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Abstract: Salinity and drought are two major abiotic stresses that limit grape productivity. Responses
to stress in grape are known to be regulated by several families of transcription factors. However, little
is known about the role of grape Squamosa promoter binding protein (SBP)-box transcription factor
genes in response to abiotic stress. To better understand the functions of the grape SBP-box genes in
abiotic stress tolerance, a full-length complementary DNA (cDNA) sequence of the putative SBP-box
transcription factor gene, VpSBP16 was amplified from Chinese wild grapevine Vitis pseudoreticulata
clone “Baihe-35-1”. We observed that the VpSBP16 protein fused to the green fluorescent protein (GFP)
reporter accumulated in the nucleus when transiently expressed in onion epidermal cells. Moreover,
VpSBP16 was shown to have transcriptional activation activity using a yeast trans-activation
assay. We performed a VpSBP16 functional analysis through the characterization of transgenic
Arabidopsis thaliana plants constitutively over-expressing VpSBP16. The transgenic lines had longer
roots and the seeds had a higher germination rate than the wild type (WT) under osmotic stress. In
addition, the accumulation of reactive oxygen species (ROS) of transgenic seedlings was significantly
lower than WT in the transgenic lines, as was electrolyte leakage. VpSBP16 overexpression also
elevated expression levels of stress-response genes involved in the salt overly sensitive (SOS) pathway.
These results indicate that overexpression VpSBP16 in A. thaliana enhances tolerance of salt and
drought stress during seed germination, as well in seedlings and mature plants, by regulating SOS
and ROS signaling cascades.
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1. Introduction

Plants frequently encounter stressful environmental conditions, such as extreme temperatures,
drought, and high salinity, which can severely limit growth and development and greatly reduce
the quality and yield of crops. To prevent the potentially harmful effects of such stresses, plants
have evolved a range of physiological, biochemical, molecular, and cellular processes that represent
tolerance or avoidance mechanisms.

Transcriptional control of the expression of stress-responsive genes is a crucial part of plant
responses to abiotic stress and many transcription factors have been identified that regulate responses to
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environmental cues by activating or repressing multiple target genes. For example, MYB2, MYB15 [1,2];
bZIP24 [3]; WRKY25, WRKY33, WRKY63/ABO3, WRKY18, WRKY60 [4–6] from Arabidopsis thaliana,
OsMPS [7] from rice (Oryza sativa) and SlAREB [8] from tomato (Solanum lycopersicum) have all been
reported to regulate responses to some abiotic stresses by activating or repressing transcription of
multiple target genes, such as RD29A, COR15, KIN1.

Squamosa promoter binding protein (SBP)-box genes encode a family of transcription factors that
are exclusively present in plants [9–11]. A common feature of SBP-box genes is that the corresponding
proteins contain a highly conserved SBP-domain, an assembly of approximately 76 amino acid residues
that includes two zinc fingers and a nuclear localization signal [9,12,13]. To date, several important
and divergent biological processes have been reported to be regulated by SBP-box genes. However,
only a few SBP genes have been shown to play a role in responses to abiotic and biotic stresses.
For example, SBP genes in Arabidopsis are responsive to various biotic and abiotic stress, and interact
with genes involved in the defense response pathway [14]. Arabidopsis AtSPL14 has been associated
with programmed cell death and to play a role in sensitivity to the fungal toxin fumonisin B1 [15].
The birch BpSPL9 gene was reported to increase resistance to abiotic stress by enhancing the activities of
superoxide dismutase (SOD) and peroxidase (POD) in transgenic lines [16]. Furthermore, preliminary
expression profiling of 31 maize ZmSPL genes showed that some genes were influenced by several
environmental stimuli, including drought, cold, salinity, and abscisic acid exposure [17]. It has also
been reported that responses to heat stress mediated by the micro-RNA, miR156, operate through SPL
transcription factors (SPL2, SPL9 and SPL11) in A. thaliana [18]. Overexpression of OsmiR156k in rice
was reported to reduce tolerance to cold stress by down-regulating SPL3, SPL14 and SPL17 [19], while
SPL9, SPL10 and SOC1 from A. thaliana were downregulated under stress conditions and upregulated
after recovery from stress conditions [20]. Lastly, miR156 was shown to improve drought tolerance in
alfalfa, at least in part by silencing SPL13 [21].

In contrast to the extensive studies in model species such as A. thaliana, relatively little is known
about SBP-box genes from grape. We previously found that VvSBP17, the ortholog of A. thaliana
AtSPL14, was up-regulated after infection with the phytoplasma Bois Noir in the susceptible V. vinifera
cultivar ‘Chardonnay’ [22]. Moreover, it has been suggested that VpSBP5 from V. pseudoreticulata
participates in the regulation of resistance to Erisyphe necator by inducing salicylic acid (SA) and methyl
jasmonate (MeJA) molecular signals [23]. However, a role for SBP-box genes in responses to abiotic
stresses in grape has yet to be demonstrated. In the present study, we describe the functional evaluation
of an SBP gene, VpSBP16, from a Vitis wild species following its over expression in A. thaliana, and
present data that support a role of its role enhancing abiotic stress resistance.

2. Results

2.1. Cloning and Sequence Analysis of VpSBP16

A 5984 base pair (bp) full-length VpSBP16 DNA sequence, including a 1647 bp open reading frame
(ORF), was amplified from complementary DNA (cDNA) (Figure 1A) or genomic DNA (Figure 1B)
extracted from the leaves of V. pseudoreticulata W. T. Wang clone ‘Baihe-35-1’, using the primers based on
the cDNA sequence of VvSBP16 obtained from the Grape Genome Database (http://www.genoscope.
cns.fr). A comparison between the genomic DNA and cDNA sequence revealed that the coding region
of VpSBP16 has two introns (557 bp and 3662 bp), the relative positions of which are shown in Figure 2.
The predicted VpSBP16 protein contains a highly conserved SBP-domain with two zinc-binding sites
of the C2HCH type (zinc finger 1 and zinc finger 2), together with a nuclear localization signal (NLS)
(Figure 2A).

http://www.genoscope.cns.fr
http://www.genoscope.cns.fr
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Figure 1. Cloning of VpSBP16 from V. pesudoreticulata. (A) PCR amplification of the full-length 
VpSBP16 cDNA and (B) DNA from Vitis pseudoreticulata. M1: DNA marker DL5000; M2: DNA 
marker λ-Hind III; 1: VpSBP16 PCR product from cDNA; 2 and 3: VpSBP16 PCR product. 

