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Abstract

Aedes albopictus is a viable vector for several infectious diseases such as Zika, West Nile,

Dengue viruses and others. Originating from Asia, this invasive species is rapidly expanding

into North American temperate areas and urbanized places causing major concerns for pub-

lic health. Previous analyses show that warm temperatures and high humidity during the

mosquito season are ideal conditions for A. albopictus development, while its distribution is

correlated with population density. To better understand A. albopictus expansion into urban

places it is important to consider the role of both environmental and neighborhood factors.

The present study aims to assess the relative importance of both environmental variables

and neighborhood factors in the prediction of A. albopictus’ presence in Southeast Pennsyl-

vania using MaxEnt (version 3.4.1) machine-learning algorithm. Three models are developed

that include: (1) exclusively environmental variables, (2) exclusively neighborhood factors,

and (3) a combination of environmental variables and neighborhood factors. Outcomes from

the three models are compared in terms of variable importance, accuracy, and the spatial dis-

tribution of predicted A. albopictus’ presence. All three models predicted the presence of A.

albopictus in urban centers, however, each to a different spatial extent. The combined model

resulted in the highest accuracy (74.7%) compared to the model with only environmental var-

iables (73.5%) and to the model with only neighborhood factors (72.1%) separately. Although

the combined model does not essentially increase the accuracy in the prediction, the spatial

patterns of mosquito distribution are different when compared to environmental or neighbor-

hood factors alone. Environmental variables help to explain conditions associated with mos-

quitoes in suburban/rural areas, while neighborhood factors summarize the local conditions

that can also impact mosquito habitats in predominantly urban places. Overall, the present

study shows that MaxEnt is suitable for integrating neighborhood factors associated with

mosquito presence that can complement and improve species distribution modeling.
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Introduction

Climate change, particularly affected by anthropogenic processes, are likely to exacerbate

the expansion of Aedes albopictus (Skuse) into higher latitudes [1]. Although A. albopictus is

typically regarded as a rural vector [2–4] this mosquito is becoming pervasive in urban and

suburban environments, where it finds suitable environments to reproduce such as artificial

containers (e.g. discarded tires and trash) and built-environment features (e.g., storm water

structures) as well as humans, their preferred blood source [5–8]. In addition, the urban heat

island effect [9] along with land cover changes connected to urbanization are known to

increase mosquitoes presence in populated areas [10]. Increasing urban population growth in

along with an increasing presence of A. albopictus, constitute a public health concern given the

risk of transmission of vector borne diseases.

Mosquitoes belonging to the Aedes genus are responsible for the transmission of several

infectious diseases. After A. aegypti, the “Asian Tiger Mosquito”–A. albopictus is one of the

main vectors of the Zika (ZIKV), West Nile (WNV), Dengue (DV) and Chinkunguya

(CHIKV) viruses [11–13]. Despite the tropical origin of this invasive species [14], the North

American A. albopictus strain most likely originates from northern Asia [15], and is rapidly

expanding into temperate areas of North America. This expansion is explained in part by the

capacity of this species to reproduce in areas with colder and more seasonal temperatures [16].

Its presence appear to be predicted by the average relative humidity in human inhabited areas.

Furthermore, A. albopictus eggs undergo diapause allowing it to resist low temperatures and

drought [17]. Previous studies show that optimal environmental conditions, such as mild win-

ter temperatures (0˚ to -5˚C) [18], absence of long dry periods [19], high humidity during the

mosquito season, as well as vegetation are important factors that constitute a suitable habitat

for A. albopictus [20] and can extend their lifespan [21]. A. albopictus distribution is also

directly correlated to population density and land-cover class [14, 22, 23].

Neighborhood factors are often used in health and environmental research to summarize

the economic, social, and physical conditions of places or to account for differences in social

context and local policies [24]. Neighborhood socioeconomic factors (e.g. poverty) and neigh-

borhood conditions such as land cover fragmentation and landscape heterogeneity have been

shown to be important predictors of suitable mosquito habitats [25, 26]. Several studies found

that high poverty neighborhoods have a higher probability of building abandonment, dump-

ing and more trash and containers that are conducive to breeding A. albopictus [22, 27]. Con-

sidering neighborhood factors along with environmental variables is particularly important

because it provides a neighborhood based socio-ecological approach to understanding the

abundance and composition of mosquitos in different habitats.

Machine-learning methods have gained popularity for species-distribution modeling in

recent years [28]. Generally, two types of algorithms are used: those that predict species distri-

bution using both presence and absence data, and those based on species presence only. For

example, among models that require only presence data, MaxEnt (Maximum Entropy) algo-

rithm has become popular for modeling species distribution [29] since its release in 2006 by

Phillips et al. [30]. Popularity of this machine-learning method is related to its ability to incor-

porate background data, accounting for environmental variations across space [31]. Addition-

ally, machine-learning algorithms like MaxEnt are efficient modeling approaches because of

their ability to fit highly complex responses [32].

MaxEnt [30] has mostly been used to predict the distribution of A. albopictus in Northeast-

ern United States using environmental data [1]. Only a few studies that focused on A. albopic-
tus, have incorporated neighborhood socioeconomic determinants (also neighborhood

factors; e.g. conditions of neighborhoods or area-based socioeconomic measures) [22, 25, 27],
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and to our knowledge, no studies on species-distribution modeling have incorporated neigh-

borhood factors using MaxEnt. Sallam et al [22] argue that based on a literature review on

Aedes genus habitat modeling, MaxEnt appears to be the most appropriate tool, whereby land

cover, meteorological, neighborhood socioeconomic determinants must be considered.

