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A B S T R A C T   

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 
(COVID-19), has adversely affected global health since its emergence in 2019. The lack of effective treatments 
prompted worldwide efforts to immediately develop therapeutic strategies against COVID-19. The main protease 
(Mpro) of SARS-CoV-2 plays a crucial role in viral replication, and therefore it serves as an attractive target for 
COVID-19-specific drug development. Due to the richness and diversity of insect protease inhibitors, we docked 
SARS-CoV-2 Mpro onto 25 publicly accessible insect-derived protease inhibitors using the ClusPro server, and the 
regions with high inhibitory potentials against Mpro were used to design peptides. Interactions of these inhibitory 
peptides with Mpro were further assessed by two directed docking programs, AutoDock and Haddock. AutoDock 
analysis predicted the highest binding energy (− 9.39 kcal/mol) and the lowest inhibition constant (130 nM) for 
the peptide 1KJ0-7 derived from SGCI (Schistocerca gregaria chymotrypsin inhibitor). On the other hand, 
Haddock analysis resulted in the discovery of a different peptide designated 2ERW-9 from infestin, a serine 
protease inhibitor of Triatoma infestans, with the best docking score (− 131), binding energy (− 11.7 kcal/mol), 
and dissociation constant (2.6E-09 M) for Mpro. Furthermore, using molecular dynamic simulations, 1KJ0-7 and 
2ERW-9 were demonstrated to form stable complexes with Mpro. The peptides also showed suitable drug-likeness 
properties compared to commercially available drugs based on Lipinski’s rule. Our findings present two peptides 
with possible protease inhibitor activities against Mpro and further demonstrate the potential of insect-derived 
peptides and computer-aided methods for drug discovery.   

1. Introduction 

Coronaviruses are large, enveloped, single-stranded RNA viruses 
with the ability to infect a wide range of animal species, including, but 
not limited to, bats and humans [1]. Human coronaviruses (HCoVs) 
were previously known to cause mild respiratory infections [2]. How
ever, two new coronaviruses, designated as severe acute respiratory 
syndrome coronavirus (SARS-CoV) and Middle East respiratory syn
drome coronavirus (MERS-CoV), capable of causing fatal human respi
ratory infections, emerged in 2002 and 2012, respectively [3,4]. In late 
December 2019, a cluster of cases of pneumonia was reported from 
Wuhan, Hubei Province of China [5]. The etiologic agent responsible for 
pneumonia cases was identified as the 2019 novel coronavirus [6], 
which was later renamed as severe acute respiratory syndrome coro
navirus 2 (SARS-CoV-2) [7]. The coronavirus disease 2019 (COVID-19) 
rapidly spread throughout the world, and it was officially declared as a 
global pandemic by the World Health Organization in March 2020. 

Although patients with COVID-19 mostly manifest mild symptoms, the 
disease may progress to severe symptoms, including pneumonia and 
respiratory failure leading to the patient’s death [8]. As of December 
2021, more than 270 million coronavirus cases have been reported 
globally, and around 5.3 million have died [9]. Though several vaccines 
have been approved across the globe over the past months [10], there 
are currently no COVID-19-specific treatments available. The protective 
ability of the vaccines is also challenged [11] by new emerging viral 
clones, thus arguing for an urgent need to develop effective therapeutic 
strategies against the virus. 

Like other coronaviruses, SARS-CoV-2 contains a positive-sense 
single-stranded RNA genome that resembles eukaryotic messenger 
RNA and is directly translated by host cell translation machinery to 
produce two overlapping polyproteins, pp1a and pp1ab [12]. These two 
polyproteins are processed into 16 non-structural proteins (nsp1-nsp16) 
to form the viral replicase-transcriptase complex, where new viral RNAs 
are synthesized [12]. The cleavage of polyproteins into individual 
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non-structural proteins, a critical step in viral replication, is primarily 
mediated by the virus main protease (Mpro, also called 3CLpro) [13]. 
Therefore, inhibiting the activity of Mpro would block viral replication, 
making Mpro an attractive target for drug development against 
SARS-CoV-2. Protease inhibitors have successfully been developed for 
the treatment of several viral infections such as human immunodefi
ciency virus (HIV) [14] and hepatitis C virus (HCV) [15] infections. 

The discovery and development of novel drugs prove to be a costly 
and time-consuming process [16]. Using computer-aided drug discovery 
(CADD) approaches, which apply computational software and chemistry 
simulation techniques to identify novel hits or leads, helps accelerate the 
preliminary stage of drug discovery and minimize failures in the final 
stage [16]. One of the most frequently used CADD methods is molecular 
docking [17], which can predict the interaction of a target protein (e.g., 
Mpro) against a large library of chemical structures. 

Natural compounds have always been rich sources for discovering 
new drugs [18]. Arthropods (insects, arachnids, myriapods, and crus
taceans) make up the largest division of the animal kingdom, repre
senting approximately 80% of all known animals [19]. Insects produce a 
wide range of protease inhibitors [20], which have been neglected for 
drug development in comparison with other natural sources, including 
plants, fungi, and microorganisms [21]. Due to being relatively unex
plored, insect-derived protease inhibitors may provide opportunities to 
identify novel drug candidates against SARS-CoV-2 Mpro. 

Considering the functional importance of Mpro for replication of 
SARS-CoV-2, we first employed bioinformatics tools to analyze the 
structure of the protein. Due to the richness and diversity of insect 
protease inhibitors, a blind docking approach was employed to screen 
for insect-derived compounds with potential inhibitory properties 
against Mpro. Based on peptide coverage of inhibitors with the catalytic 
domain of Mpro, multiple inhibitors were designed, and the binding af
finities of the designed peptides towards Mpro were characterized using 
molecular docking and molecular dynamics simulations. The in-silico 
approach adopted in this study enabled the discovery of novel drug 
candidates with potential inhibitory effects against Mpro, mainly tar
geting the enzyme’s active site. Our findings suggest that domain- 
specific Mpro inhibitory peptides may prove to be a new generation of 
drugs to be used against SARS-CoV-2. 

2. Material and methods 

2.1. Data retrieval and in silico analysis of Mpro 

The amino acid sequence (Uniport code: P0DTD1) and the three- 
dimensional (3D) structure (PDB ID: 6LU7) [22] of SARS-CoV-2 Mpro 

were retrieved from the universal protein resource (Uniprot) database 
(www.uniprot.org/) and the protein data bank (PDB) archive (htt 
ps://www.rcsb.org/), respectively. We estimated various physico
chemical properties of Mpro, including protein length, molecular weight, 
the total number of negatively and positively charged residues, theo
retical isoelectric point, instability index, aliphatic index, and grand 
average of hydropathicity index using ExPASy ProtParam tools (http:// 
web.expasy.org/protparam) [23]. The secondary structures of Mpro 

were predicted using the self-optimized prediction method with align
ment (SOPMA) (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?pag 
e=npsa_sopma.html) [24]. Transmembrane topology prediction was 
performed using the transmembrane hidden Markov model (TMHMM) 
(http://www.cbs.dtu.dk/services/TMHMM, https://services.healthte 
ch.dtu.dk/service.php?TMHMM-2.0) [25]. We identified the amino 
acid residues of ligand-binding and active sites of Mpro (as the potential 
binding site for inhibitors) by the computed atlas for surface topography 
of proteins (CASTp) (http://sts.bioe.uic.edu/castp/) to ensure that all 
the available residues were involved in our research [26]. 

2.2. Data retrieval and in silico analysis of insect-derived protease 
inhibitors 

The pro-region of proteases is required for the proper folding of the 
protease domain and can also function as a potent inhibitor of the 
mature enzyme [27–29]. Amino acid sequences of multiple pro-regions 
and other naturally occurring protease inhibitors from different insect 
species were obtained from the national center for biotechnology in
formation (NCBI) (http://www.ncbi.nlm.nih.gov/) and Uniprot data
bases. The 3D structures of these inhibitors obtained from the PDB 
archive. Additionally, the 3D structures of selected peptides were pre
dicted by iterative threading assembly refinement (I-TASSER) (https:// 
zhanglab.ccmb.med.umich.edu/I-TASSER/, https://zhanggroup.org/ 
I-TASSER/) [30] and PEP-FOLD3 (https://bioserv.rpbs.univ-paris-dide 
rot.fr/services/PEP-FOLD3/) [31]. 