2.2. Subcellular Localization and Function of VpSBP16 in Transcriptional Activation 

Sequence analysis of the grape SBP-box genes revealed that their deduced protein sequences 
contained putative NLS regions (Figure 2A). To confirm targeting of VpSBP16 to the nucleus, the 
VpSBP16 coding sequence (CDS) without the C terminal termination codon was translationally 
fused to green fluorescent protein (GFP) coding sequence in the pBI221-GFP vector to generate the 
pBI221-VpSBP16-GFP vector. This vector and a pBI221-GFP negative control vector were 
transformed into onion epidermal cells using particle bombardment [24] for transient expression 
analysis. The VpSBP16-GFP fusion protein was observed by confocal microscopic analysis to 
accumulate in the nucleus of onion epidermal cells, whereas the GFP control protein was distributed 
throughout the cell (Figure 3A), consistent with the prediction that VpSBP16 is a nuclear protein that 
functions as a transcription factor. 

To investigate whether VpSBP16 has transcriptional activation activity, the full-length VpSBP16 
CDS and the yeast GAL4 cDNA were separately fused to the GAL4 DNA-binding domain in the 
pGBKT7 vector. Yeast cells transformed with the pGBKT7 control vector only grew on Single 
Dropout (-Trp) (SD/-Trp) medium, while those transformed with the VpSBP16 and GAL4 plasmids 
were able to grow on both SD/-Trp and SD/-Trp/-Ade/-His media, and exhibited blue staining in 
X-α-gal solution (Figure 3B), demonstrating that the VpSBP16 protein can function as a 
transcriptional activator. 

Figure 1. Cloning of VpSBP16 from V. pesudoreticulata. (A) PCR amplification of the full-length VpSBP16
cDNA and (B) DNA from Vitis pseudoreticulata. M1: DNA marker DL5000; M2: DNA marker λ-Hind
III; 1: VpSBP16 PCR product from cDNA; 2 and 3: VpSBP16 PCR product.

2.2. Subcellular Localization and Function of VpSBP16 in Transcriptional Activation

Sequence analysis of the grape SBP-box genes revealed that their deduced protein sequences
contained putative NLS regions (Figure 2A). To confirm targeting of VpSBP16 to the nucleus, the
VpSBP16 coding sequence (CDS) without the C terminal termination codon was translationally
fused to green fluorescent protein (GFP) coding sequence in the pBI221-GFP vector to generate
the pBI221-VpSBP16-GFP vector. This vector and a pBI221-GFP negative control vector were
transformed into onion epidermal cells using particle bombardment [24] for transient expression
analysis. The VpSBP16-GFP fusion protein was observed by confocal microscopic analysis to
accumulate in the nucleus of onion epidermal cells, whereas the GFP control protein was distributed
throughout the cell (Figure 3A), consistent with the prediction that VpSBP16 is a nuclear protein that
functions as a transcription factor.

To investigate whether VpSBP16 has transcriptional activation activity, the full-length VpSBP16
CDS and the yeast GAL4 cDNA were separately fused to the GAL4 DNA-binding domain in the
pGBKT7 vector. Yeast cells transformed with the pGBKT7 control vector only grew on Single Dropout
(-Trp) (SD/-Trp) medium, while those transformed with the VpSBP16 and GAL4 plasmids were able to
grow on both SD/-Trp and SD/-Trp/-Ade/-His media, and exhibited blue staining in X-α-gal solution
(Figure 3B), demonstrating that the VpSBP16 protein can function as a transcriptional activator.
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Figure 2. The DNA, cDNA nucleotide sequence and deduced amino acid sequence of VpSBP16 from 
V. pesudoreticulata (A) and Exon-intron structures of VpSBP16 (B). The SBP domain is shown in red 
and the two zinc-binding sites of the C2HCH type (zinc finger 1 and zinc finger 2) are indicated with 
green and yellow boxes. The conserved basic amino acids of the nuclear location signal are shaded in 
dark grey. 

Figure 2. The DNA, cDNA nucleotide sequence and deduced amino acid sequence of VpSBP16 from
V. pesudoreticulata (A) and Exon-intron structures of VpSBP16 (B). The SBP domain is shown in red
and the two zinc-binding sites of the C2HCH type (zinc finger 1 and zinc finger 2) are indicated with
green and yellow boxes. The conserved basic amino acids of the nuclear location signal are shaded in
dark grey.
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Figure 3. Subcellular localization and transcriptional activation function of VpSBP16. (A) Subcellular 
localization of the VpSBP16-GFP (bottom row) fusion protein (top row) in onion epidermal cells. 
White arrowheads indicate the location of the nucleus in onion epidermal cell, scale bars: 50 μm. (B) 
Transcriptional activation function of VpSBP16 in yeast. Yeast cells containing the different plasmids 
grown on SD/-Trp select medium (left). Yeast cells containing the different plasmids grown on 
SD/-Trp-His-Ade+X-α-gal selection medium (right). 1: Positive control. (pGBKT7-Gal4); 2: 
pGBKT7-VpSBP16; 3: Negative control (pGBKT7). The experiments were repeated three times with 
consistent results. 