This study aims to assess the relative importance of both environmental variables and

neighborhood factors in the prediction of A. albopictus’ presence in SE Pennsylvania. This

work demonstrates the utility of the MaxEnt method beyond typical applications using only

environmental variables by also including neighborhood factors. The combination of environ-

mental and neighborhood variables in the model can inform management agencies about the

relative influence of environmental and social drivers of the spatial distribution of mosquitos

in urban environments.

Materials and methods

Ethics statement

The collection of mosquitoes did not require permissions because they were conducted with

homeowners consent and by county mosquito control professionals. The study did not involve

any endangered or protected species.

Study area

SE Pennsylvania is located within a highly urbanized corridor extending between Washington

D.C. and New York City, NY. Therefore, the selected study area, dominated by built environ-

ments, and a high population density is an ideal region for exploring the influence of natural

environmental factors as well as neighborhood conditions on the presence of A. albopictus.
The study area includes 15 counties in SE Pennsylvania (Fig 1). The region is bounded by

the Delaware River and the state of New Jersey to the East; the Blue Ridge and Ridge-and-

Fig 1. Research Area in Southeast Pennsylvania. Urban areas are shown as defined by the US Census Bureau.

https://doi.org/10.1371/journal.pone.0223821.g001
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Valley regions to the West, Northwest and the North; the Delaware and Maryland state bor-

ders to the South. The study area is 21,874 km2. According to the 2010 United States Census,

the total population of the region is 6,978,996. The most populated areas, Philadelphia County

and its suburban surrounded areas, can be found in the Southeast of the state. Additional large

settlements are Bethlehem and Allentown in the North, Reading in the North-Central, and

Lancaster, York and Harrisburg in the Central parts of the study area. In total, the urban/

urbanized regions cover 31% of the study area [33].

The climate of the study area is characterized by a cold winters, hot summers, a non-

marked dry season [34], and almost equally distributed precipitation throughout the entire

year [35]. The study area has low inter-annual climate variability. The differences in tempera-

ture and precipitation are related mostly to altitude [35]. The average annual precipitation is

approximately 1200mm (driest month: February, ca. 81mm; wettest month: July, ca. 120mm).

The average temperature is approximately 10.8˚C (7.9˚C-13.8˚C). A previous study by Rochlin

et al [1] showed that expected changes in climate will affect the distribution of A. albopictus in

the Mid-Atlantic region of the U.S., resulting in the expansion of these species to northern

latitudes.

Data

Mosquito data included 129,476 records from single mosquito traps installed during the

months March through November, between 2001 and 2015. Aedes albopictus was captured in

38,515 traps at 8,801 unique locations. The majority of traps were gravid traps and miniature

light traps from the Centers for Disease Control and Prevention (CDC). Other methods such

as aspiration, mosquito magnets, BG Sentinel traps and Zumba traps were sometimes used

and varied by year. The Division of Vector Management within the Pennsylvania Department

of Environmental Protection (DEP) installed and monitored the traps. The publically available

data were provided by the DEP (processed data are attached, for original data please contact

mhutchinso@pa.gov or RA-epcontactus@pa.gov), and included information about location of

the trap, time of installation and the number of captured female A. albopictus adults. In urban

areas, most traps were installed in close proximity to storm water sewers. While in rural areas,

traps were placed mostly along major routes of transportation, water canals and reservoirs but

were not placed in any of the State Parks, State Forests and Game Lands or on private facilities

nor those managed by military or any other authority.

The independent variables were grouped as neighborhood factors and environmental site

factors (Tables 1 and 2). Neighborhood factors included Census data collected at the ZIP Code

Tabulation Area (ZCTA) level as well as National Land Cover Database (NLCD 2011) rasters.

Census data were obtained from the National Historic GIS [33], and included the data from

decennial 2000 and 2010 United States Censuses, as well as the American Community Survey

(ACS) 5-year-average estimates from 2007–2011 and 2010–2014.

Neighborhood measures were included because previous studies by Rochlin et al [25], Little

et al [27] indicated the importance of education level, percent of vacant housing and household

income as predictors of mosquito presence. Others noted the importance of median income

and vacant lots in predicting mosquito presence [22]. Additionally, we decided to examine the

effects of housing conditions, housing density, poverty level as well as population density and

proportions of urban population per ZCTA (Table 1). The NLCD 2011 was used as the source

for the Landsat-based raster land cover (LC) inputs, as well as the data summarizing the per-

centage of imperviousness and tree canopy cover. We decided to classify the LC and impervi-

ousness rasters as neighborhood factors because of the dominance of built environments in

the study area that shape the character of many urban neighborhoods. A previous study by
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Rochlin et al [25] also showed that land cover type and especially, natural habitat fragmenta-

tion caused by road networks affect mosquito presence.