2.3. Blind docking and peptide design 

To investigate the interaction of insect-derived inhibitors with SARS- 
CoV-2 Mpro, we performed a blind docking between the inhibitors and 
the 3D structure of SARS-CoV-2 Mpro using the ClusPro server (https://cl 
uspro.org) without changing the program default settings [32]. The 
ClusPro server combines conformational sampling, root mean square 
deviation (RMSD)-based clustering of the predicted protein-protein 
complexes, and energy refinement to generate a list of near-native 
structures [32]. These top-ranked near-native structures were run 
through the WHAT-IF server (https://swift.cmbi.umcn.nl/servers/htm 
l/index.html) [33] to refine the inhibitory peptide design. For this 
purpose, the change in accessible surface area (ΔASA) of free and 
protein-bound ligands was calculated for the aforementioned 
top-ranked inhibitors in complex with residues in the active site of Mpro. 
The regions within inhibitors that showed higher ΔASA values were 
considered to be actively involved in ligand-protein interaction and 
therefore exerted an inhibitory effect on Mpro. 

2.4. Directed docking 

This work used Merck molecular force field (MMFF94) in Ligand 
optimization, Avogadro version 1.2. PDBQT format file for the target 
molecule (protomer A of Mpro) was prepared using AutoDock 4.2 by 
removing water molecules and adding polar hydrogen atoms. A grid box 
of 126 × 126 × 126 size with 0.375 Å spacing was centred to the active 
site of Mpro. The PDBQT files were generated for ligands (inhibitors) 
after detecting the torsion root. The optimal binding mode between 
inhibitors and the binding site of Mpro was determined by 100 runs of the 
genetic algorithm. Further docking analyses were carried out by both 
AutoDock 4.2 and Biovia Discovery Studio 4.5. 

Additionally, peptide inhibitors were docked to the 3D structure of 
Mpro using an experimentally-based docking program called HADDOCK 
(high ambiguity driven protein-protein docking) (https://milou.science. 
uu.nl/services/HADDOCK2.2/haddock.php) [34] without changing the 
program default settings. To launch the docking process, two ambiguous 
interaction restraints (AIRs) were defined: (1) all residues of the ligands 
(or inhibitors) were classified as passive residues, (2) all residues within 
the active site of Mpro were classified active. The standard HADDOCK 
protocol generated 1000 complexes at the rigid body minimization 
stage. The best 200 structures out of these 1000 complexes were sub
jected to a semi-flexible simulated annealing and final energy minimi
zation. The top-ranked complexes obtained from the docking process 
were clustered on the basis of RMSD and ranked by average HADDOCK 
scores. Furthermore, PRODIGY (protein binding energy prediction) 
webserver (https://bianca.science.uu.nl/prodigy/) [35] was used to 
calculate the binding energy (ΔG) and dissociation constant (Kd) at 
25 ◦C, as indicators of binding affinity of designed peptides to Mpro. 
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2.5. Molecular dynamic simulations 

The molecular dynamic (MD) simulation was carried out to analyze 
the dynamic interactions of screened peptides in complex with Mpro. MD 
simulations were performed using the GROMACS simulation package 
version 5.1.4 within the gromos 54a7 force field [36]. Simulations were 
run using an Intel Core i7 Processor Extreme Edition on CentOS Linux 
6.8 with graphics processing unit acceleration by NVIDIA GeForce GTX 
970. We applied three similar MD simulations to refine the structure of 
Mpro in apo and inhibitor-bound states. In each simulation, the initial 
structure was placed in the center of a cubic box and solvated by the 
random distribution of water molecules in an extended single-point 
charge (SPC/E) model followed by adding counter ions to reach a 
neutral system. The system was first subjected to energy minimization 
using the steepest descent energy minimization for 50 000 steps. The 
energy minimization step was followed by a pre-equilibration simula
tion for 500 ps in the NVT ensemble with a time constant of 0.1 ps. Next, 
the NVT equilibrium simulation was performed with the Berendsen 
thermostat for temperature control (300 K) [37]. Then, each system 
underwent a 500-ps run in an NPT ensemble, which used the 
Parrinello-Rahman barostat at 1 bar with the coupling constant set at 0.2 
ps [38]. The linear constraint solver (LINCS) algorithm was utilized to 
constrain bonds during simulation [39]. The periodic boundary condi
tion (PBC) was applied in x, y, and z directions to minimize the ‘edge 
effects’. The Lennard-Jones (LJ) potential with a cut-off radius of 1.4 nm 
was used for the short-range van der Waals interactions. The 
particle-mesh Ewald (PME) algorithm was used to calculate long-range 
electrostatic interactions of Coulomb potential energies with the real 
space contribution to the Columbic interactions truncated at 0.9 nm 
applied to the system [40]. The initial velocity of particles was assigned 
according to Maxwell distributions. Finally, 10 ns MD simulation was 
produced to remove the structural clashes of the lone protein besides the 
100 ns MD simulation for the peptides/Mpro complexes to examine the 
binding phenomena. All MD simulations were carried out when RMSD 
values reached a plateau. 

2.6. Pharmacokinetic, biochemical properties and Lipinski’s rule of five 

Lipinski’s rule of five was used to evaluate drug-likeness of the 
designed peptides. Moreover, pharmacokinetic properties of peptides, 

including absorption, distribution, metabolism, excretion and toxicity 
(ADMET) profiling of peptides, were determined using the admetSAR 
[41] and ProTox web tools [42]. Ritonavir and Lopinavir, as two 
FDA-approved protease inhibitors, were used as reference compounds. 

3. Results 

3.1. Primary and secondary structural analysis of Mpro 

Mpro plays an essential role in SARS-CoV-2 replication [13] and is, 
therefore, an attractive target for drug development against COVID-19. 
In February 2020, the crystal structure of SARS-CoV-2 Mpro in complex 
with an inhibitor (N3: N-[(5-Methylisoxazol-3-Yl)Carbonyl] 
Alanyl-L-Valyl-Ñ1~-((1r,2z)-4-(Benzyloxy)-4-Oxo-1-{[(3r)-2-Ox
opyrrolidin-3-Yl]Methyl}But-2-Enyl)-L-Leucinamide) was made pub
licly available by Jin et al. [22], which was retrieved to perform primary 
and secondary structure analysis for Mpro using ExPASy ProtParam, 
SOPMA, and TMHMM. The results of sequence analyses and secondary 
structure prediction are summarized in Table 1. The theoretical iso
electric point (pI) of Mpro was calculated to be 5.95, which indicates to 
acidic nature of the protein (Table 1). Since proteins with instability 
indices smaller than 40 are predicted to be stable [43], ExPASy Prot
Param classified Mpro (with the instability index of 27.65) as a stable 
protein. The relatively high aliphatic index of Mpro (82.12) points to the 
considerable thermostability of the protein, and the negative GRAVY 
value (− 0.019) indicates to hydrophilic nature of the protein and its 
better interaction with water (Table 1). The predicted secondary struc
ture of Mpro was composed of 32.35% random coils, 29.08% α–helices, 
27.12% β-strands, and 11.44% β-turns. The absence of any predicted 
transmembrane domain verifies that the enzyme is a cytoplasmic (not a 
membrane-bound) protein. Furthermore, amino acids in the binding and 
active sites of SARS-CoV-2 Mpro (6LU7) determined using the CASTp 
server were as follows: T24, T25, T26, L27, H41, C44, T45, S46, M49, 
P52, Y54, F140, L141, N142, G143, S144, C145, H163, H164, M165, 
E166, L167, P168, H172, D187, R188, Q189, T190, Q192 (Supple
mentary Fig. 1). 

