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Abstract 

Background: There is a high incidence of injury to the lateral ligament of the ankle in daily living and sports activi-
ties. The anterior talofibular ligament (ATFL) is the most frequent types of ankle injuries. It is of great clinical signifi-
cance to achieve intelligent localization and injury evaluation of ATFL due to its vulnerability.

Methods: According to the specific characteristics of bones in different slices, the key slice was extracted by image 
segmentation and characteristic analysis. Then, the talus and fibula in the key slice were segmented by distance 
regularized level set evolution (DRLSE), and the curvature of their contour pixels was calculated to find useful feature 
points including the neck of talus, the inner edge of fibula, and the outer edge of fibula. ATFL area can be located 
using these feature points so as to quantify its first-order gray features and second-order texture features. Support 
vector machine (SVM) was performed for evaluation of ATFL injury.

Results: Data were collected retrospectively from 158 patients who underwent MRI, and were divided into normal 
(68) and tear (90) group. The positioning accuracy and Dice coefficient were used to measure the performance of 
ATFL localization, and the mean values are 87.7% and 77.1%, respectively, which is helpful for the following feature 
extraction. SVM gave a good prediction ability with accuracy of 93.8%, sensitivity of 88.9%, specificity of 100%, preci-
sion of 100%, and F1 score of 94.2% in the test set.

Conclusion: Experimental results indicate that the proposed method is reliable in diagnosing ATFL injury. This study 
may provide a potentially viable method for aided clinical diagnoses of some ligament injury.

Keywords: Anterior talofibular ligament, Intelligent localization of ATFL, Quantitative evaluation of ATFL injury, 
DRLSE, Magnetic resonance imaging
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Background
There is a high incidence of injury to the lateral ligament 
of the ankle in daily living and sports activities [1, 2]. 
The incidence was one case per 10,000 person-day in the 
world, ranking first in trauma emergency cases [3]. The 

anterior talofibular ligament (ATFL) is the most frequent 
types of ankle injuries [4]. It is the connective tissue con-
necting the fibula to the talus, which is vital for main-
taining the stability of the ankle [5]. Different severity of 
injury corresponds to different treatment and prognosis. 
Therefore, it is of great significance to accurately judge 
the severity and choose appropriate treatment methods 
for reconstructing the stability of ankle and prevent-
ing repeated sprain. At present, the diagnosis of ATFL 
injury is mainly based on magnetic resonance imaging 
(MRI) [6], and relies on doctors’ extensive reading of MR 
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images. Moreover, it requires high clinical experience for 
doctors, and the diagnosis from different doctors can also 
be controversial. There is an urgent need to develop an 
intelligent diagnosis method for the patients with ATFL 
injuries, detecting the injuries automatically, accurately, 
and immediately either in the acute phase or during reha-
bilitation [7].

MRI has the advantage of high soft tissue resolution, 
which can clearly display anatomical details such as liga-
ments and tendons [8]. It has been routinely applied in 
the examination of ankle injury [9]. However, qualitative 
evaluation using MRI cannot dynamically evaluate liga-
ments and provide quantitative morphological features 
to guide diagnosis, treatment and prognosis.

The ATFL tear shows some qualitative changes on MRI. 
The ATFL loses normal tension and appears as a wavy or 
curvilinear abnormality on the images [10]. The contour 
is irregular and blurry. Compared with the low signal of 
normal tendons in the same slice, there are obvious high 
signal shadows like cords and patches in the ATFL [11]. 
Nevertheless, there are still few studies on quantitative 
analysis of ATFL tear, and no definite quantitative crite-
ria can be used for clinical diagnosis. Liu et al. [12] found 
that the ligament thickness and signal to noise ratio of 
ATFL patients were significantly higher than those of the 
control group. Basha et al. [13] proposed that the bright 
rim sign was a very helpful diagnostic sign in assessment 
of ATFL disruption. Mun et  al. [14] concluded that the 
sensitivity, specificity and accuracy of diagnosis using 
the cross-sectional area of the ligament were higher than 
the ligament thickness. These findings suggested that 
morphological measurement based on MR images is of 
predictive value in the diagnosis of ATFL tear. However, 
these features were all manually marked and measured 
by doctors, which is laborious and subjective. There is 
no automatic localization and segmentation algorithm 
of ATFL, and the related research is limited. A semiauto-
matic anterior cruciate ligament segmentation program 
that utilized morphological operations and active con-
tour was proposed [15], which shows a low performance 
with Dice coefficient of 38.1%. Vinay et  al. [16] used 
hybrid level set active contour to segment anterior cru-
ciate ligament, but the poor results indicated that much 
improvement is still necessary before the application of 
clinical image diagnosis. Flannery et  al. [17] developed 
an automated segmentation method for the anterior cru-
ciate ligament, and the final model scored well on ana-
tomical performance metrics (Dice coefficient = 0.84, 
precision = 0.82, and sensitivity = 0.85). However, there 
is still no relevant lesion localization and segmentation 
model for ATFL.