Environmental variables (Table 2) included: spectral indices (Enhanced Vegetation Index

(EVI), and Normalized Difference Water Index (NDWI), terrain parameters, precipitation

and temperature. EVI and NDWI were obtained from data acquired by the MODIS instru-

ment aboard NASA’s terra satellites (MOD013Q1 and MOD09Q1 data products). Terrain

parameters included: elevation, slope and flow accumulation. Slope and flow accumulation

were extracted from a Digital Elevation Model derived from the Shuttle Radar Thematic Map-

per (SRTM) satellite using tools “Slope” and “Flow Accumulation” in ArcGIS version 10.5.

Precipitation and temperature were derived from the Parameter-Elevation Regressions on

Independent Slopes (PRISM) analytical climate model. PRISM was developed through the

interpolation of point data from climate stations, considering factors such as: location, eleva-

tion, coastal proximity, topographic facet orientation, vertical atmospheric layer, topographic

position, and orographic effectiveness of the terrain [36, 37].

Additionally, geographic files (e.g. GIS shapefiles) of Pennsylvania State Parks, State Forests,

Game Lands and other environmental protected areas from the Pennsylvania Spatial Data

Access website (http://www.pasda.psu.edu/) were used to generate a mask to exclude large

bodies of areas unrepresented in the sampling.

Table 1. List of collected neighborhood factors.

Variable Name Description Original Format Selection Criteria Calculation Source

Below Poverty Area-based percent population

below poverty line

csv file,

5-years-average estimates 2007–

2011 and 2010–2014

Recommended by Sallam

et al [22]

Population below poverty
Total Population

ACS

Best Housing

Conditions

Area-based percent of housing

units with no selected physical or

financial conditions

csv file,

5-years-average estimates 2007–

2011 and 2010–2014

Own selection. Not

correlated to any other

variable.

Houses without conditions
Total houses ACS

Education Area-based education index csv file,

5-years-average estimates 2007–

2011 and 2010–2014

Recommended by Rochlin

et al [25].

Pn

i¼1

Peoplei=Pn

i¼1
Peoplei

� �

i = class number, n =

number of classes

ACS

Median Household

Income

Area-based median household

income in USD

csv file,

5-years-average estimates 2007–

2011 and 2010–2014

Recommended by Rochlin

et al [25].

Original value in data

source

ACS

Housing Density Housing density per square

kilometer

csv file,

5-years-average estimates 2007–

2011 and 2010–2014

Recommended by Sallam

et al [22].

Housing units
Extent of the ZCTA

ACS

Population Density Population density per square

kilometer

csv file,

5-years-average estimates 2007–

2011 and 2010–2014, Decennial

Census 2000, 2010

Excluded. Strong

correlation with housing

density.

Population
Extent of the ZCTA

ACS, US

Census

Bureau

Urban Population Area-based percent urban

population

csv file,

Decennial Census 2000, 2010

Excluded. Strong

correlation with

population density.

Original value in data

source

US Census

Bureau

Vacant Housing

Units

Area-based percent vacant housing

units

csv file,

5-years-average estimates 2007–

2011 and 2010–2014

Recommended by Rochlin

et al [25].

Vacant housing units
Total housing units

ACS

Worst Housing

Conditions

Area-based percent of housing

units with four selected physical or

financial conditions

csv file,

5-years-average estimates 2007–

2011 and 2010–2014

Own selection. Not

correlated to any other

variable.

Houses with 4 conditions
Total houses ACS

Imperviousness of

the surfaces

Percent impervious surfaces Raster, 30m resolution,

2011

Recommended by Sallam

et al [22].

Original value in data

source

NLCD

Land Cover Type of Land Cover Class Raster, 30m resolution,

2011

Recommended by Sallam

et al [22].

Original value in data

source

NLCD

https://doi.org/10.1371/journal.pone.0223821.t001
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Analysis

The methodological workflow followed several steps including: data preparation and prepro-

cessing to meet MaxEnt (version 3.4.1) requirements, correlation analysis in order to exclude

collinear variables, a three-step modeling process, and then visualization of the results. All

stages of the workflow are shown in Fig 2, and described in the following sections.

Preprocessing of mosquito data. MaxEnt predicts species distributions based on pres-

ence data only [31]. The algorithm requires a list of geographic coordinates representing spe-

cies presence and the values of the predicting environmental raster variables associated with

those coordinate locations. Although the mosquito database contains absence data, most of the

Table 2. List of all collected environmental variables.

Variable Name Description Original Format Selection Criteria Calculation Source

Tree Canopy Percent of tree canopy

per pixel

Raster, 30m resolution,

2011

Own selection. Not

correlated to any other

variable.

Original value in data source, resampled to

232m spatial resolution

NLCD

Average Precipitation in

November, December,

January, February, March,

April, May, June, July,

August, September, October

(mm)

Average precipitation for

each month for the years

2000–2015

180 raster files, 4km

resolution, monthly

values for Oct. 2000 –

Nov. 2015

Rochlin et al [1] found

strong association with

Average January

Precipitation

Original value in data source, resampled to

232m spatial resolution

PRISM

3-Month Average

Precipitation starting

November, December,

January, February, March,

April, May, June, July,

August, September, October

(mm)

Average precipitation for

each 3-months for the

years 2000–2015

180 raster files, 4km

resolution, monthly

values for Oct. 2000 –

Nov. 2015

Rochlin et al [1] found

strong association with

Wettest and Driest

Quarter Precipitation

Original value in data source, resampled to

232m spatial resolution

PRISM

Average Temperature in

November, December,

January, February, March,

April, May, June, July,

August, September, October

(˚C)