3.2. ClusPro analysis and peptide design 

Results of primary docking of 25 insect-derived protease inhibitors to 
SARS-CoV-2 Mpro using ClusPro web server are presented in Table 2. 
ClusPro docking of protease inhibitors with Mpro resulted in various 
clusters, and most of the protease inhibitors were demonstrated to 
interact with Mpro through multiple regions. Inhibitor/Mpro complexes 
were ranked based on the lowest binding energy and the cluster size (the 
number of members in clusters). The top-ranked cluster (cluster “0”) was 
selected for further analysis. Within cluster 0, seven insect protease in
hibitors, including 1CCV, 1KMA, 2OZQ, 2XXT, 3SSB, 2M5X, and 2ERW 
were predicted to have the lowest binding energy, which suggests the 
great potential of these peptides to inhibit SARS-CoV-2 Mpro. Further
more, selected regions within these 25 insect-derived protease inhibitors 
were predicted to be involved in binding to the active site of Mpro based 
on changes in accessible surface areas (ΔASA) of residues, which 
resulted in the generation of 60 peptide inhibitors with potential 
inhibitory effect against SARS-CoV-2 Mpro. Finally, structural models of 
these 60 designed peptides were constructed using PEP-FOLD3 for 
peptide-protein docking. 

3.3. AutoDock analysis 

The molecular docking results of the 60 designed peptides with 
inhibitory properties against Mpro are listed in Table 3. Peptide mole
cules were ranked based on the binding energy and inhibition constant. 
Most of the designed peptides showed the ability to bind to the enzyme’s 
active site (i.e., Mpro). Two peptides, 1KJ0-7 (RKGCPPH) from the desert 
locust (Schistocerca gregaria Forsskål) and 3OZQ-6 (ATYIPV) from the 

Table 1 
Summary of primary structure analysis and secondary structure prediction for 
SARS-CoV-2 Mpro (6LU7).  

Tool Parameter Value 

ProtParam Number of amino acids (AA) 306 
Molecular weight (Mw) 33796.64 
Theoretical isoelectric point (pI) 5.95 
Total number of negatively charged residues (Asp + Glu) 26 
Total number of positively charged residues (Arg + Lys) 22 
Instability index 27.65 
Aliphatic index 82.12 
GRAVYa − 0.019 

SOPMA α-helix (%) 29.08 
β-strand (%) 27.12 
β-turn (%) 11.44 
Random coil (%) 32.35 

TMHMM Number of predicted TMHsb 0 
Expected number of AAs in TMHsc 0.88093 
Expected number of helices, first 60 AAsd 0.01239 
Total probability of N-ine 0.01343  

a Grand average of hydropathicity index. 
b The number of predicted transmembrane helices. 
c The expected number of amino acids in transmembrane helices. 
d The expected number of amino acids in transmembrane helices in the first 60 

amino acids of the protein. 
e The total probability that the N-terminal end is on the cytoplasmic side of the 

membrane. 
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mealworm beetle (Tenebrio molitor L.), respectively, showed the best 
predicted binding energy of − 9.39 and − 9.26 kcal/mol, inhibition 
constant of 130.51 and 163.08 nM, and intermolecular energy of − 16.55 
and − 14.93 kcal/mol suggesting the potential inhibitory effect of 1KJ0- 
7 and 3OZQ-6 against Mpro. 

3.4. HADDOCK analysis 

To further elucidate the inhibitory effect of the designed peptides 
against Mpro, docking studies were also carried out with the HADDOCK 
web server. The 60 designed peptides were docked into the active site of 

Table 2 
Blind docking of insect-derived protease inhibitors to Mpro (6LU7) using ClusPro server.  

No Inhibitor 
PDB ID 

Inhibitor 
length 
(AA) 

Inhibitor 
characteristics 

Insect species ClusPro energy docking Selected 
region as 
peptide 
inhibitor 

Designed peptide 
sequence 

ΔASA of 
peptide 
on Mpro Cluster Members Central 

energy 
Lowest 
energy 

1 1CCV 56 Chymotrypsin 
inhibitor (AMCI) 

Apis mellifera 0 284 − 823.9 − 981.0 25–34 TRICTMQCRI 185 
26–34 RICTMQCRI 182 
28–34 CTMQCRI 150 
30–34 MQCRI 121 

2 1GL1 36 Protease inhibitor 
LCMI II 

Locusta 
migratoria 

0 211 − 552.4 − 733.0 9–13 FKDKC 69 
27–34 CTLKACPN 151 

3 1KGM 35 Serine protease 
inhibitor (SGCI) 

Schistocerca 
gregaria 

0 182 − 624.4 − 771.6 1–6 EVTCEP 85 
10–13 FKDK 53 
30–35 LKACPQ 94 

4 1KIO 35 Serine protease 
inhibitor (SGCI 
[L30R, K31 M]) 

Schistocerca 
gregaria 

0 164 − 563.9 − 750.2 1–2 EV 29 
11–14 KDKC 33 
30–35 RMACPQ 177 

5 1KJ0 35 Serine protease 
inhibitor (SGTI) 

Schistocerca 
gregaria 

0 123 − 573.3 − 646.7 11–15 KQDCN 75 
29–35 RKGCPPH 152 

6 1KMA 55 Thrombin inhibitor 
(Dipetalin) 

Dipetalogaster 
maximus 

0 74 − 827.6 − 827.6 7–14 ECPPRALHR 182 
10–14 RALHR 141 
51–55 HDHDF 93 

7 1WO9 35 Trypsin inhibitor (HI) Locusta 
migratoria 

0 99 − 583.8 − 647.5 10–16 KKQDCNT 88 
29–35 RKACRTT 147 

8 2ERW 53 Serine protease 
inhibitor infestin 

Triatoma 
infestans 

0 158 − 647.5 − 787.2 1–9 NPCACFRNY 245 
6–10 FRNYV 178 

9 2KSW 66 Oryctin Oryctes 
rhinoceros 

0 73 − 699.9 − 767.5 8–18 EPKLCTMDLVP 200 
11–16 LCTMDL 164 
32–38 HGGCALS 42 

10 2M5X 40 Silk protease 
inhibitor 2 (GmSPI-2) 

Galleria 
mellonella 

0 116 − 714.1 − 787.5 1–9 EAAVCTTEW 145 
16–22 DGKTRSN 52 
37–40 GECL 37.69 

11 2VU8 33 Protease Inhibitor 3 Locusta 
migratoria 

0 117 − 547.5 − 630.0 10–13 QDCN 37.59 
27–33 RKACRTT 181.34 

12 2XTT 36 Protease inhibitor 
SGPI-1 

Schistocerca 
gregaria 

0 107 − 678.4 − 795.3 1–4 QECE 57.21 
9–14 KKQDCN 62.90 
28–35 RMGCPPHA 133.77 

13 3BT4 85 Fungal protease 
inhibitor-1 

Antheraea 
mylitta 

0 121 − 700.5 − 755.2 20–32 RASCRSPATYRAN 220.70 
24–30 RSPATYYR 149.72 
24–32 RSPATYRAN 160.43 
43–49 CVTLLRE 93.46 

14 3OZQ 364 Serpin48 Tenebrio 
molitor 

0 174 − 665.7 − 823.1 178–182 PFHTR 44.86 
328–333 ATYIPV 162.97 

15 3SSB 40 Metalloproteinase 
inhibitor protein 

Galleria 
mellonella 

0 91 − 679.4 − 789.0 1–4 LICN 119.05 
8–15 EYYECGGA 115.79 

16 4P0F 393 Serine protease 
inhibitor 4 

Drosophila 
melanogaster 

0 73 − 627.7 − 782.0 1–4 AAHQ 71.06 
79–85 AAYQILR 100.44 

17 4R9I 378 cysteine proteinase 
inhibitor (Serpin18) 

Bombyx mori 0 103 − 566.2 − 646.6 1–6 HHHHHM 114.80 

18 5C98 382 Serine protease 
inhibitor (SRPN18) 

Anopheles 
gambiae 

0 71 − 741.2 − 741.2 198–205 TAFVRRCL 79.65 
254–260 ERLQSCW 97.41 
321–324 SSEF 44.11 

19 5DAE 65 Kazal-type serine 
protease inhibitor 

Aedes aegypti 0 214 − 757.1 − 757.1 2–11 VCACPRIYMP 223.55 
21–25 NNDCL 33.63 
21–29 NNDCLLRCE 40.85 