2.3. Effect of Osmotic Stress on Seed Germination in Transgenic VpSBP16 Arabidopsis Lines 

We generated transgenic A. thaliana plants expressing the VpSBP16 ORF under the regulation of 
the constitutive CaMV 35S promoter to determine whether the gene confers abiotic stress tolerance. 
A total of 89 independent transgenic lines were obtained and the presence of the transgene 
confirmed by PCR and kanamycin antibiotic selection. The expression level of VpSBP16 in twelve 
transgenic lines with the better performance under salt stress was verified by semi-quantitative 
RT-PCR with transcript-specific primers VpSBP16-F and VpSBP16-R (Table 1).The three lines 
(VpSBP16-1, VpSBP16-14, and VpSBP16-47) with the best performance and the highest levels of 
expression were selected for further study (Figure S1), and grown in the same Petri dish or pot with 
different stress conditions as WT plants (Figures 4 and 5). 

Table 1. The information of primers used in this paper. F indicates forward primer, R indicates 
reversed primer and the underline indicates restriction sites. 

Primer Pairs Forward and Reverse Primers (5′-3′) Restriction Enzyme Cutting Site 
VpSBP16-F F: GCCCAATTCGTCTGCAAGAAGT none 
VpSBP16-R R: CACCACCCTTGCCACATGAAACA none 
VpSBP16-F1 F: ATGGGGTCTTGGAGCTACG none 
VpSBP16-R1 R: TTACGTTATCCGGAGGC none 

AtSOS2-F F: ATTGAGGCTGTAGCGAAC none 
AtSOS2-R R: GGTATTCCTTCTGTTGCC none 
AtSOS3-F F: GGAGGAATCTCTTCGCTG none 
AtSOS3-R R: CACGAAAGCCTTATCCACC none 
AtFRY1-F F: CGCAGTAGCACTAGGATTG none 
AtFRY1-R R: TTGACACCGAGTTTATTGG none 
AtADH-F F: CTCTTGGTGCTGTTGGTTTAGG none 
AtADH-R R: AATTGGCTTGTCATGGTCTTTC none 

AtCOR15a-F F: GCGAACAATCCTTCACAG none 
AtCOR15a-R R: CTTCGGGAGACCCACCT none 

AtKIN2-F F: GTCAGAGACCAACAAGAATGCC none 
AtKIN2-R R: TGACTCGAATCGCTACTTGTTC none 
AtP5CS1-F F: TTCTCAGATGGTTTCCAGGTTG none 
AtP5CS1-R R: TGGGAATGTCCTGATGGGTG none 
AtRD29B-F F: GTGAAGATGACTATCTCGGTGGTC none 
AtRD29B-R R: TACCAAGAGACTCAGCAATCTCTG none 

Figure 3. Subcellular localization and transcriptional activation function of VpSBP16. (A) Subcellular
localization of the VpSBP16-GFP (bottom row) fusion protein (top row) in onion epidermal cells.
White arrowheads indicate the location of the nucleus in onion epidermal cell, scale bars: 50 µm.
(B) Transcriptional activation function of VpSBP16 in yeast. Yeast cells containing the different
plasmids grown on SD/-Trp select medium (left). Yeast cells containing the different plasmids
grown on SD/-Trp-His-Ade+X-α-gal selection medium (right). 1: Positive control. (pGBKT7-Gal4); 2:
pGBKT7-VpSBP16; 3: Negative control (pGBKT7). The experiments were repeated three times with
consistent results.

2.3. Effect of Osmotic Stress on Seed Germination in Transgenic VpSBP16 Arabidopsis Lines

We generated transgenic A. thaliana plants expressing the VpSBP16 ORF under the regulation of
the constitutive CaMV 35S promoter to determine whether the gene confers abiotic stress tolerance.
A total of 89 independent transgenic lines were obtained and the presence of the transgene confirmed
by PCR and kanamycin antibiotic selection. The expression level of VpSBP16 in twelve transgenic
lines with the better performance under salt stress was verified by semi-quantitative RT-PCR
with transcript-specific primers VpSBP16-F and VpSBP16-R (Table 1).The three lines (VpSBP16-1,
VpSBP16-14, and VpSBP16-47) with the best performance and the highest levels of expression were
selected for further study (Figure S1), and grown in the same Petri dish or pot with different stress
conditions as WT plants (Figures 4 and 5).

Table 1. The information of primers used in this paper. F indicates forward primer, R indicates reversed
primer and the underline indicates restriction sites.

Primer Pairs Forward and Reverse Primers (5′-3′) Restriction Enzyme Cutting Site

VpSBP16-F F: GCCCAATTCGTCTGCAAGAAGT none
VpSBP16-R R: CACCACCCTTGCCACATGAAACA none
VpSBP16-F1 F: ATGGGGTCTTGGAGCTACG none
VpSBP16-R1 R: TTACGTTATCCGGAGGC none

AtSOS2-F F: ATTGAGGCTGTAGCGAAC none
AtSOS2-R R: GGTATTCCTTCTGTTGCC none
AtSOS3-F F: GGAGGAATCTCTTCGCTG none
AtSOS3-R R: CACGAAAGCCTTATCCACC none
AtFRY1-F F: CGCAGTAGCACTAGGATTG none
AtFRY1-R R: TTGACACCGAGTTTATTGG none
AtADH-F F: CTCTTGGTGCTGTTGGTTTAGG none
AtADH-R R: AATTGGCTTGTCATGGTCTTTC none

AtCOR15a-F F: GCGAACAATCCTTCACAG none
AtCOR15a-R R: CTTCGGGAGACCCACCT none

AtKIN2-F F: GTCAGAGACCAACAAGAATGCC none
AtKIN2-R R: TGACTCGAATCGCTACTTGTTC none
AtP5CS1-F F: TTCTCAGATGGTTTCCAGGTTG none
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Table 1. Cont.