Average temperature for

each month for the years

2000–2015

180 raster files, 4km

resolution, monthly

values for Oct. 2000 –

Nov. 2015

All variables are highly

correlated with quarter

year temperatures

Original value in data source, resampled to

232m spatial resolution

PRISM

3-Month Average

Temperature starting

November, December,

January, February, March,

April, May, June, July,

August, September, October

(˚C)

Average temperature for

each 3-months for the

years 2000–2015

180 raster files, 4km

resolution, monthly

values for Oct. 2000 –

Nov. 2015

Rochlin et al [1] found

strong association with

Coldest Quarter

Temperature

Original value in data source, resampled to

232m spatial resolution

PRISM

Average EVI Average EVI value of the

mosquito season for the

study period

Raster, 232m resolution,

monthly values for Apr-

Oct 2001–2015

Own selection. Not

correlated to any other

variable.

Original value in data source MODIS

Average NDWI Average NDWI value of

the mosquito season for

the study period

Raster, 232m resolution,

monthly values for Apr-

Oct 2001–2015

Own selection. Not

correlated to any other

variable.

Original value in data source MODIS

Elevation (DEM) Elevation in meters above

the sea level

Raster, 90m resolution Own selection. Not

correlated to any other

variable.

Original value in data source, resampled to

232m spatial resolution

SRTM

Slope Slope in degrees Raster, 90m resolution Own selection. Not

correlated to any other

variable.

Calculation based on the DEM using

ArcGIS 10.5 tool Slope, resampled to 232m

spatial resolution

SRTM

Flow Accumulation Flow accumulation index Raster, 90m resolution Own selection. Not

correlated to any other

variable.

Calculation based on the DEM raster using

ArcGIS 10.5 tools Flow Direction and Flow

Accumulation, resampled to 232m spatial

resolution

SRTM

https://doi.org/10.1371/journal.pone.0223821.t002

Modeling Aedes albopictus’ presence in SE Pennsylvania

PLOS ONE | https://doi.org/10.1371/journal.pone.0223821 October 17, 2019 6 / 23

https://doi.org/10.1371/journal.pone.0223821.t002
https://doi.org/10.1371/journal.pone.0223821


locations that resulted in absences were measured only a few times (34% of the absence loca-

tions were sampled only once while 62% of them were sampled four times or less). Given the

high annual seasonality of mosquito populations and the low sampling frequency of the

absence observations, the inclusion of such imperfect data in the model can introduce estima-

tion biases and also inflate accuracy estimates [38]. Therefore, the use of MaxEnt with only

Fig 2. Methodological workflow.

https://doi.org/10.1371/journal.pone.0223821.g002
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presence observations was deemed appropriate for the current dataset. A geographic filter was

applied to mitigate the evident sampling location bias in the study area (Fig 3). This method

has been proposed as an approach to reduce the effect of sampling bias on model overfitting

[39, 40], and performs better than other methods for reduction of sampling location bias [41].

Geographic filtering was applied by dividing the study area in 10x10 MODIS pixel resolution

cells and then selecting one sampled location per grid cell randomly to run the model. Finally,

the coordinates of the remaining mosquito-presence locations (n = 1,471) were exported as a

CSV file (S1 Table) to meet MaxEnt import requirements.

Preprocessing of Census data. The US Census Bureau publicly releases the results of the

decennial census as well as the estimates from the ACS 5-year-average. For our purpose, the

original format (count data) was converted into density or percentage to ease the comparison

of data between areas in the study region. Then, every calculated area-based socioeconomic

measure was joined to the ZCTA shapefile and converted into raster format using R package

raster version 2.5–8 [42]. For all available years of each Census variable, we then calculated an

average value.

Preprocessing of remote sensing data. All environmental variables (Table 2) were

obtained in raster format but with different resolution and projection. Therefore, we aligned

all the raster input data to the spatial resolution and projection of the MOD013Q1 product

(~250m sinusoidal). The selected resolution was a good compromise between the different

spatial resolutions of the input data and was in agreement with the reported flying distance of

A. albopictus species of about 250 meters [43]. All resampling procedures were performed

using the resampling function within the raster package in R 3.3.1 software [42].

Monthly precipitation and temperature data were obtained for the period of November

2000 to October 2015 and were summarized to monthly average rasters. Three-month moving

averages starting the November prior to the mosquito season were also calculated.

The original NLCD 2011 rasters for imperviousness and canopy cover as well as the PRISM

rasters were resampled using a bilinear interpolation, while the resampling of the categorical

LC raster was performed by assigning the most dominant class of the original pixels to each

new resampled grid cell using the R package raster [42]. While all NLCD 2011 products were

resampled from 30m to 250m resolution, PRISM climate rasters were rescaled from 4km to

250m spatial resolution.