20 6CJ7 390 Serine protease 
inhibitor (Serpin)-12 

Manduca sexta 0 99 − 609.8 − 760.7 88–94 LSENFNL 87.77 
111–117 TPTYFGK 84.59 

21 1GL0 35 Protease inhibitor 
LCMI I 

Locusta 
migratoria 

0 194 − 579.0 − 731.9 9–14 QQDCNT 38.56 
26–32 LMGCQPT 158.15 
25–32 CTLMGCQP 167.97 

22 PRO42 42 Chymotrypsinogen Helicoverpa 
armigera 

0 109 − 762.7 − 762.7 21–25 TKFGI 146.75 

23 PRO-S7 7 Trypsinogen Spodoptera 
frugiperda 

0 1000 − 545.6 − 545.6 1–7 VPSNPQR 192.54 

24 PRO13 13 Trypsinogen Plodia 
interpunctella 

0 158 − 411.9 − 522.8 1–6 AEVPSD 142.23 
8–13 YPNAQR 65.60 
1–13 AEVPSDPYPNAAQR 207.94 

25 PRO-P7 7 Trypsinogen Plutella 
xylostella 

0 364 − 414.7 − 530.4 1–7 VPKNPQR 240.98  
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Mpro (Table 4), and resulting poses were ranked based on HADDOCK 
score, cluster size, calculated RMSD, binding energy, and dissociation 
constant values. Similar to AutoDock results, it predicted most of the 
designed peptides to bind to the active site of the enzyme (Mpro) by 
HADDOCK analysis. The peptide 2ERW-9 (NPCACFRNY) from the 
assassin bug (Triatoma infestans Klug) showed the best HADDOCK score 
of − 131.2 with the binding energy of − 11.7 kcal/mol and the dissoci
ation constant of 2.6 nM. The buried surface area (BSA) of 2ERW-9 
bound to active site residues of the enzyme was calculated to be about 
1676 Å2. 

3.5. Binding of screened peptides to Mpro 

SARS-CoV-2 Mpro is a cysteine protease whose active site has an 

unusual catalytic dyad formed by C145 and H41 [41]. A catalytic water 
molecule forms three hydrogen bond interactions with H41, H164, and 
D187 in the active site of Mpro. A salt bridge interaction between D187 
and R40 is important to maintain the architecture of the catalytic cavity. 
It has been reported that L141, N142, S46, Q189, E166, P168, A191, and 
T190 in the solvent-exposed region of the Mpro substrate-binding site are 
involved in trapping of the substrate [44]. The docking procedure was 
validated using the coordination information of the 6LU7 PDBID of Mpro 

by manually removing and redocking the peptide-like N3 inhibitor 
following the same docking procedure used to run HADDOCK and 
AutoDock. The re-docked complex was then superimposed onto the 
reference co-crystallized complex using AutoDock tools 1.5.7, and the 
RMSD value was calculated. ΔRMSD values (the differences between the 
predicted dock structure to the reference ligand N3 position in the PDB 

Table 3 
Molecular docking (AutoDock) analysis of designed peptide originated from insects with inhibitory effect against Mpro.  

No Inhibitor (PDB 
ID) 

Peptide sequence Binding energy (ΔG) (Kcal/ 
mol) 

Inhibition 
constant 

Intermolecular energy (Kcal/ 
mol) 

VDW-H bond desolvation energy (Kcal/ 
mol) 

1 1CCV RICTMQCRI − 4.18 858.66 μM − 16.12 − 15.69 
CTMQCRI − 0.83 247.18 mM − 9.78 − 8.93 
MQCRI − 7.52 3.10 μM − 14.38 − 13.13 

2 1GL1 FKDKC − 5.48 95.81 μM − 12.94 − 10.51 
CTLKACPN − 4.62 407.36 μM − 12.98 − 11.49 

3 1KGM EVTCEP − 4.05 1.07 mM − 10.32 − 9.38 
FKDK − 6.37 21.55 μM − 12.93 − 10.95 
LKACPQ − 5.48 95.77 μM − 12.05 − 11.97 

4 1KIO EV − 4.91 252.32 μM − 7.30 − 7.57 
KDKC − 4.32 684.28 μM − 10.58 − 9.16 
RMACPQ − 6.83 9.91 μM − 13.39 − 11.93 

5 1KJ0 KQDCN − 3.98 1.20 mM − 10.84 − 9.52 
RKGCPPH − 9.39 130.51 nM − 16.55 − 13.91 

6 1KMA ECPPRALHR − 3.75 1.79 mM − 13.00 − 12.07 
RALHR − 7.00 7.40 μM − 13.56 − 12.39 
HDHDF − 5.29 131.50 μM − 11.26 − 11.88 

7 1WO9 KKQDCNT − 2.26 22.07 mM − 12.40 − 11.21 
RKACRTT − 4.69 363.48 μM − 14.24 − 11.97 

8 2ERW NPCACFRNY − 3.99 1.19 mM − 13.54 − 12.79 
FRNYV − 7.27 4.67 μM − 13.83 − 12.64 

9 2KSW EPKLCTMDLVP − 2.34 19.37 mM − 14.57 − 14.71 
LCTMDL − 4.02 1.13 mM − 11.18 − 11.12 
HGGCALS − 5.93 45.22 μM − 12.19 − 12.16 

10 2M5X EAAVCTTEW − 2.02 32.58 mM − 11.57 − 11.96 
DGKTRSN − 2.14 26.88 mM − 11.09 − 10.93 
GECL − 5.31 128.51 μM − 9.48 − 9.44 

11 2VU8 QDCN − 4.67 378.71 μM − 9.44 − 9.62 
RKACRTT − 2.24 22.81 mM − 11.79 − 9.63 

12 2XTT QECE − 3.18 4.64 mM − 8.55 − 9.25 
KKQDCN − 1.49 80.75 mM − 10.22 − 9.87 
RMGCPPHA − 7.87 1.70 μM − 15.03 − 14.58 

13 3BT4 RASCRSPATYRAN − 0.36 548.83 mM − 14.97 − 13.79 
RSPATYYR − 4.61 419.32 μM − 12.96 − 12.53 
RSPATYRAN − 1.92 39.45 mM − 12.06 − 10.07 
CVTLLRE − 4.81 297.83 μM − 13.46 − 12.45 

14 3OZQ PFHTR − 8.96 269.07 nM − 14.93 − 14.18 
ATYIPV − 9.26 163.08 nM − 14.93 − 14.56 

15 3SSB LICN − 7.13 5.90 μM − 11.61 − 11.63 
EYYECGGA − 3.82 1.58 mM − 12.47 − 12.73 

16 4P0F AAHQ − 6.95 8.00 μM − 10.83 − 10.69 
AAYQILR − 4.21 818.32 μM − 12.56 − 12.31 

17 4R9I HHHHHM − 6.54 15.99 μM − 14.00 − 13.94 
18 5C98 ERLQSCW − 2.21 24.10 mM − 11.45 − 10.59 
19 5DAE VCACPRIYMP − 4.60 421.22 μM − 14.45 − 13.42 

NNDCL − 4.03 1.11 mM − 9.70 − 9.81 
NNDCLLRCE − 1.05 170.99 mM − 12.08 − 12.49 

20 6CJ7 LSENFNL − 4.83 289.02 μM − 13.48 − 13.38 
TPTYFGK − 7.08 6.42 μM − 15.14 − 13.69 

21 1GL0 QQDCNT − 1.67 60.03 mM − 9.12 − 9.30 
LMGCQPT − 6.77 10.94 μM − 12.73 − 12.55 
CTLMGCQP − 5.24 143.08 μM − 13.30 − 13.24 

22 PRO42 TKFGI − 7.41 3.72 μM − 13.67 − 11.67 
23 PRO-S7 VPSNPQR − 7.81 1.88 μM − 14.97 − 14.63 
24 PRO13 AEVPSD − 3.95 1.26 mM − 9.62 − 9.87 

YPNAQR − 7.15 5.75 μM − 14.01 − 13.16 
25 PRO-P7 VPKNPQR − 7.60 2.71 μM − 15.05 − 13.37  
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Table 4 
Statistics of HADDOCK results for top-ranked cluster of different designed peptides originated from insects with inhibitory effect against Mpro.  