Primer Pairs Forward and Reverse Primers (5′-3′) Restriction Enzyme Cutting Site

AtP5CS1-R R: TGGGAATGTCCTGATGGGTG none
AtRD29B-F F: GTGAAGATGACTATCTCGGTGGTC none
AtRD29B-R R: TACCAAGAGACTCAGCAATCTCTG none
AtCDPK1-F F: CCGTTTTGGGCTGAGACTGAA none
AtCDPK1-R R: CCATGGGTGAGCTAACACTTGC none
AtCDPK2-F F: GTCCATTACCTTCCCGGCATAT none
AtCDPK2-R R: CAGCAATTACCCGTAATGCCATT none
Atactin1-F F: AGGCACCTCTTAACCCTAAAGC none
Atactin1-R R: GGACAACGGAATCTCTCAGC none

VpSBP16-F2 F: CGCTCTAGAATGGGGTCTTGGAGCTACG XbaI site underlined
VpSBP16-R2 R: ATAGGTACCCGTTATCCGGAGGCAGAAAG KpnI site underlined
VpSBP16-F3 F: TATCCCGGGATGGGGTCTTGGAGCTACG XmaI site underlined
VpSBP16-R3 R: GGCGGATCCTTACGTTATCCGGAGGCAGA BamHI site underlined

Gal4-F F: CCATGGTAATGAAGCTACTGTCTTCTAT NcoI site underlined
Gal4-R R: GGATCCTTACTCTTTTTTTGGGTTTG BamHI site underlined

VpSBP16-F4 F: CACGGATCCATGGGGTCTTGGAGCTA BamHI site underlined
VpSBP16-R4 R: GGCGGTACCTTACGTTATCCGGAGGC KpnI site underlined
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germination stage placed under osmotic stress (A–D) Photographs of seed germination in WT and 
transgenic lines 14 days after seeds were cultivated on Murashige-Skoog (MS) basal medium, MS 
basal medium supplemented with 150 mM NaCl or 400 mM mannitol. The experiments were 
repeated three times with consistent results, scale bars: 1 cm. (E) Seed germination rates of WT and 
transgenic lines cultivated on MS basal medium, MS basal medium supplemented with 150 mM 
NaCl or 400 mM mannitol for 14 days, respectively. Each data point is the mean of three replicates of 
100–150 seeds. The error bars indicate the SD. 

We measured the germination rates of seeds from the three transgenic Arabidopsis lines and 
WT plants placed on Murashige and Skoog (MS) medium, MS medium with 150 mM NaCl and MS 
medium with 400 mM mannitol (Figure 4). Two days after sowing, seeds from the three transgenic 
lines (VpSBP16-1, VpSBP16-14 and VpSBP16-47) and wild type (WT) began to germinate on MS 
medium, while at 4 days after germination the rate nearly was 100% (Figure 4E). The germination 
rate of the transgenic lines (VpSBP16-1, VpSBP16-14 and VpSBP16-47) on 150 mM NaCl medium 
was 81.5%, 86.7% and 75.0% respectively, 14 days after culturing. However, the germination rate of 
wild type was only 56.4%. On the MS medium with 400 mM mannitol, the result was similar, with 
the WT showing a lower germination rate (Figure 4E). In general, compared to MS medium, the 

Figure 4. Phenotypes of wild type (WT) and VpSBP16 transgenic Arabidopsis thaliana lines at the seed
germination stage placed under osmotic stress (A–D) Photographs of seed germination in WT and
transgenic lines 14 days after seeds were cultivated on Murashige-Skoog (MS) basal medium, MS basal
medium supplemented with 150 mM NaCl or 400 mM mannitol. The experiments were repeated three
times with consistent results, scale bars: 1 cm. (E) Seed germination rates of WT and transgenic lines
cultivated on MS basal medium, MS basal medium supplemented with 150 mM NaCl or 400 mM
mannitol for 14 days, respectively. Each data point is the mean of three replicates of 100–150 seeds.
The error bars indicate the SD.

We measured the germination rates of seeds from the three transgenic Arabidopsis lines and
WT plants placed on Murashige and Skoog (MS) medium, MS medium with 150 mM NaCl and MS
medium with 400 mM mannitol (Figure 4). Two days after sowing, seeds from the three transgenic lines
(VpSBP16-1, VpSBP16-14 and VpSBP16-47) and wild type (WT) began to germinate on MS medium,
while at 4 days after germination the rate nearly was 100% (Figure 4E). The germination rate of the
transgenic lines (VpSBP16-1, VpSBP16-14 and VpSBP16-47) on 150 mM NaCl medium was 81.5%,
86.7% and 75.0% respectively, 14 days after culturing. However, the germination rate of wild type was
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only 56.4%. On the MS medium with 400 mM mannitol, the result was similar, with the WT showing a
lower germination rate (Figure 4E). In general, compared to MS medium, the germination of all seeds
on the MS medium with 150 mM NaCl or 400 mM mannitol was lower, while the transgenic seeds
exhibited 17–32% higher germination rates than WT seeds sown on the same media (Figure 4E).
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and VpSBP16-47 transgenic plants sampled at the last time point of dehydration. Asterisks indicated 
values that are significantly different from WT (n = 50 for each genotype, * 0.01< p < 0.05, one-way 
ANOVA). Each data point is the mean of three replicates of ten detached plants. 
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lines (VpSBP16-1, VpSBP16-14 and VpSBP16-47) and WT were grown on MS medium containing 150 
mM NaCl or 400 mM mannitol. Both the WT and transgenic seedling displayed similar growth 
characteristics on MS basal medium (Figure 5A). However, upon exposure to 150 mM NaCl, their 
growth was strikingly different after 35 days. Three transgenic lines had not only a higher seed 
germination rate, but also larger root systems and leaves that were greener (Figure 5B,E). The WT 
seedlings had withered yellow leaves, grew slower and did not form normal cotyledons (Figure 5B). 
Moreover, the root lengths of the WT seedlings were 0.15–0.2 cm, while those of the transgenic 
seedlings were approximately 4-fold greater (Figure 5D,E,G), indicating that overexpression of the 
VpSBP16 gene offsets some of the inhibitory effects of salt stress on root elongation. The seedlings 
grown on medium with 400 mM mannitol had the same growth characteristics as those grown 
under salt stress (Figure 5C,F,G). 