Variable selection. The database included 65 explanatory variables. Fifty-four variables

represented climatic conditions, three variables represented terrain parameters, and three

characterized vegetation condition, while the remaining 11 variables were considered as neigh-

borhood factors (Tables 1 and 2). To avoid collinearity issues, model overload, and to ease the

comparison of the final results, the number of independent variables for each model were

restricted to a maximum of 10. To make the final selection, a two-step exclusion process was

performed. First, a Pearson correlation analysis between all 65 variables using R [44] was

applied, and highly correlated variables were excluded (r2>0.5). Priority was given to variables

that were significantly influential in previous studies in the Mid-Atlantic region of the U.S. [1,

25, 26]. The final database included 10 environmental variables (Model 1) and 9 neighborhood

factors (Model 2). For the third, combined model, up to five variables were selected based on

their highest percent contribution in models 1 and 2 and their permutation importance being

at ca. 5% (Fig 2).

Modeling using MaxEnt. Three predictive models were generated for A. albopictus pres-

ence utilizing environmental and neighborhood conditions variables as well as coordinates of

mosquito presence (n = 1,471) recorded between 2001 and 2015. For each of the three models,

identical settings were applied including number of iterations (12,000) and logarithmic format

of output. Thirty percent of the presence data (n = 441) were used for validation tests. Since
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Fig 3. Location of Mosquito Traps 2001–2015. Upper map shows all original presence locations; middle map shows

all absence location; bottom map shows remaining presence location after bias mitigation.

https://doi.org/10.1371/journal.pone.0223821.g003
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the reported flying distance of A. albopictus species is about 250 meters [43], an option of

adjusted sample radius of 250 m was applied. All selected MaxEnt parameters are also dis-

played in S2 Table.

Postprocessing. The outputs of the three models were used to generate maps representing

the habitat suitability for A. albopictus in the range from 0 to 1. Pixels were then reclassified as

presence/absence maps in QGIS version 2.18.7. As the threshold, MaxEnt’s maximum training
sensitivity plus specificity occurrence method was applied, which has been identified as the most

promising threshold in the prediction of presence data only [45]. Model accuracy was mea-

sured through the Area Under Curve (AUC) for the test data of the Receiver Operating Char-

acteristic or ROC [46], which is internally calculated in MaxEnt, and is a reliable criteria for

model selection [47].

Results

Variable importance

The results for model 1 (environmental variables only) show that the most influential variables

predicting A. albopictus were: Enhanced Vegetation Index, EVI (28.8% contribution), average

temperature of the coldest quarter (December-February) (25.1% contribution), flow accumu-

lation (high value indicates areas with large water flow, such as channels) (13.4% contribution),

tree canopy (11.1% contribution) and precipitation of the driest quarter (January-March)

(5.9% contribution). Moreover, each of these variables had a permutation value higher that 5%

indicating that model performance would drop without each of these variables (Table 3).

Model 1 with environmental variables predicted A. albopictus’ presence in areas associated

with high proportions of tree canopy and average EVI of 0.25 (overall sparsely vegetated land),

and a high degree of water flow accumulation (e.g. channels, gullies). Warm temperatures dur-

ing the coldest quarter (December-February) and the increasing amount of precipitation up to

87mm during driest quarter (January-March) are important as well (Fig 4).

The most influential variables for model 2 with neighborhood factors were: impervious-

ness (59.0% contribution, 64.9% permutation importance), percent urban population (19.2%

contribution, 7.1% permutation importance), land cover type (7.1% contribution, 6.1% per-

mutation importance), housing density (6.2% contribution, 13.4% permutation importance),

percent vacant housing (2.6% contribution, 4.8% permutation importance). Therefore, this

model predicted mosquito presence predominantly in areas with a high proportion of imper-

vious surfaces, large urban population and high-density housing. While the proportion of

vacant housing appeared to be an influential component based on the permutation impor-

tance (Table 3), its influence on A. albopictus’ presence remained constant (Fig 5) and showed

a negative relationship. Additionally, various land cover classes had different associations

with A. albopictus’ presence (Fig 5). While woody wetlands, mixed forest, open water and

open, low or medium intensity developed lands were positively associated with A. albopictus’
presence, other classes such as evergreen forest, shrubs, grasslands, pastures or croplands

showed a negative relationship (Fig 5).

The most important variables for model 3 with environmental and neighborhood factors

with contribution and or permutation importance higher than 5% were: imperviousness

(42.6% contribution, 29.7% permutation importance), percent urban population (16% contri-

bution, 8.5% permutation importance), average EVI (10.4% contribution, 12.2% permutation

importance), temperature of the coldest quarter (10% contribution, 20.9% permutation impor-

tance), tree canopy (6.2% contribution, 9.7% permutation importance), precipitation of the

driest quarter (5.7% contribution, 3% permutation importance), land cover type (4.3% contri-

bution, 6.2% permutation importance), and percent vacant housing (2.9% contribution, 5.1%
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permutation importance) (Table 3). The combined model showed that a higher chance of A.

albopictus’ presence was related to increasing proportion of impervious surfaces and an urban

population higher than 12%. The most suitable average EVI for mosquito presence was

between 0.2 and 0.43 (sparsely vegetated to medium-dense vegetated land) as well as tree cover

of 7–78%. Mild temperatures during the coldest period (December to February) were also

related to a higher presence of A. albopictus (Fig 6). The response of A. albopictus’ presence

Table 3. Comparison of the three models in accuracy, variable importance and contribution.