No Inhibitor 
(PDB ID) 

Peptide sequence Cluster 
rank 

HADDOCK 
score 

Cluster 
size 

RMSD Energy (kcal/mol) Buried 
surface 
area 
(Å2) 

ΔGbinding 

(kcal/ 
mol) 

Kd 

(M) 

Van 
der 
Waals 

Electrostatic Desolvation Total  

1 1CCV RICTMQCRI 1 − 92.4 51 0.4 − 58.00 − 96.16 − 17.6 − 154.17 1466.62 − 10.4 2.2E- 
08 

CTMQCRI 1 − 76.0 75 1.2 − 71.18 − 53.22 − 22.9 − 124.41 1683.94 − 11.6 2.9E- 
09 

MQCRI 4 − 74.3 22 0.4 − 53.42 − 104.14 − 8.5 − 157.57 1229.64 − 8.2 1.0E- 
06 

2 1GL1 FKDKC 1 − 98.6 81 0.4 − 41.74 − 245.11 − 17.4 − 286.86 1139.57 − 9.1 2.0E- 
07 

CTLKACPN 1 − 87.8 77 0.4 − 54.44 − 79.75 − 18.2 − 134.20 1292.04 − 9.8 6.4E- 
08 

3 1KGM EVTCEP 1 − 78.2 101 1.2 − 45.94 − 158.26 − 13.3 − 204.21 1162.56 − 10.3 2.9E- 
08 

FKDK 3 − 90.5 19 0.5 − 38.92 − 225.86 − 22.1 − 264.79 1014.6 − 8.7 4.2E- 
07 

LKACPQ 3 − 82.8 40 0.3 − 46.28 − 142.49 − 10.4 − 188.77 1162.81 − 10.3 2.9E- 
08 

4 1KIO EV 1 − 44.7 139 0.4 − 25.83 − 135.56 − 8.00 − 161.40 625.07 -6–6 1.5E- 
05 

KDKC 6 − 84.9 15 0.9 − 7.6 − 214.84 − 37.65 − 252.49 956.91 − 8.4 7.3E- 
07 

RMACPQ 2 − 82.3 57 0.4 − 59.12 − 117.91 − 6.0 − 177.04 1256.34 − 8.8 3.3E- 
07 

5 1KJ0 KQDCN 1 − 89.7 76 0.4 − 45.34 − 231.81 − 6.1 − 277.16 104.92 − 7.8 1.8E- 
06 

RKGCPPH 1 − 89.7 114 0.5 − 53.83 − 170.27 − 13.3 − 224.10 1224.04 − 9.9 5.9E- 
08 

6 1KMA ECPPRALHR 1 − 83.3 100 2.3 − 21.6 − 124.40 − 59.89 − 184.29 1386.74 − 11.0 8.2E- 
09 

RALHR 2 − 80.2 78 1.2 − 51.57 − 136.26 − 13.5 − 187.84 1174.4 − 8.6 5.0E- 
07 

HDHDF 3 − 106.0 29 0.4 − 55.43 − 98.30 − 35.5 − 153.74 1126.78 − 9.0 2.5E- 
07 

7 1WO9 KKQDCNT 2 − 92.0 39 0.4 − 60.24 − 195.04 − 1.4 − 255.29 1328.25 − 7.9 1.6E- 
06 

RKACRTT 2 − 91.0 25 1.3 − 45.63 − 239.62 − 5.1 − 285.25 1009.26 − 7.3 4.2E- 
06 

8 2ERW NPCACFRNY 2 − 131.2 30 0.3 − 72.14 − 119.45 − 35.1 − 191.60 1676.11 − 11.7 2.6E- 
09 

FRNYV 1 − 116.7 134 0.4 − 64.47 − 115.88 − 33.6 − 180.35 1204.51 − 6.2 2.7E- 
05 

9 2KSW EPKLCTMDLVP 1 − 77.9 102 0.8 − 35.10 − 186.55 − 9.9 − 221.66 1096.04 − 8.8 3.3E- 
07 

LCTMDL 6 − 64.7 13 1.5 − 39.02 − 122.41 − 10.5 − 161.43 1188.8 − 10.1 4.0E- 
08 

HGGCALS 1 − 80.3 118 0.5 − 38.40 − 72.26 − 29.9 − 110.67 1056.27 − 9.7 7.8E- 
08 

10 2M5X EAAVCTTEW 2 − 101.8 40 3.3 − 53.98 − 28.16 − 24.7 − 82.14 1138.79 − 9.2 1.7E- 
07 

DGKTRSN 1 − 108 57 0.4 − 44.33 − 255.62 − 14.2 − 299.95 1211.56 − 9.3 1.4E- 
07 

GECL 1 − 64.4 84 0.5 − 33.77 − 114.10 − 13.4 − 147.87 842.9 − 8.4 7.1E- 
07 

11 2VU8 QDCN 3 − 64 22 0.5 − 43.93 − 132.03 − 7.4 − 175.96 825.74 − 7.9 1.7E- 
06 

RKACRTT 1 − 94.2 53 0.4 − 69.77 − 126.92 − 12.6 − 196.69 1266.87 − 9.6 8.8E- 
08 

12 2XTT QECE 1 − 75.8 86 0.5 − 54.33 − 98.88 − 12.4 − 153.22 996.64 − 8.8 3.7E- 
07 

KKQDCN 3 − 88.7 25 0.4 − 51.82 − 179.07 − 7.7 − 230.89 1051.05 − 8.1 1.1E- 
06 

RMGCPPHA 5 − 88 11 0.5 − 42.40 − 29.25 − 31.1 − 71.65 1012.8 − 10.4 2.4E- 
08 

13 3BT4 RASCRSPATYRAN 3 − 91 17 1.8 − 70.00 − 167.44 − 5.2 − 237.44 1511.99 − 10.1 3.7E- 
08 

RSPATYR 1 − 92.5 67 0.8 − 58.48 − 107.90 − 23.9 − 166.38 1308.31 − 9.5 1.0E- 
07 

RSPATYRAN 1 − 88.1 60 0.5 − 63.75 − 95.52 − 14.1 − 159.27 1395.55 − 9.0 2.7E- 
07 

(continued on next page) 
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ID 6LU7 coordinate) were calculated to be 0.05 nm by AutoDock, and 
0.08 nm by HADDOCK (Supplementary Fig. 2), indicating the accuracy 
of the docking methods. 

To further investigate the stability of the peptides bound to the 
predicted binding site of Mpro and identify the residues involved in 
forming the intermolecular interactions, we subjected peptide/Mpro 

complexes to 100 ns MD simulations. In addition, a 10-ns MD simulation 
was carried out for the apo Mpro to refine the reference structure and 
remove steric clashes. RMSD values were used to examine whether the 
simulation systems were thermodynamically converged (Fig. 1). Further 
analyses were performed between 10 and 100 ns for the generated 
peptides/Mpro simulation trajectories to acquire accurate and repro
ducible data where the systems were at equilibrium. Low fluctuations of 
RMSD are associated with greater stability of the protein structure [45, 
46]. The fluctuation of RMSD along the trajectory was found to be 0.15 
to 0.25, 0.15–0.3, and ~0.25–0.35 nm for apo Mpro, 1KJ0-7/Mpro and 
2ERW-9/Mpro complexes, respectively (Fig. 1A). We also calculated the 
radius of gyration (Rg) (Fig. 1B) and solvent accessible surface area 
(SASA) (Fig. 1C) of the protein to determine the compactness of Mpro in 
complex with selected peptides and the contributions of solvation to the 

electrostatic energy of the system, respectively. The Rg and SASA mean 
values were estimated to be 2.17 nm and 149.42 nm/S2N for Mpro in 
2ERW-9/Mpro complex and 2.21 nm and 150.92 nm/S2N for Mpro in 
1KJ0-7/Mpro complex, respectively. Conversely, the mean values of the 
Rg and SASA were 2.22 nm and 151.41 nm/S2N for the apo Mpro as the 
reference for comparison. Overall, RMSD, Rg, and SASA values indicated 
that both peptides, especially 2ERW-9, increased the compactness of 
Mpro and decreased the solvent-exposed area and structural fluctuations 
of the protein. It should be noted that the secondary structure analysis of 
the peptides from the extracted structures along the trajectory revealed 
that both peptides consistently remained in a random coil conformation 
(Data not shown). 