Figure 5. Analysis of the osmotic tolerance of WT and VpSBP16 transgenic A. thaliana seedlings. (A–C)
Photographs of seedlings sown on MS basal medium, MS basal medium supplemented with 150 mM
NaCl or 400 mM mannitol for 14, 35 and 20 days, respectively. The experiments were repeated three
times with consistent results, scale bars: 1 cm. (D–G) Root growth (D–F) and root length (G) of WT
and transgenic lines grown on MS basal medium, MS basal medium supplemented with 150 mM NaCl
or 400 mM mannitol for 14, 35 and 20days, respectively. The experiments were repeated three times
with consistent results, scale bars: 1 cm. (H) Water loss rate from 2-week-old detached transgenic and
WT plants grown on the same MS basal medium, measured over a 50 min experimentation period.
(I) Electrolyte leakage of seedlings of WT and the VpSBP16-1, VpSBP16-14 and VpSBP16-47 transgenic
plants sampled at the last time point of dehydration. Asterisks indicated values that are significantly
different from WT (n = 50 for each genotype, * 0.01< p < 0.05, one-way ANOVA). Each data point is the
mean of three replicates of ten detached plants.

2.4. VpSBP16 Transgenic Arabidopsis Seedling Resistance to Osmotic Stress

To assess whether VpSBP16 confers resistance to osmotic stress, the seedling of three transgenic
lines (VpSBP16-1, VpSBP16-14 and VpSBP16-47) and WT were grown on MS medium containing
150 mM NaCl or 400 mM mannitol. Both the WT and transgenic seedling displayed similar growth
characteristics on MS basal medium (Figure 5A). However, upon exposure to 150 mM NaCl, their
growth was strikingly different after 35 days. Three transgenic lines had not only a higher seed
germination rate, but also larger root systems and leaves that were greener (Figure 5B,E). The WT
seedlings had withered yellow leaves, grew slower and did not form normal cotyledons (Figure 5B).
Moreover, the root lengths of the WT seedlings were 0.15–0.2 cm, while those of the transgenic seedlings
were approximately 4-fold greater (Figure 5D,E,G), indicating that overexpression of the VpSBP16
gene offsets some of the inhibitory effects of salt stress on root elongation. The seedlings grown on
medium with 400 mM mannitol had the same growth characteristics as those grown under salt stress
(Figure 5C,F,G).
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We also measured the transpirational water loss of seedlings from 10-day-old WT and transgenic
plants left on the laboratory bench at room temperature with a humidity of 40–45%, every 10 min
over a 50 min period. Less water loss was detected in the three transgenic lines than in the WT
control (Figure 5H). We next measured changes in relative electrolyte leakage in the transgenic and
WT seedlings to determine whether there was a correlation with the improved osmotic stress tolerance
of the VpSBP16 transgenic seedlings. The relative electrolyte leakage was also significantly lower in
transgenic lines than in WT (Figure 5I). These results suggest that osmotic damage in the transgenic
lines was significantly lower than in the control and overexpression of VpSBP16 significantly improved
resistance to osmotic stress.

2.5. Response to Abiotic Stresses of VpSBP16 Transgenic Arabidopsis Plants

The results described above indicated that overexpression of VpSBP16 involved resistance of
seedlings to salt stress and short-term drought stress. We next examined the responses of adult
plants. Three-week-old transgenic and WT plants grown in the same pot were irrigated with 300 mM
NaCl solution. Most leaves of the WT plants showed etiolated and wilted symptoms after 1 week of
treatment. In contrast, those of the transgenic plants remained green or showed only mild etiolation
under the same treatments (Figure 6A). The growth and development of 2-week-old transgenic lines
and WT grown in the same pot following the drought treatment for 18 days was then investigated.
All WT and transgenic plants obviously withered and exhibited severe water loss related symptoms,
and after rewatering for 3 days, most of transgenic plants had resumed normal growth (73–80%
recovery rate), but almost all the WT plants had died (2% recovery rate, Figure 6B,C).
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Figure 6. Growth of WT and VpSBP16 transgenic A. thaliana plants in pots under non-stress or osmotic
stress conditions. (A) Representative photographs of 3-week-old WT and transgenic lines before
salt treatment and after salt treatment for 1 week. The experiments were repeated three times with
consistent results, scale bars: 1 cm.(B) Survival rates of WT and transgenic lines 3 days after re-watering.
Each data point is the mean of three replicates. The error bars indicate the SD. (n = 50 for each genotype,
* 0.01< p < 0.05, one-way ANOVA). (C) Representative photographs showing the phenotype of plants
before drought, 18 days after drought treatment and 3 days after re-watering. The experiments were
repeated three times with consistent results, scale bars: 1 cm.
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Substantial accumulation of reactive oxygen species (ROS) because of exposure to stress can cause
progressive oxidative damage, ultimately leading to cell injury and even death [25]. We measured
levels of the ROS species O2

− and H2O2 in leaves of plants grown under water loss and salt stress by
NBT and DAB histochemical staining, respectively. We observed that leaves of the transgenic lines
accumulated much lower levels of O2

− or H2O2 than those of WT plants (Figure 7).
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Figure 7. Histochemical staining assay of ROS accumulation with nitro blue tetrazolium (NBT) and
diaminobenzidine (DAB) in 2-week-old wild type (WT), or VpSBP16-1, VpSBP16-14 and VpSBP16-47
transgenic lines after salt treatment for 1 week or after the transpirational water loss from 50 min. The
experiment was repeated three times with 5–10 leaves or plants.