Model Accuracy AUC

test

Variables Percent

Contribution

Percent

Permutation

Sensitivity Specificity

Model 1: Environmental Variables Only 73.5% Average EVI1 28.8 19.2 71.5% 71.5%

Temperature Coldest

Quarter

25.1 5.3

Flow Accumulation 13.4 7.7

Tree Canopy 11.1 7.4

Precipitation Driest

Quarter

5.9 34.6

Slope 5.7 2.2

January Precipitation 3.7 16.4

Precipitation Wettest

Quarter

3.4 5.4

NDWI2 2.3 1.5

Elevation 0.6 0.5

Model 2: Neighborhood Factors Only 72.1% Imperviousness 59.0 64.9 68.2% 55.3%

Percent Urban

Population

19.2 7.1

Land Cover Type 7.1 6.1

Housing Density 6.2 13.4

Percent Vacant Housing 2.6 4.8

Education Level 2.5 1.1

Percent Below Poverty 2.5 1.0

Best Housing Conditions 0.7 1.4

Worst Housing

Conditions

0.1 0.2

Model 3: Final Model with Environmental and

Neighborhood Factors

74.7% Imperviousness 42.6 29.7 72.1% 67.8%

Percent Urban

Population

16.0 8.5

Average EVI1 10.4 12.2

Temperature Coldest

Quarter

10.0 20.9

Tree Canopy 6.2 9.7

Precipitation Driest

Quarter

5.7 3.0

Land Cover Type 4.3 6.2

Percent Vacant Housing 2.9 5.1

Flow Accumulation 1.5 3.8

Housing Density 0.2 1.1

Note: Variables with contribution or permutation at ca. 5% are marked bold.
1EVI- Enhanced Vegetation Index,
2NDWI- Normalized Difference Water Index

https://doi.org/10.1371/journal.pone.0223821.t003
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prediction and precipitation during the driest quarter had negative association, and was incon-

stant. Optimum precipitation is achieved at 74mm and a rapid decline in mosquito presence

when precipitation is higher than 88mm. In contrast to model 2, land cover class showed a

slightly different relationship. Open water was now negatively associated with A. albopictus’

Fig 4. Response Curves of A. albopictus to most important variables in Model 1 (environmental variables only).

https://doi.org/10.1371/journal.pone.0223821.g004

Fig 5. Response Curves of A. albopictus to most important variables in Model 2 (neighborhood factors only).

https://doi.org/10.1371/journal.pone.0223821.g005
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presence, while high intensity developed land was positively associated with A. albopictus’. The

response curve for percent of vacant housing also changed in comparison to model 2, indicat-

ing that the most suitable conditions for mosquito proliferation were in areas with 5–8%

vacant housing units (Fig 6). Finally, flow accumulation and housing density were the least

important variables with the lowest contribution and permutation values (Table 3), while their

association with A. albopictus’ presence remained similar to the results from model 1 and

model 2. The high level of flow accumulation as well as increasing housing density had positive

associations (Fig 6).

Fig 6. Response Curves of A. albopictus for all variables in Model 3 (environmental and neighborhood factors).

https://doi.org/10.1371/journal.pone.0223821.g006
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Models’ accuracy

According to the ROC for model 1(environmental variables), the AUC value on test data was

about 0.735, or an overall accuracy of 73.5%. Model 2 (neighborhood factors) had an overall

accuracy of 72.1%, while the combined model resulted in an accuracy of 74.7%. In model 3

(environmental and neighborhood factors) did not substantially increase the overall accuracy

of the model based on the AUC test data results.

Comparing sensitivity (true-positive/true-positive+false-negative) and specificity (true-neg-

ative/true-negative + false-positive) rates, the model 2 (neighborhood factors) had the lowest

rates (68.2% and 55.3% respectively), while environmental factors model 1 achieves a balanced

ratio for sensitivity and specificity both at 71.5%. Model 3 (environmental and neighborhood

factors) achieved a 72.1% sensitivity rate, and a specificity rate of 67.8% (Table 3). High sensi-

tivity corresponds to the proportion of presence cases that were correctly predicted as pres-

ence, while high specificity stands for the proportion of no-presence cases that were correctly

identified as no-presence. Therefore, the variable selection for model 3 appeared to have the

highest ability to correctly predict A. albopictus presence with a modest increases of 0.6% com-

pared to model 1.

Spatial patterns

While comparing a models’ accuracy, sensitivity and specificity rates do not allow one to

observe any major differences between model 1 (environmental) and model 3 (environmen-

tal and neighborhood factors) Each model type produced contrasting spatial patterns of pre-

dicted A. albopictus presence (Figs 7 and 8). While the environmental model 1 (Figs 7 & 8,

upper maps) showed a higher suitability in rural and suburban regions along the Delaware

River in the East, the neighborhood factors model 2 predicted the presence of A. albopictus in

urban and urbanized centers as well as along major roads almost perfectly reflecting settle-

ment patterns (Figs 7 and 8, middle maps). The combined model 3 (Figs 7 and 8, lower

maps) predicted A. albopictus’ suitability in both urban and rural areas throughout the study

region. Importantly, in the combined model 3, the presence of mosquitoes in rural areas is

more constrained in comparison to model 1, while prediction conditions within urban areas

were not as strong as in model 2. Some predicted patterns (e.g. Appalachian Piedmont areas

in the West) look similar in model 2 compared to model 1 (environmental model), while oth-

ers (Northern and Central urban areas) change based on neighborhood factors. All three

models predicted the presence of A. albopictus in urban centers, however to different spatial

extents. Model 1 covered largely Western regions, particularly in York, Adams and southern

Franklin counties; this was in contrast to model 2, which predicted the presence in densely

populated, urban settings. Model 3 predicted the A. albopictus’ presence in urban and urban-

ized places but not in remote, rural areas. However, unsuitable areas are found within urban

places reflecting a low degree of presence conditions due to environmental constraints. Pre-

dicted mosquito locations under model 3 corresponded roughly to the intersection of the

areas predicted by the environmental and neighborhood factors models 1 and 2. However,

most urban centers captured by the neighborhood factors in model 2, are also predicted by

model 3 (Figs 7 and 8).