Biovia Discovery Studio software was used to predict molecular in
teractions between the screened peptides and Mpro ligand-binding resi
dues [47]. We examined the binding mode of peptides in the resulting 
peptide/protein complex structures along trajectories by visual inspec
tion. Both peptides did not exhibit considerable conformational changes 
during trajectory with ΔRMSD values (the differences in RMSD between 
the initial and final refined models in MD simulation) being 0.26 nm for 
IKJ0-7 and 0.38 nm for 2ERW-9 (Fig. 2A and B and 3A, B). Therefore, 

Table 4 (continued ) 

No Inhibitor 
(PDB ID) 

Peptide sequence Cluster 
rank 

HADDOCK 
score 

Cluster 
size 

RMSD Energy (kcal/mol) Buried 
surface 
area 
(Å2) 

ΔGbinding 

(kcal/ 
mol) 

Kd 

(M) 

Van 
der 
Waals 

Electrostatic Desolvation Total  

CVTLLRE 4 − 70.2 17 0.4 − 61.90 − 105.33 − 1.9 − 167.24 1388.16 − 8.7 4.3E- 
07 

14 3OZQ PFHTR 1 − 93.5 128 0.4 − 53.80 − 38.64 − 41 − 92.44 1133.42 − 7.9 1.7E- 
06 

ATYIPV 3 − 90.7 12 0.4 − 69.89 − 52.43 − 24.6 − 122.33 1124.62 − 10.5 1.9E- 
08 

15 3SSB LICN 1 − 66.7 106 0.4 − 47.18 − 39.03 − 21.8 − 81.21 985.57 − 8.3 7.9E- 
07 

EYYECGGA 1 − 95.1 84 0.4 − 71.53 − 98.20 − 19.4 − 169.75 1295.48 11.1 7.6E- 
09 

16 4P0F AAHQ 1 − 71.8 71 0.8 − 38.15 − 82.55 − 21.7 − 120.70 821.02 − 7.1 6.1E- 
06 

AAYQILR 1 − 87.9 104 0.9 − 61.71 − 102.76 − 17.4 − 104.47 1418.28 − 10.2 3.5E- 
08 

17 4R9I HHHHHM 1 − 114.2 96 0.4 − 68.28 − 74.45 − 35 − 142.73 1352.69 − 9.7 7.4E- 
08 

18 5C98 ERLQSCW 5 − 84.5 10 2 − 52.13 − 53.58 − 34.5 − 105.72 1197.93 − 9.1 2.1E- 
07 

19 5DAE VCACPRIYMP 1 − 98.6 98 1.9 − 61.93 − 136.51 − 25.5 − 198.44 1521.5 − 12.1 1.2E- 
09 

NNDCL 1 − 72.7 52 0.5 − 50.16 − 92.33 − 9.5 − 142.49 1043.93 − 8.9 3.2E- 
07 

NNDCLLRCE 3 − 81.5 18 0.5 − 50.44 − 115.26 − 7.5 − 165.70 1237.95 − 9.1 2.2E- 
07 

20 6CJ7 LSENFNL 2 − 86.2 57 0.4 − 60.33 − 58.95 − 21.4 − 119.29 1161.43 − 9.0 2.5E- 
07 

TPTYFGK 1 − 90.9 89 0.4 − 43.72 − 158.54 − 32.6 − 202.26 1220.92 − 8.4 6.5E- 
07 

21 1GL0 QQDCNT 1 − 78.9 92 0.3 − 50.85 − 147.67 − 10.8 − 198.53 1127.68 − 8.1 1.2E- 
06 

LMGCQPT 1 − 64.3 164 0.5 − 45.01 − 32.87 − 20.0 − 77.88 1091.75 − 9.9 5.5E- 
08 

CTLMGCQP 1 − 74.2 96 0.5 − 43.72 − 65.31 − 23.6 − 109.04 1247.31 − 11.0 8.9E- 
09 

22 PRO42 TKFGI 2 − 92.9 35 0.4 − 59.84 − 97.85 − 27.1 − 157.70 1117.14 − 10.8 1.3E- 
08 

23 PRO-S7 VPSNPQR 4 − 93.0 22 0.8 − 59.84 − 97.85 − 32.0 − 157.70 1117.14 − 10.8 1.3E- 
08 

24 PRO13 AEVPSD 1 − 66.2 89 0.4 − 52.41 − 103.88 − 10.7 − 156.29 1090.02 − 7.2 5.5E- 
06 

YPNAQR 1 − 78.9 92 0.3 − 51.70 − 76.73 − 10.8 − 128.43 1080.78 − 8.4 7.1E- 
07 

25 PRO-P7 VPKNPQR 2 − 95.3 42 0.4 − 60.34 − 174.54 − 5.1 − 234.89 1361.72 − 10.4 2.2E- 
08  
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two peptides maintained the conformation of their binding site 
throughout the 100-ns MD simulation, and Biovia Discovery Studio 
demonstrated that, upon binding of peptide candidates, the active site 
was adequately inaccessible by the natural substrates. 1KJ0-7 was 
shown to form interactions with H41, T45, E47, D48, G143, C145, 
M165, E166, Q189, and A191 in the Mpro catalytic site (Fig. 2D). 
Accordingly, the catalytic residue H41 of Mpro interacts with the C5 
residue of 1KJ0-7 through a Pi-Sulfur interaction, and catalytic residue 
C145 of Mpro forms two hydrogen bonds with the H7 residue in 1KJ0-7. 
The binding of 1KJ0-7 to Mpro catalytic residues suggests that the 
designed inhibitor could largely inhibit the enzymatic reaction. In 
addition, E166, Q189, and A191, which are responsible for substrate 
trapping in Mpro, were shown to be blocked with (P5, H7, C4), (G3), and 
(K2) residues of 1KJ0-7, respectively (Fig. 2D). 2ERW-9 was shown to 
interact with T25, H41, T45, D48, N51, N142, C145, M165, E166, P168, 

and A191 residues from the Mpro catalytic cavity (Fig. 3D). Catalytic 
dyad H41 and C145 from Mpro are simultaneously blocked with the A4 
residue in 2ERW-9. Since the Mpro D187 was in contact with the R7 
residue of 2ERW-9, we can conclude that the compactness of the active 
site is destabilized due to the loss or weakening of the Mpro internal salt 
bridge (between D187 and R40). Furthermore, the substrate trapping 
residues of Mpro including N142, E166, P168, and A191 were in close 
interactions with (N8 and V10), (N8, Y9), (V10), and (Y9) residues of 
2ERW-9, respectively (Fig. 3D). Notwithstanding, to investigate the 
stability and dynamics of the interactions, the binding site were 
compared in terms of protein root mean square fluctuation (RMSF) 
measurements concerning carbon α (Cα) only. As depicted in Figs. 2C 
and 3C, for both peptides, the RMSF values of the bonded residues of 
Mpro decreased along the trajectory, while the other residues remained 
constant and were similar to the values predicted for the apo Mpro as the 

Fig. 1. Structural functions analysis of the apo Mpro (Red), 1KJ0-7/Mpro complex (Green), and 2ERW-9/Mpro complex (Blue) in the MD simulation predicting values 
of RMSD (A), Rg (B), and SASA (C). 
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reference structure. 3.6. Pharmacokinetic, toxicity, biochemical parameters (ligand 
efficiency), and Lipinski properties of peptides 

The drug-likeness of a novel compound is investigated using 

Fig. 2. (A) The initial structure 1KJ0-7/Mpro complex in MD simulation, (B) the final state of the 1KJ0-7/Mpro complex in MD simulation, (C) RMSF analysis for free 
Mpro (Red) and the 1KJ0-7/Mpro complex (Blue), (D) 3D representation of the residues involved in the binding of the 1KJ0-7 peptide (blue licorice stick) and Mpro 

(olive lines) in DS visualizer. Hydrogen interactions (green dashed lines); Pi-Alkyl interactions (light purple dashed lines); Pi-Pi and Pi-Sigma interactions (dark 
purple dashed lines); Pi-Sulfur, Pi-Anion, and Pi-Cation interactions (orange dashed lines) are displayed. 