2.6. Altered Expression of Abiotic Stress Responsive Genes in Transgenic VpSBP16 Plants

Drought and high salinity are common stress conditions that adversely affect plant growth and
crop productivity. In order to better understand the mechanistic basis of the improved abiotic stress
tolerance exhibited by the transgenic VpSBP16 plants, we measured the expression profiles of a
number of abiotic stress-responsive genes (AtSOS2, AtSOS3, AtFRY1, AtSAD1, AtADH, AtCOR15a,
AtKIN2, AtP5CS1, AtRD29B, AtCDPK1 and AtCDPK2) in 3-week-old WT and transgenic plants using
quantitative real-time PCR (qRT-PCR) analysis. We saw that the transgenic VpSBP16 overexpressing
lines had higher expression levels of AtSOS2, AtSOS3, AtCOR15a and AtKIN2. In three transgenic lines
VpSBP16-1, VpSBP16-14 and VpSBP16-47, the expression of AtCOR15a gene was 80, 65 and 35 times
that of WT, respectively, while the expression of AtSOS2 and AtSOS3 was approximately 6-fold and
10-fold that of WT. The expression of AtKIN2 gene in the transgenic lines was 2-fold greater than that
of WT (Figure 8). However, the expression levels of AtFRY1, AtSAD1, AtADH, AtP5CS1, AtRD29B,
AtCDPK1 and AtCDPK2 were lower than those in WT to varying degrees (Figure 8).
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3. Discussion

Plants are exposed to a variety of biotic and abiotic stresses, such as cold, drought, salt stress
and pathogens, during their life cycle, many of which can have an irreversible effect on growth and
development. Many studies have identified transcription factors that are important for regulating
plant responses to stress, including members of the WRKY, bZIP, AP2/ERF and MYB. In this regard,
the functions of SBP family genes have been investigated in several plant species, but to date nothing
has been reported regarding the role of SBP-box genes in grape responses to abiotic stress.

Members of the SBP-box gene family encode DNA binding proteins that function as transcription
factors [26], and have been identified only in green plants, including taxa from single-cell algae to
later-diverging land plants. Characteristics of a SBP domain are a ~74 amino acid (aa) residue region, a
nuclear localization signal and the ability to bind DNA involving two zinc-finger domains [13]. In all
cases, the SBP-domains are very similar, with a high sequence conservation at certain positions and
the best-conserved aa residues are cysteines and histidines that are used to coordinate two zinc ions.
Similarly well conserved are the basic amino acid residues that are thought to be involved in general
and specific DNA binding, and in nuclear translocation of the proteins [9,13]. The VpSBP16 amino
acid sequence contains all the above structural features, including the SBP-box and a putative nuclear
localization signal (Figure 2). We confirmed that VpSBP16 is targeted to the nucleus and possesses
transcriptional activation activity (Figure 3).

We studied the role of VpSBP16 in A. thaliana in the context of salinity and drought stress.
Over-expression of VpSBP16 in A. thaliana yielded transgenic lines with enhanced resistance to high
osmoticum, dehydration, long-term drought, and salt stress compared with the WT.

The semi- and selective permeability of the plasma membrane are fundamentally important
characteristics for maintaining normal plant physiological function. However, these permeability
characteristics can be perturbed in response to stress, which can result in electrolyte leakage. We
inferred the extent of the cellular injury, and by extension resistance to stress, by measuring electrolyte
leakage. We found that the electrolyte leakage in WT was significantly higher than in the transgenic
lines after the water loss treatment. The results were consistent with the improved tolerance to stress
shown by the VpSBP16 transgenic lines.
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Stress occurs when the root system cannot supply enough water to transpiring leaves to maintain
a proper water balance. Accordingly, the ability of plant to overcome environmental stresses is
influenced by its root system size and distribution. We found that the VpSBP16 transgenic lines
had longer and a larger root system compared to the WT under the stresses, which likely helped
in the tolerance of salt and drought stress by increasing water uptake. Under high saline condition,
salt imposes an oxidative stress caused by the generation of ROS, such as singlet oxygen, H2O2 and
O2
− [27]. Usually, this source of ROS does not result in serious harm to the plant, but under high

salt and drought conditions, excess ROS is not eliminated rapidly enough, causing severe oxidative
damage, and affecting physiology [28]. Therefore, the removal of excess ROS and the maintenance of
ROS homeostasis are crucial for mitigating ROS toxicity and improving plant stress resistance.

Diverse transcription factors have been shown to contribute to the regulation of active oxygen
scavenging. For example, overexpression of OsMYB2 in rice was reported to reduce the content of ROS
and enhance the drought tolerance [29], and under H2O2 stress, the expression of the banana WRKY
family gene, MusaWRKY71, resulted in increased expression of peroxidase genes, which are part of the
ROS scavenging system in banana seedlings [7]. Moreover, overexpression JERF3 gene and SlERF3
gene from Solanum lycopersicum in tobacco, and TERF2 from Solanum lycopersicum and SUB1A gene
from Oryza sativa in rice all improved the stress tolerance by enhancing the scavenging of ROS [30–33].
We observed that the levels of ROS in the VpSBP16 transgenic lines were significantly lower than in
WT plants, following exposure to the abiotic stresses.