Discussion

Summary of results

This study examined the predictive power of several environmental variables and neighbor-

hood factors on A. albopictus’ presence in SW Pennsylvania using MaxEnt version 3.4.1. Three
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models were compared using exclusively environmental variables (Model 1) or neighborhood

factors (Model 2), and a model that combined the most influential variables from models one

and two (Model 3). The results suggest that the combined model had a marginally higher abil-

ity to predict mosquito presence compared to other models. Moreover, the most influential

Fig 7. Habitat suitability for A. albopictus in the range from 0 to 1 (Logarithmic Output from MaxEnt 3.4.1).

https://doi.org/10.1371/journal.pone.0223821.g007
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variables in model 1 and model 2 appeared to be among the top-five most important variables

in model 3. The strongest predictors included impervious surfaces, places of urban character

(percent urban population >12), tree canopy (> 7%), EVI, as well as mild temperatures during

the winter (ca. +2˚C). It was also found that various types of land cover may influence A.

Fig 8. Habitat suitability for A. albopictus reclassified as presence/absence maps using MaxEnt’s thresholds based

on maximum training sensitivity plus specificity occurrence method.

https://doi.org/10.1371/journal.pone.0223821.g008
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albopictus’ abundance differently and that the relationship between a predictive variable and

A. albopictus’ presence may have changed as new variables were added to the model.

Summary of biological implications

The results from this study are similar to the findings of Vargas et al [48] and Paupy et al [49],

who argue that warm temperatures and vegetation are typical for natural A. albopictus’ habitat.

Warm temperatures can, in general, positively influence the presence of A. albopictus during

the coldest time of the year, assuming that mild winter conditions will secure species’ survival.

Additionally, presence of vegetation cover was found to be an important predictor in the mod-

els. Similar to the spatial patterns in urban areas described by Honório et al [50], it was found

that the presence of A. albopictus is expected in urban areas of SE Pennsylvania with sparse to

high vegetation density. Adult mosquitoes feed on flower nectar [51], therefore the types of

plants in the local environment could play a role on how “vegetation” is used by an Aedes spe-

cies locally.

In addition to climatic conditions that determine A. albopictus’ presence, humans are an

important source of blood for these species [49], and therefore population density can contrib-

ute to the expansion of this species into new urban habitats. Therefore, variables that are direct

indicators for human presence such as high population and housing density were important

predictors. The role of impervious surfaces as a predictor of mosquito abundance can be

explained in a few ways. First, roads and other paved areas are responsible for natural habitat

fragmentation that was found essential for mosquito presence by Rochlin et al [25]. Second,

even though the utilized impervious surface raster does not provide any information about

road conditions, it could be assumed that high proportions of paved surfaces may increase the

possibility of insufficient street conditions such as potholes, which may become puddles and

potential mosquito breeding sites. However, in contrast to a study conducted by Little et al

[27] in Baltimore, MD, a strong relationship was not found between mosquito presence and

high proportion of vacant housing. This could be the result of differences in the scale of analy-

sis (census block versus ZCTA) or an indicator that areas with lower population density are

less attractive for A. albopictus. Among the most influential land cover classes, a strong positive

association was found with woody wetlands, and a weaker positive association with mixed for-

est and developed lands. While negative associations were found with open water, bare soil,

shrubs, pastures and croplands. Similar to other studies on land cover importance [22, 23, 25],

the nature of land cover was found to be essential for A. albopictus’ presence.

Additionally, the results suggest that solely environmental factors are important but may be

insufficient in predicting the presence of A. albopictus in highly urbanized, anthropogenic

landscapes such as those of SE Pennsylvania. The inclusion of neighborhood factors can con-

tribute to our understanding of spatial patterns of A. albopictus’ presence. Though the combi-

nation of both environmental and neighborhood factors did not essentially increase the

accuracy in the prediction of mosquito frequency, the combined model 3 showed differences

in the spatial patterns of mosquito distribution compared to the environmental or neighbor-

hood factor models 1 and 2 alone.

The results from the combined model 3 suggests that the presence of A. albopictus is

explained by a complexity of variables that go beyond those typically used for species-distribu-

tion models such as climate, vegetation or the degree of urbanization exclusively. The positive

response of A. albopictus to impervious surfaces and urban population suggests that urban

areas are becoming the main habitat for this mosquito. Future work could focus on assessing

whether the importance of impervious surfaces on predicting mosquito presence is indirect

due to a high predominance of imperviousness in urban and suburban areas or direct because
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water-impermeable surfaces offer breeding conditions alternative to artificial containers.

