000001 ,0.000001 ,0.000001 ,0.000001 ,0.000001

Spearman �0.271 �0.268 �0.268 �0.196 �0.305

P value ,0.000001 ,0.000001 ,0.000001 ,0.000001 ,0.000001

Kendall �0.185 �0.181 �0.182 �0.134 �0.207

P value ,0.000001 ,0.000001 ,0.000001 ,0.000001 ,0.000001

Data points 1136 1086 1016 1851 863

Exons, Indels: 45%

Pearson �0.234 �0.224 �0.227 �0.181 �0.269

P value ,0.000001 ,0.000001 ,0.000001 ,0.000001 ,0.000001

Spearman �0.257 �0.250 �0.247 �0.199 �0.288

P value ,0.000001 ,0.000001 ,0.000001 ,0.000001 ,0.000001

Kendall �0.174 �0.168 �0.167 �0.135 �0.195

P value ,0.000001 ,0.000001 ,0.000001 ,0.000001 ,0.000001

Data points 1402 1366 1273 1873 1124

Table 5

Correlations between Evolutionary Rates and Expression Levels (Microarrays) for Samples of Alignments of Orthologous Protein-Coding Genes from

Human and Mouse Simulating lincRNA Sets

Comparison Mean Correlation Coefficient CCPC Fraction of Samples with the CCPC � CClincRNA 95% Confidence Intervals for CCPC

Nonsynonymous sites

Human–Chimp �0.16 0.08 �0.08: �0.22

Human–Macaque �0.14 0.62 �0.06: �0.20

Human–Dog �0.06 0.98 þ0.07: �0.17

Mouse–Rat �0.10 0.44 �0.05: �0.15

Synonymous sites

Human–Chimp �0.04 0.84 þ0.04: �0.12

Human–Macaque �0.04 0.98 þ0.04: �0.13

Human–Dog �0.05 0.99 þ0.09: �0.19

Mouse–Rat �0.04 0.94 þ0.02: �0.11

NOTE.—To compare protein-coding genes (PC) and lincRNAs, we used a sampling procedure repeated 1,000 times. Each sample has the size and the mean value of evolutionary

distance approximately equal to those for the subsets of the lincRNAs (Table 1 and supplementary table 1, Supplementary Material online), the difference between the mean

evolutionary distance for the PC genes and the mean distance for the lincRNAs is not significant according to the Student t-test. Pearson correlation coefficient was used to measure

correlation between the expression and the divergence for protein-coding genes (CCPC). The median value of Pearson correlation coefficients for 15%, 30%, and 45% thresholds was

used as CClincRNA. For pairwise comparisons other than those listed in the table, the sampling procedure did not converge due to insufficient number of protein-coding genes with

large evolutionary distance.
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structural RNAs (rRNAs and tRNAs) or small microRNAs, the

lincRNA genes closely resemble protein-coding genes in

terms of diversity, size, and gene architecture. The funda-
mental difference is that the transcripts of these genes

are not translated into proteins but rather function directly

as RNA molecules. Evolution of protein-coding genes shows

correlations of varying strengths with several molecular phe-

nomic variables (Koonin and Wolf 2006; Wolf et al. 2006).

The most consistent and typically strongest is the negative

correlation between the rate of sequence evolution and ex-

pression level of protein-coding genes or protein abundance
(Drummond and Wilke 2008, 2009; Wolf et al. 2010). This

relationship between evolution and expression of protein-

coding genes inspired the hypothesis that evolution of

proteins is driven primarily by selection for robustness to

misfolding, which is partly caused by the errors of translation

(Drummond and Wilke 2008, 2009). Evolutionary models

built on the assumption that the deleterious effect of
misfolding is the primary fitness cost associated with muta-

tions in the protein-coding genes have been shown to be

compatible both with the dependency between the evolu-

tionary rate and expression and with the universal distribu-

tion of the evolutionary rates of protein evolution

(Drummond andWilke 2009; Lobkovsky et al. 2010). In view

of this unifying hypothesis of protein evolution, we were in-

terested to determine whether the evolution of lincRNAs is
similarly connected with expression.

The results presented here reveal the existence of a rela-

tively weak but consistent and highly significant negative

correlation between the evolutionary rate and expression

FIG. 4.—Distributions of correlation coefficients between the evolutionary rates and the expression levels for samples of alignments of the

human–mouse protein-coding genes and lincRNAs. (A) Mouse–rat, nonsynonymous sites. (B) Human–dog, nonsynonymous sites. (C) Mouse–rat,

synonymous sites. (D) Human–dog, synonymous sites. The distributions are for 1,000 samples of protein-coding genes simulating the lincRNA sets (for

details see text and Table 5). The lincRNA correlation coefficients are shown by red arrows. The expression values were from the human and mouse

microarray data sets.
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level of lincRNAs. Introns of lincRNA genes provide an inter-

nal control: the absence of correlation for the intronic se-

quences indicates that the observed connection between

evolution and expression has to do with structure and func-

tion (or robustness to malfunction) of the mature lincRNA
molecules. We further showed that the level of correlation

between evolutionary distances and expression is similar for

lincRNAs and protein-coding genes evolving under compa-

rable constraints. The connection between expression and

evolution in mammals is relatively weak for both lincRNA

and protein-coding genes, with only 1–2% of the variance

in evolutionary rates accounted for by expression. These

findings are compatible with the previous observations that
the negative correlation between the sequence evolutionary