We also examined the expression of some stress-responsive genes, such as AtSOS2, AtSOS3,
AtFRY1, AtSAD1, AtADH, AtCOR15a, AtKIN2, AtP5CS1, AtRD29B, AtCDPK1 and AtCDPK2 to
investigate the potential mechanisms of VpSBP16 in stress responses. The stress-responsive gene
candidates COR15b, SOS2, SOS3, exhibited a significantly higher expression level in the VpSBP16
overexpression plants than in WT. Of these genes, SOS3 was identified through genetic screening
of salt-sensitive mutants and SOS2 has been shown to function as a point of crosstalk between SOS
and other signaling pathways [34]. Additionally, overexpression of SlSOS2 (SlCIPK24) in tomato,
MdSOS2L1 in apple or PtSOS2 genes (PtSOS2.1, PtSOS2.2, PtSOS2.3) in poplar was reported to
confer salt tolerance to transgenic tomato, apple calli or poplar, respectively [35–37], further indicating
its importance in abiotic stress resistance. However, the expression levels of AtP5CS1, AtCDPK1,
AtCDPK2, AtRD29B, AtADH and AtFRY1 were down-regulated in the transgenic lines, contradicts
previous research. The key enzyme in proline synthesis (P5CS1) is involved in the natural adaptation
among Arabidopsis accessions in differential responses to osmotic stress [38,39]. Calcium-dependent
protein kinases (CDPK) as the well-known Ca2+-sensor protein, play important roles in the plant
response to salt stress [40]. The RD29B promoter region carrying several ABRE sequences and one
DRE is controlled mainly by ABA and the -214 G-box in the AtAdh promoter also is the ABA response
element [41,42]. AtRD29B, AtADH, AtFRY1 and AtSAD1 all confer both abiotic or biotic stress
resistance in A. thaliana by involving in ABA signal transduction pathways [43–46]. Therefore, we
speculate the resistance of the transgenic VpSBP16 plants against salt and drought stress have nothing
to do with ABA signal transduction pathway and Ca2+-dependent signal network. However, further
studies are necessary to unravel the reason of why these genes were down-regulated.

Based on these results we propose that overexpression of VpSBP16 may increase resistance to
salt and drought stress by regulating the SOS signaling cascade and ROS signaling. However, further
studies will be needed to identify the exact molecular mechanisms by which the VpSBP16 mediate
responses to abiotic stresses. We noted that AtCOR15a was significantly induced in the VpSBP16
overexpression plants, suggesting that VpSBP16 may also be associated with cold stress responses.
This will be a target of future research.
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4. Materials and Methods

4.1. Plant Materials and Growth Conditions

Chinese wild grape, Vitis pseudoreticulata “Baihe-35-1”, used for cloning of VpSBP16, was grown
in the grape repository of Northwest A&F University, Yangling, Shaanxi, China (34◦20′ N, 108◦24′ E).
A. thaliana plants (T3 transgenic lines and wild-type (WT) ecotype Columbia-0) were grown at 22 ◦C,
70% relative humidity and long day (8 h dark, 16 h light) conditions. All experiments were repeated
in triplicate and all samples were immediately frozen in liquid nitrogen and stored at −80 ◦C until
further use.

4.2. Isolation and Analysis of the VpSBP16 cDNA

The cDNA was synthesized from total RNA samples extracted from V. pseudoreticulata ‘Baihe-35-1’
leaves. The experiments were performed essentially as previously described [47]. A pair of
gene-specific primers (VpSBP16-F1 and VpSBP16-R1) (Table 1) were used to amplify the predicted
VpSBP16 ORF from the cDNA template with Taq DNA polymerase (TaKaRa Biotechnology, Dalian,
China) and the following cycling program: 94 ◦C for 3 min, 35 cycles at 94 ◦C for 30 s, 58 ◦C for 30 s
and 72 ◦C for 2 min; and extension at 72 ◦C for 10 min. The amplified products were cloned into the
pGEM-Teasy vector (Promega, Madison, WI, USA) to generate pGEM-Teasy-VpSBP16, and transformed
into E. coli strain DH5α. Positive clones were sequenced at TaKaRa Biotechnology. The sequences
were analyzed to identify conserved regions using Conserved Domains (http://www.ncbi.nlm.
nih.gov/Structure/cdd/wrpsb.cgi). The subcellular localization of VpSBP16 was predicted using
the Center for Biological Sequence analysis software (http://genome.cbs.dtu.dk/services/TargetP;
http://genome.cbs.dtu.dk/services/SignalP/).

4.3. Subcellular Localization and Trans-Activation Assay

The VpSBP16 CDS without the termination codon was amplified using VpSBP16-F2 and R2
with XbaI and KpnI sites (Table 1) from the pGEM-Teasy-VpSBP16 plasmid template, using Taq DNA
polymerase (TaKaRa Biotechnology, Tokyo, Japan). The amplified product was inserted immediately
upstream of the green fluorescent protein (GFP) coding sequence in the pBI221-GFP vector (Clontech
Laboratories, Mountain View, CA, USA) and digested with the same restriction enzymes to generate
pBI221-VpSBP16-GFP. Both the SBP16-containing vector and a background control vector with no
insert were delivered into onion epidermal cells using a PDS-1000/He gene gun (Bio-Rad Laboratories
Inc., Hercules, CA, USA) at 1100 psi as previously described [24], and then the cells were cultured on
MS media in the dark at 22 ◦C for 18 h. Following cultivation, GFP signal was visualized using a Zeiss
confocal microscope (LSM510; Carl Zeiss; Thornwood, NY, USA) with an excitation wavelength of
480 ± 20 nm and an emission wavelength of 510 ± 20 nm.

The coding regions of yeast GAL4 and grape VpSBP16 were separately ligated into the
NcoI/BamHI and XmaI/BamHI sites of the GAL4 DNA-binding domain of the pGBKT7 vector (Clontech
Laboratories), generating the plasmids pGBKT7-Gal4 (positive control) and pGBKT7-VpSBP16,
respectively, using DNA fragments amplified with the gene-specific primers Gal4-F and R,
and VpSBP16 F3 and R3 (Table 1). The vectors were used in a trans-activation assay with a
yeast assay system as described previously [47]. The resulting plasmids, pGBKT7-Gal4 and
pGBKT7-VpSBP16, as well as the empty vector pGBKT7 (negative control), were transformed
into yeast (Saccharomyces cerevisiae) AH109 cells, which were then streaked on SD/-Trp and
SD/-Trp/-Ade/-His/X-α-Gal plates to observe yeast growth at 30 ◦C for 3–4 days.