Neighborhood measures can inform sustainable management decisions and also provided

additional local information that can be used in possible interventions where behavioral modi-

fication is warranted (e.g. reduce standing water, remove trash, maintaining abandoned prop-

erties and streets).

Summary of MaxEnt implications using both environment and

neighborhood data

This research shows that MaxEnt is suitable for utilizing environmental and neighborhood

condition variables in species-distribution modeling. However, interpretation of results might

be complicated, while associations may change depending on the inclusion of predictive vari-

ables. According to Kuemmerle et al [52], MaxEnt is not sensitive to the collinearity of vari-

ables but may complicate the interpretation of response curves especially if variable are

interrelated.

Conclusion

While previous studies considered changes in climate and natural environment as primary

causes for habitat expansion of vector species such A. albopictus, our results showed that

neighborhood factors are also important predictors. With further exploration of these associa-

tions, more effective mosquito prevention strategies could be developed, especially for urban

environments.

Our results showed that neighborhood factors are important and align with the findings of

the previous study by Rochlin et al [27], who found a link between urbanization degree and

human risk for West Nile Virus (WNV) (also transmitted by A. albopictus). Harrigan et al [53]

and Brown et al [54] reported similar associations between WNV and neighborhood condition

variables.

The incorporation of neighborhood factors into the models presented herein help to

account for the impact of humans and the built environment, that was found to be influential

by others [22, 23, 25, 27]. Finally, the prediction maps (Figs 7 & 8) in comparison to the urban

characteristic of the study area (Fig 1) provide an opportunity to observe the previously men-

tioned “patterns of urbanization” of A. albopictus. Many areas predicted in the model 1 would

fall outside the urban and urbanized areas, and were excluded in model 3. Analogously, several

neighborhood condition factors from model 2 become less-influential contributors in model

3. Similar to previous findings, several environmental variables were found among the most

influential factors. Nevertheless, our results indicate that the plasticity of A. albopictus allows it

to exploit new environments.

Even though all models have statistical similarities, the difference in spatial patterns shows

that some models might be more informative. Particularly, climate and natural environment

are the essential requirements for mosquito presence, and must be included into any species

distribution modeling. Therefore, model 1 would be sufficient especially for analyzing unpo-

pulated places, where the interest is on exploration of the range distribution considering

changes in climate or vegetation. However, in urban places, human factors are essential ele-

ments, because human activities shape and modify the environmental conditions and land

cover structures that are known to influence the ability of mosquitoes to reproduce. Incorpo-

rating neighborhood factors provides for additional risk factors for mosquito presence because

of higher human population density and anthropogenic modifications. Therefore, we regard

model 3 to be the most informative when analyzing mosquito distribution in populated areas.

Since mosquito management is targeted toward prevention and control of mosquitoes that
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spread viruses, model 3 provides additional information about mosquito distributions and

therefore can better inform mosquito management, particularly for targeting appropriate

actions for mitigating mosquito reproduction and subsequent public health interventions.

Finally, model 2 with exclusively neighborhood factors is the least informative because it does

not account for necessary climatic and environmental characteristics that influence the pres-

ence of this species. Therefore, we deem this model as insufficient to predict the presence of

the species.

This study also shows that MaxEnt is suitable for species distribution modeling using area-

based neighborhood factors of non-environmental origin. Consequently, further research

incorporating historical demographic census data on various scales such as tracts or block

groups could elucidate associations and trends between neighborhoods’ social environment/

living conditions and presence of vector species. Moreover, while other machine learning

methods may require advance programming knowledge, MaxEnt is relatively uncomplicated

to operationalize and interpret.

Limitation in this study are mostly related to the effect of spatial bias and resampling of the

input raster data on the predictive power of our models. Spatial bias is related to the uneven

distribution of sampled mosquito locations in the landscape. We applied a spatial filter to miti-

gate the effect of spatial bias in the predictions. However, our results should be taken with cau-

tion considering the potential effects of any remaining bias in the filtered data. Developing a

mosquito sampling strategy that would equally represent the chance of mosquito presence

throughout the study area will likely improve the predictive power and reliability of the models

substantially. An improved mosquito sampling scheme would also help better understanding

differences in both accuracy and spatial predictions between models.

The effect of resampling has to do with the loss of information that occurs when the pixel

size and geographic projection of input raster files with different spatial resolutions are

aligned to the same reference resolution. Here the reference resolution was the 250m pixel

size of the input MODIS data. This reference was considered a good compromise between

the finer spatial resolution of the NLCD products (30m) and the coarser resolution of the

PRISM climatic data (4 km). Resampling of NLCD products from 30 to 250 m results in data

generalization. In our case, this generalization translates into the ability of the model to pre-

dict the presence of mosquitoes at a granularity no finer than 250m. Resampling of PRISM

climate rasters from 4km to 250m will not capture local variations in climate within each

4km cell. We expect that the effect of the resampling of the climatic data will not affect our

predictions substantially because weather in the study area is mostly affected by large regional

climatic patterns rather than local orographic effects, especially considering the flat topogra-

phy of the region.

Finally, further research could focus on exploring spatial differences in the ability of both

neighborhood conditions and environmental variables to predict mosquito presence in urban

and rural areas. Also, the influence of both environmental and neighborhood condition vari-

ables in the prediction of temporal variations in mosquito populations requires further

exploration.
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