Fig. 3. (A) The initial structure 2ERW-9/Mpro complex in MD simulation, (B) the final state of the 2ERW-9/Mpro complex in MD simulation, (C) RMSF analysis for 
free Mpro (Red) and the 2ERW-9/Mpro complex (Green), (D).3D representation of the residues involved in the binding of the 2ERW-9 7 peptide (blue licorice stick) 
and Mpro (olive lines) in DS visualizer. Hydrogen interactions (green dashed lines); Pi-Alkyl interactions (light purple dashed lines); Pi-Pi and Pi-Sigma interactions 
(dark purple dashed lines); Pi-Sulfur, Pi-Anion, and Pi-Cation interactions (orange dashed lines) are displayed. 
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Lipinski’s rule of five in the drug discovery process [48]. The rule de
termines essential pharmacokinetic properties of drug molecules, 
including the absorption, distribution, metabolism, and excretion 
(ADMET) [41,48]. Designed drug candidates that comply with the Lip
inski’s are considered to have ideal pharmacokinetic properties. Lip
inski’s rule is based on four physicochemical characteristics, including 
(1) molecular weight (≤500 Da), (2) number of hydrogen bond donors 
(≤5) (sum of OH and NH groups), (3) number of hydrogen bond ac
ceptors (≤10) (sum of N and O atoms), (4) lipophilicity (Log P ≤ 5) [48, 
49]. In addition to calculating these four characteristics, other related 
criteria that were predicted [50] included the polar surface area <140 
Å2, the number of rotatable bonds (≤10), and the molar refractivity 
(<130). The values predicted for the two screened peptides and two 
FDA-approved protease inhibitors (Ritonavir and Lopinavir) as control 
compounds are listed in Tables 5–7. Shivanika et al. (2020) used the 
AutoDock docking method and reported that Lopinavir and Ritonavir 
had the potency to inhibit the Mpro active site with binding affinities of 
− 9.70 kcal/mol and Ritonavir with − 11.15 kcal/mol, respectively [51]. 
In in-silico studies, Lopinavir was proved to exhibit the effective IC50 

value of 13.7 μM when used alone, and combining Lopinavir with Ri
tonavir resulted in improvement of IC50 (10.9 μM) in HEK-293 T cell 
cultures [52]. We followed the same AutoDock steps that were previ
ously applied for the two FDA-approved drugs. Results showed that 
Lopinavir with the binding affinity of − 11.26 kcal/mol and Ritonavir 
with that of − 11.12 kcal/mol blocked Mpro in the active site. The 
complex and interaction analysis are depicted in Supplementary Figs. 3 
and 4. Lopinavir and Ritonavir are FDA-approved drugs characterized as 
Mpro inhibitors. In our study, AutoDock results showed that both ligands 
interacted with residues in the catalytic binding site of Mpro, including 
P168, E166, M165, A191, H41, T26, C145, and Q189 for Ritonavir, and 
P168, M165, L167, E166, H41, C145, and T25 for Lopinavir, which were 
similar to our findings for the binding site of the designed peptides. 

4. Discussion 

SARS-CoV-2, a human coronavirus, is the causative agent of coro
navirus disease 2019 (COVID-19). The pandemic spread of SARS-CoV-2 
and the continually increasing number of COVID-19-related deaths have 
made it necessary to develop effective therapeutic strategies against the 
virus. Mpro of SARS-CoV-2 plays a pivotal role in viral replication 
through mediating the cleavage of replicase polyproteins [13]. There
fore, SARS-CoV-2 Mpro is considered an attractive target for drug 
development against COVID-19. 

Insects are known to produce a wide range of protease inhibitors 
[20]. However, in comparison with other natural sources, insects have 
been relatively neglected for drug development [21]. Therefore, this 
study aimed to adopt a bioinformatics approach to screen for 
insect-derived compounds with potential inhibitory properties against 
Mpro and to further predict interactions of these inhibitors with the 
enzyme in silico. 

The crystal structure of SARS-CoV-2 Mpro in complex with the in
hibitor N3 was determined by Jin and colleagues in 2020 [22] and was 
made publicly accessible in the protein data bank (PDB-ID: 6LU7). It is 
worth noting that amino acid sequences of Mpro encoded by SARS-CoV-2 
and SARS-CoV (PDB-ID: 2GTB) have been previously shown to be 96% 
identical [53]. Further primary and secondary structure analysis, per
formed in our study, revealed a high similarity between the two proteins 
(6LU7 and 2GTB). For instance, random coils were predicted to be 
predominant secondary structures followed by α–helices in both pro
teins. 6LU7 and 2GTB were predicted to be stable, acidic, and hydro
philic proteins (Supplementary Table 1). Taken together, Mpro seems to 
be highly conserved among coronaviruses, as was also demonstrated 
through the superposition of 12 crystal structures of Mpro by Jin et al. 
[22]. Being highly conserved among coronaviruses, Mpro is believed to 
be a promising target for developing wide-spectrum inhibitors [54]. 

In the present study, the publicly available 3D structure of SARS- 
CoV-2 Mpro was run through molecular docking experiments. 60 inhib
itor peptides were designed by blind docking of the protomer A of SARS- 
CoV-2 Mpro (6LU7) to various insect protease inhibitors using the Clu
sPro server followed by structural model prediction of inhibitor/Mpro 

complexes by PEP-FOLD3. Upon blind docking, directed docking of 
these 60 peptides was performed by two independent docking programs: 
AutoDock and HADDOCK. The use of two different docking programs 
enabled us to evaluate our adopted methodology by two programs that 

Table 5 
Lipinski properties of the two screened peptides and two FDA-approved protease 
inhibitors including Ritonavir and Lopinavir as control compounds.  

Compound Decoy peptides in SMILES format Lipinski properties 

2ERW-9 CC(C)C(NC(=O)C(CC1=CC=C(O) 
C=C1)NC(=O)C(CC(N) = O)NC(=O)C 
(CCC[NH+] = C(N)N)NC(=O)C 
(CC2=CC=CC=C2)NC(=O)C(CS)NC 
(=O)C(C)NC(=O)C(CS)NC(=O) 
C3CCCN3C(=O)C([NH3+])CC(N) = O) 
C([O-]) = O 

Molecular weight: 1187.39 
ALog P: 3.31 
H-bond donor: 17 9 
H-bond acceptor: 16 11 
Molar refractivity: 304.73 
195.54 
Topological Polar Surface 
Area: 570.9220.14 
Number of rotatable 
bonds: 33 16 

1KJ0-7 NC(N) = [NH+]CCCC([NH3+])C(=O) 
NC(CCCC[NH3+])C(=O)NCC(=O)NC 
(CS)C(=O)N1CCCC1C(=O)N2CCCC2C 
(=O)NC(CC3=C[NH]C=N3)C([O-]) =
O 

Molecular weight: 795.97 
ALog P: 5.82 
H-bond donor: 11 8 
H-bond acceptor: 10 6 
Molar refractivity: 210.22 
Topological Polar Surface 
Area: 385.92 169.15 
Number of rotatable 
bonds: 22 11 

Lopinavir CC(C)C(N1CCCNC1 = O)C(=O)NC(CC 
(O)C(CC2=CC=CC=C2)NC(=O) 
COC3=C(C)C=CC=C3C) 
CC4=CC=CC=C4 

Molecular weight: 628.81 
ALog P: 4.33 
H-bond donor: 5 
H-bond acceptor: 4 
Molar refractivity: 187.92 
Topological Polar Surface 
Area: 120 
Number of rotatable 
bonds: 15 

Ritonavir CC(C)C(NC(=O)N(C)CC1=CSC(=N1)C 
(C)C)C(=O)NC(CC(O)C 
(CC2=CC=CC=C2)NC(=O) 
OCC3=CN=CS3)CC4=CC=CC=C4 

Molecular weight: 720.94 
ALog P: 5.91 
H-bond donor: 9 
H-bond acceptor: 4 
Molar refractivity:197.82 
Topological Polar Surface 
Area: 202.26 
Number of rotatable 
bonds: 17  

Table 6 
Toxicity properties of the two screened peptides and two FDA-approved protease inhibitors including Ritonavir and Lopinavir as control compounds.  

Compound AMES 
toxicity 

Acute oral toxicity (kg/ 
mol) 

Carcinogenicity Hepatotoxicity Tetrahymena 
Pyriformis 
Toxicity pIGC50, mg/L 

Rat acute toxicity LD50, mol/ 
kg 

Biodegradation 

2ERW-9 No 3.496 No No 0.45 – No 
1KJ0-7 No 2.684 No No 0.364 – No 
Lopinavir No 2.994 No Yes 0.875 2.2503 No 
Ritonavir No 2.281 No Yes 0.841 2.6154 No  
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function on the basis of two different search algorithms, scoring func
tions, and pose selection schemes [55]. Furthermore, the binding af
finity of the designed peptides to the active site of the enzyme, as 
calculated by the two docking programs, can be compared to one 
another. Predicting the binding affinity of inhibitors to the active site is 
particularly important, as enzyme inhibitors modify the catalytic prop
erties of the target enzyme through binding to and blocking the active 
site [56]. 