4.4. Generation of Transgenic A. thaliana Plants Over-Expressing VpSBP16

The CDS of VpSBP16 was amplified from the pGEM-Teasy-VpSBP16 plasmid template using
the gene-specific primers VpSBP16-F4 and R4 (Table 1), then inserted immediately downstream of
the CaMV 35S promoter in the plant overexpression vector, pCambia2300 (Clontech Laboratories)

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://genome.cbs.dtu.dk/services/TargetP
http://genome.cbs.dtu. dk/services/SignalP/
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to produce the plasmid pCambia2300-35S-VpSBP16. This construct was then introduced into
Agrobacterium tumefaciens strain EHA105, which was in turn used to transform A. thaliana via the
floral dip method [48]. Transgenic seeds (T1) were selected on MS agar medium supplemented with
60 mg L−1 kanamycin and T2 transgenic lines were selected on MS agar medium supplemented with
60 mg L−1 kanamycin and 150 mM NaCl. Three of the resulting T3 homozygous lines with most
obvious phenotypes (SBP16-1, SBP16-14 and SBP16-47) and highest levels of expression were selected
for further study.

4.5. Semi-Quantitative RT-PCR Analysis

Total A. thaliana RNA was extracted from entire WT and twelve transgene line (SBP16-1, SBP16-8,
SBP16-14, SBP16-18, SBP16-23, SBP16-32, SBP16-35, SBP16-40, SBP16-47, SBP16-57, SBP16-61 and
SBP16-67) plants using the E.Z.N.A.® Plant RNA Kit (Omega Bio-tek, Norcross, GA, USA). Cycling
parameters were as follows: 94 ◦C for 3 min, 25 cycles at 94 ◦C for 30 s, 60 ◦C for 30 s and 72 ◦C for 30 s,
with a final elongation step at 72 ◦C for 10 min. An 8 µL sample of each PCR product was subsequently
separated on a 1.2% (w/v) agarose gel, then stained with ethidium bromide and photographed under
UV light. Atactin1 (At2g37620) was amplified for use as an internal control. VpSBP16-F, VpSBP16-R
and AtActin1-F, AtActin1-R specific primer sequences are listed in Table 1.

4.6. Germination Assays

For the seed germination assays, 100–150 seeds from each of three selected T3 homozygous lines
and from WT plants were vernalized for 3 days at 4 ◦C, and then sown on MS medium or MS medium
supplemented with 150 mM NaCl or 400 mM mannitol. The percentage of germinated seeds was
calculated based on the number of seedlings that had reached the cotyledon stage at 2 weeks [49].
All seeds used for the germination analysis were harvested and stored at the same time under the
same conditions. All germination assays were performed in triplicate.

4.7. Salt and Drought Treatments for Wild Type (WT) and T3 Transgenic Lines

Seeds from WT and T3 transgenic lines were sterilized and vernalized for 3–4 days at 4 ◦C on
the same MS medium, supplied with 150 mM NaCl or 400 mM mannitol, and then transferred to
growth chambers. For the potted plants, three-week-old A. thaliana and transgenic lines were irrigated
with 300 mM NaCl at 2-day intervals for 15 days or not watered, corresponding to salt and drought
treatments, respectively. Plants that were well watered were used as the negative control. Following
the drought treatment for 18 days, plants were re-watered for 3 days.

4.8. Determination of the Water Loss Rate and Electrolyte Leakage

For the determination of water loss, whole plants of 2-week-old transgenic and WT plants grown
on the same MS medium were placed on dry filter paper and at 40–45% relative humidity at room
temperature and weighed at the indicated times. The water loss rate was calculated based on the
initial fresh weight of the samples and the experiment was repeated three times [50]. All plants were
sampled after dehydration for 50 min and were vacuum-infiltrated with deionized water for 20 min.
After 2 h, the conductivities (C1) of the solutions were determined using a conductivity detector.
Subsequently, the seedlings were boiled for 20 min in deionized water and cooled to room temperature.
The conductivities (C2) of the solutions was then determined. The C1 to C2 (C1/C2) ratios were
calculated and used as a measure of the relative electrolyte leakage [51].

4.9. Detection of H2O2 and O2
−

Excised leaves or whole plants were placed in 1 mg mL−1 diaminobenzidine (DAB) solution
(Sigma, Steinheim, Germany) for 8 h to monitor H2O2 production, or were incubated in HEPES buffer
(pH 7.5) containing 6 mM nitro blue tetrazolium(NBT) for 2 h to detect O2

− production. The samples
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were then cleared to remove chlorophyll at 80 ◦C in 80% (v/v) ethanol for 2 h and immersed in 10%
(v/v) glycerol for observations [52,53].

4.10. Quantitative Real-Time RT-PCR Analysis

Total A. thaliana RNA was extracted from entire WT and three transgene line (SBP16-1, SBP16-14
and SBP16-69) plants using the E.Z.N.A.® Plant RNA Kit (Omega Bio-tek, USA, R6827-01). First-strand
cDNA for expression analysis was synthesized from 1 µg of DNase-treated total RNA using
PrimeScript™ RTase (TaKaRa Biotechnology). Each reaction was done in triplicates with a reaction
volume of 25 µL. Cycling parameters were 95 ◦C for 30 s, 40 cycles of 95 ◦C for 5 s, and 60 ◦C for
30 s. For dissociation curve analysis, a program including 95 ◦C for 15 s, followed by a constant
increase from 60 ◦C to 95 ◦C, was included after the PCR cycles. Quantitative RT-PCR was conducted
using SYBR green (Takara Biotechnology) with an IQ5 real time PCR machine (Bio-Rad, Hercules, CA,
USA). Each reaction was performed in triplicate and data were analyzed as previously described [54].
The expression of stress-related genes such as AtFRY1, AtSAD1, AtADH, AtP5CS1, AtRD29B, AtCDPK1
and AtCDPK2 were measured by RT-PCR in WT and T3 transgenic lines. Atactin1 (At2g37620) was
amplified for use as an internal control. The sequences of the quantitative PCR primers are listed in
Table 1.

5. Conclusions

Overexpression of VpSBP16 may increase resistance to salt and drought stress by regulating the
SOS signaling cascade and ROS signaling.
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