rate and the expression level is the weakest in mammals

among all tested model organisms (Drummond and Wilke

2008). It seems most likely that this limited dependency is

caused by the general weakness of purifying selection in

mammals due to their characteristic low effective popula-

tion sizes (Lynch and Conery 2003; Lynch 2006). Accord-

ingly, mammals might not be the best choice of the
model to study the causes of the dependency between

evolution and expression for protein-coding gene. However,
by the same token, this seems to be the only model on

which a comparison of the evolutionary regimes of pro-

tein-coding genes and ‘‘protein-like’’ lincRNAs is possible be-

cause large diverse repertoires of long ncRNAs apparently

could not evolve in organisms subject to strong selective

constraints (Lynch 2007; Koonin and Wolf 2010).

We then examined potential connections between the

predicted stability of lincRNA folding, their expression,
and the rate of evolution. A limited in magnitude but signif-

icant positive correlation was detected between the pre-

dicted folding and expression: lincRNA molecules with

greater folding potential show a tendency to be highly ex-

pressed. A positive correlation between the (predicted) RNA

stability and expression level has been described previously

formammalianmRNAs (Shabalina et al. 2006). However, we

found no significant link between folding and the rate of
evolution of lincRNAs and further observed that RNA folding

and sequence evolution rate contributed to the expression

level of lincRNAs independently.

The findings reported here show that the link between

evolution and expression is a fundamental dependency that

is not limited to protein-coding genes. Whether or not the

deleterious effects of misfolding, leading to the formation of

nonfunctional protein or RNAmolecules, represent the prin-
cipal factor behind this universal link remains to be deter-

mined. Certainly, the process of RNA folding is

fundamentally different from protein folding as the two pro-

cesses are based on different types of molecular interac-

tions. Nevertheless, there is also undeniable general

similarity between the folding processes of these two classes

of biomolecules. Indeed, both proteins and RNAs are heter-

opolymers that fold to form well-defined secondary struc-
ture elements through local interactions followed by the

formation of a unique 3D conformation through nonlocal

interactions. Moreover, RNA misfolding is common if not

thoroughly understood, and the increasingly apparent prev-

alence of RNA chaperones attests to its biological relevance

(Cristofari and Darlix 2002; Bhaskaran and Russell 2007;

Rajkowitsch et al. 2007; Russell 2008; Semrad 2011). At

face value, the observations reported here on the lack of
connection between predicted RNA folding and evolution-

ary rate and the independence of the contributions of pre-

dicted folding and evolutionary rate to lincRNA expression

can be taken as argument against a causal connection be-

tween lincRNA misfolding and the evolution–expression

coupling. However, these observations should be inter-

preted with much caution. Prediction of the base-pairing

potential is a blunt instrument that certainly does not reveal
the true complexity of the RNA folding process and might

not be able to distinguish well between correctly folded and

misfolded RNA molecules. However, according to our esti-

mations, about 60% of nucleotides are paired in lincRNAs

and mRNAs (Shabalina et al. 2006), which is comparable

FIG. 5.—Correlation between the predicted level of nucleotide

pairing in optimal folding and expression level for mouse lincRNAs

measured by EST abundance (A) and estimated from GenAtlas database

(B).
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with the base pairing values for some experimentally char-
acterized mRNAs (Kertesz et al. 2010). Also, some of the

local predicted structures for lincRNAs are in agreement

with the structures predicted by biochemical probing, for

example, for the A region of Xist RNA (Maenner et al. 2010).

The distinct possibility remains that misfolded lincRNAs are

deleterious similar tomisfolded proteins, and this effectmight

explain the connection between their evolutionary rate and

expression. Certainly, alternative explanations for this univer-
sal link could be relevant as well, for example, the potentially

greater number of both functional and nonfunctional inter-

actions in highly expressed proteins and RNAs constraining

their evolution. Furthermore, it is impossible to rule out that,

although the correlations between expression and evolution

are of the same sign and similar inmagnitude for proteins and

lincRNAs, the underlying causes are substantially different

(even if this possibility is less than parsimonious).

Conclusions

The functions of the numerous lncRNAs remain largely un-

known but the results presented here support previous find-

ings that many of these RNAs are subject to purifying

selection, albeit relatively weak, and so are predicted to
be functional. We found that lincRNAs recapitulate the uni-

versal negative correlation between the evolutionary rate

and expression that has been reported for protein-coding

genes from diverse model organisms. Moreover, the magni-

tude of the correlation for the lincRNAs was comparable to

the magnitude of the correlation that we identified in equal-

sized control sets of protein-coding genes with levels of se-

quence conservation similar to those observed for lincRNAs.
The expression level of the lincRNAs also was significantly

and positively correlated with the predicted extent of

lincRNA molecule folding (base paring). However, there

was no significant correlation between lincRNA folding

and evolutionary rate, and the contributions of the evolu-

tionary rate and folding to the expression level were found

to be independent. The results of this work indicate that the

anticorrelation between evolutionary rate and expression
level is a general feature of gene evolution. The causative

factors behind this fundamental dependency that might in-

clude similar fitness effects of protein and RNA misfolding

remain to be elucidated.

Supplementary Material

Supplementary figures S1–S9 and tables S1–S13 are avail-

able at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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