As expected, the two docking programs generated different 

outcomes. AutoDock analysis introduced 1KJ0-7 and 3OZQ-6 with 
binding energies of − 9.39 and − 9.26 kcal/mol, whereas HADDOCK 
analysis resulted in the discovery of 2ERW-9 with the binding energy of 
− 11.70 kcal/mol 1KJ0-7 (RKGCPPH) was predicted to have the highest 
binding affinity to the target enzyme with desirable binding energy, 
inhibition constant, and intermolecular energy using AutoDock 
(Table 3). However, 2ERW-9 (NPCACFRNY) was ranked as the best Mpro 

inhibitor by HADDOCK calculations based on several criteria including 
cluster size, HADDOCK score, RMSD, binding energy and dissociation 
constant (Table 4). 2ERW-9 showed the highest buried surface area 
value in comparison with other peptide inhibitors (Table 4). 2ERW-9 
was shown to form 12 intermolecular hydrogen bonding interactions 
and 127 non-bonded contacts to Mpro. A high number of hydrogen 
bonding interactions between inhibitors and target molecules plays a 
vital role in selecting potent and specific inhibitor peptides. 1KJ0-7 was 
shown to form nine intermolecular hydrogen bonding interactions and 
91 non-bonded contacts to Mpro. Considering the number of predicted 
hydrogen bonds between 1KJ0 and 7 or 2ERW-9 with the Mpro active 
site, these peptides have a great potential to inhibit SARS-CoV-2 Mpro. 

The peptides are bound in two orientations, where the N-terminal 
and the C-terminal of peptide sequences are directed toward the binding 
pocket. All docking results binding affinities reflected the negative 
binding energies in all models, indicating favorable binding in all 
complexes, ranging from − 1 to − 10 kcal/mol in AutoDock results and 
− 410 to − 980 kcal/mol for HADDOCK values. The optimum binding 
interaction belonged to the hepta-to deca-mer peptides. As expected, 
due to the presence of charged and neutral residues like E, M, H, T, D, 
and Q in the Mpro catalytic site, both positively and negatively charged 
amino acids can interact with the catalytic cavity; however, our best 
screened docked structures showed positively charged and basic resi
dues at N- (R1K2 for 1KJ0 and N1 for 2ERW) and C-terminal (H7 for 
1KJ0 and F6R7N8Y9 for 2ERW). 

In 2020, the WHO recommended the combination of Lopinavir and 
Ritonavir as an antiviral treatment option for COVID-19 [57]. Lopinavir 
and Ritonavir are protease inhibitors currently used for the treatment of 
human immunodeficiency virus (HIV) [58]. A previous study reported 
the binding energy of − 9.41 kcal/mol for Lopinavir, when docked 
against SARS-CoV-2 Mpro (6LU7) [59]. This value of binding energy is 
relatively close to those reported in this study for 1KJ0-7 and 3OZQ-6 
(− 9.39 and − 9.26 kcal/mol). The other peptide designed in this study 
(2ERW-9) was calculated to have the binding energy of − 11.70 kcal/
mol, which was significantly higher than that of Lopinavir. It should also 
be noted that the WHO solidarity trial and, later, other research groups 
concluded that Lopinavir alone or in combination with Ritonavir has 
limited effect on COVID-19 progression [60–62]. 

In summary, our study introduced two novel peptides with potential 
inhibitory properties against COVID-19. The methodology used in this 
study would possibly contribute to the discovery of other novel anti- 
COVID-19 compounds from natural sources, particularly from insect 
protease inhibitors or pro-regions of insect proteases. 

Ligand efficiency scores are used to escape the affinity-biased se
lection and optimization towards larger ligands. Recently the applica
tion of ligand efficiency has been widely increased in the selection and 
optimization of newly introduced candidates. In particular, optimization 
of lipophilic ligand efficiency reveals whether increased affinity is 
mediated by an increase in lipophilic characteristics or not. This method 
provides a way to compare the affinity of ligands corrected for their size, 
even with challenging ‘lipophile-preferring’ targets. We calculated LE 
values (Ligand Efficiency: binding affinity divided by the number of 
heavy atoms (HA), LE = − ΔG/HA) of 0.15 and 0.18 for 2ERW and 1KJ0 
peptides, respectively. In a recent study, the mean LE values of 480 
target-assay pairs that included 329 human drug targets obtained from 
recent medicinal chemistry literature span a broad range of ~0.15–0.60 
[63]. 

Table 7 
Pharmacokinetic properties of the two screened peptides and two FDA-approved 
protease inhibitors including Ritonavir and Lopinavir as control compounds.  

Part B 2ERW-9 1KJ0-7 Lopinavir Ritonavir 

Human 
Intestinal 
Absorption 

– – + +

Blood Brain 
Barrier 

+ + + – 

Plasma protein 
binding 
(100%) 

0.42 0.127 1.157 1.113 

Water solubility 
(LogS) 

− 3.308 − 2.702 − 3.414 − 3.225 

Estrogen 
receptor 
binding 

+ + + +

Androgen 
receptor 
binding 

+ + + +

Thyroid 
receptor 
binding 

+ + + +

Glucocorticoid 
receptor 
binding 

+ – + +

Aromatase 
binding 

+ + – +

PPAR gamma + + + +

Subcellular 
localization 

Mitochondria Mitochondria Mitochondria Lysosomes 

Caco-2 
Permeability 

– – + +

OATP2B1 
inhibitior 

– – + +

OATP1B1 
inhibitior 

+ + + +

OATP1B3 
inhibitior 

+ + + +

MATE1 
inhibitior 

– – – – 

OCT2 inhibitior – – – – 
BSEP inhibitior + + + +

P-glycoprotein 
inhibitior 

+ + + +

P-glycoprotein 
substrate 

+ + + +

CYP3A4 
substrate 

+ + + +

CYP2C9 
substrate 

– – – +

CYP2D6 
substrate 

– – – – 

CYP3A4 
inhibition 

– – – +

CYP2C9 
inhibition 

– – – – 

CYP2C19 
inhibition 

– – – +

CYP2D6 
inhibition 

– – – – 

CYP1A2 
inhibition 

– – – – 

CYP inhibitory 
promiscuity 

– – – +

UGT catelyzed – – – –  
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5. Conclusion 

The COVID-19 pandemic outbreak and the absence of effective drugs 
against the disease introduced a new challenge to researchers to ur
gently develop lead compounds or precursors with antiviral potential. 
The present study aimed to discover insect-derived protease inhibitors 
as potent agents against SARS-CoV-2 Mpro through an in silico proced
ure. Molecular docking was applied using the AutoDock and HADDOCK 
methods for sixty insect protease inhibitors along with supporting MD 
simulations and Biovia Discovery Studio to elucidate the interactions 
phenomena between the selected peptides and Mpro. This study also 
estimated the pharmacokinetics, toxicity, and Lipinski properties of the 
screened peptides and compared these peptides with the currently FDA- 
approved drugs. The dynamic interactions between the peptides and 
SARS-CoV-2 Mpro confirmed the promising potential of our selected 
peptides for inhibiting Mpro. More specifically, molecular modelling and 
simulation results suggested that 1KJ0-7 and 2ERW-9 are promising 
candidates as antivirals against SARS-CoV-2, which might help reduce 
COVID-19 infections and death cases in the near future. Natural com
pounds like peptides, flavonoids, alkaloids, tannins, and others usually 
do not possess any mutagenic and carcinogenic properties with little or 
no side effects, and the selected peptides (1KJ0-7 and 2ERW-9) are 
derived from insect proteases and satisfy these criteria. This research can 
be used as a promising road map for the discovery of novel SARS-CoV-2 
Mpro inhibitors. However, in vitro and in vivo analyses are further 
required to evaluate the safety and efficiency of selected inhibitors 
against Mpro. Bio-nanotechnology and target delivery tools can be used 
to improve the bioavailability and therapeutic efficiency of drugs and 
preferential accumulation at the target site. Future studies will also focus 
on natural compounds as capping and reducing agents onto metal 
nanoparticles, which will provide positive insights towards the cure of 
infection. 
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