To improve the above defects, an intelligent localiza-
tion method based on the priori knowledge of ATFL was 

proposed in this study. The key slice can be obtained by 
extracting the foreground contour and the central bone 
contour from MRI cross-sectional images. According to 
the anatomical characteristics of talus and fibula, fea-
ture points can be found to locate ATFL area. Then, the 
first-order gray features and second-order texture fea-
tures of ATFL area were quantified for evaluation of liga-
ment injury. The presented method does not require too 
much data, and only requires the combination of doc-
tors’ prior knowledge and image processing algorithm. 
Furthermore, these topics including the key slice extrac-
tion, lesion automatic localization and intelligent evalua-
tion in this paper are a new attempt for the evaluation of 
the ATFL injury, which is of great significance for clinical 
diagnosis.

Methods
Datasets
In this study, data were collected retrospectively for 
patients with acute ankle sprain admitted to Tianjin Hos-
pital, Tianjin, China from January 2019 to January 2020. 
The inclusion criteria were patients who (1) had a history 
of acute ankle sprain injury; (2) had positive clinical find-
ings suggestive of ligamentous injury; and (3) had com-
plete imaging data. The exclusion criteria were patients 
who (1) had a history of recurrent ankle sprain injury; 
(2) had a history of ankle joint infection, deformity, frac-
ture, tumor and surgery; and (3) had incomplete imaging 
data or blurred images. According to the above inclusion 
and exclusion criteria, a total of 158 ankle sprain patients 
were studied, aged from 13 to 76 years old. There were 68 
(43%) patients in the normal group and 90 (57%) in the 
tear group for ATFL, of which 64 patients were partial 
tear and 26 were complete tear. The basic characteris-
tics of patients are presented in Table 1. The t-test results 
show that no significant statistical characteristics are 
detected between the normal and tear groups (P > 0.05).

MRI was obtained from the radiology department. 
All patients had an MRI scan of the ankle with a 3.0-T 
magnet (Ingenia CX, Philips Healthcare, Best, the Neth-
erlands). The scan ranges from the distal tibia to upper 
calcaneus. The sequences include cross-sectional T2 
weighted images with fat suppression, sagittal T1 
weighted images, sagittal proton density weighted images 
with fat suppression and coronal proton density weighted 
images with fat suppression. Since the diagnosis of 
ATFL injury is mainly based on cross-sectional images, 
this study focused on the cross-sectional T2 weighted 
images with fat suppression (TR 4,000  ms, TE 71  ms, 
FOV 180 × 180  mm, slice thickness 4  mm, and spacing 
between slices 0.4 mm).

Results were classified as normal, partial tear, or com-
plete tear as described by Joshy et  al. [18]. Partial tear 



Page 3 of 12Yan et al. BMC Med Imaging          (2021) 21:130  

was defined as partial adhesion of the ligament fibers 
and a coarse cut fibre surface with intact continuity. It 
was characterized by the thickening and tortuosity of the 
ligament, and the discontinuity of some fibers. Complete 
tear was defined as entire discontinuity of the ligament 
and adhesion of adjacent tissue [19, 20]. The focal locali-
zation and diagnostic results of the ATFL in all patients 
were labeled independently by two radiologists. For 
cases with inconsistent or controversial labeling results, 
an experienced associate chief physician will review and 
discuss the consultation to reach an agreement. Also, the 
radiologists have completed training for musculoskeletal 
radiology at Tianjin Hospital, China, which is a compre-
hensive hospital specializing in orthopedics.

Structure of this study
As shown in Fig.  1, the aim of this work is to achieve 
intelligent localization and quantitative evaluation of the 
ATFL. First, the slice containing the ATFL was extracted 
from cross-sectional T2 weighted images with fat sup-
pression of ankle joint. Then, according to anatomical 

structure characteristics of the talus and fibula in the key 
slice, the contours and the feature points were extracted 
to locate the ATFL area. Subsequently, the first-order 
gray features and second-order texture features were cal-
culated for evaluation of ATFL injury.

Intelligent localization of ATFL
Key slice extraction
The scanning range of MRI cross-sectional T2 weighted 
images with fat suppression for ankle is from the distal 
tibia to upper calcaneus, which includes the talus, fibula, 
tibia, calcaneus, and their surrounding soft tissues. The 
ATFL is connective tissue that connects the talus to the 
fibula. The bones in the slice where the ATFL presents are 
mainly talus and fibula. Therefore, based on the tree idea 
in Fig. 2, the key slice is extracted according to the spe-
cific characteristics of bones contained in different slices. 
Firstly, the outer contours of the foreground in all images 
are extracted by distance regularized level set evolution 
(DRLSE) [21]. Adaptive threshold segmentation is used 
to determine that the outer rectangle with the maximum 

Table 1 The basic characteristics of patients

Characteristics Total (n = 158) Normal (n = 68) Tear (n = 90) P

Age (y), mean (range) 33.0 (13–76) 35.7 (13–68) 31.0 (14–76) 0.338

Sex, Male, n (%) 94 (59) 40 (59) 54 (60) 0.882

Sex, Female, n (%) 64 (41) 28 (41) 36 (40)

Side, Left, n (%) 77 (49) 30 (44) 47 (52) 0.316

Side, Right, n (%) 81 (51) 38 (56) 43 (48)

Fig. 1 The structure diagram of this study
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contour is the initial zero level set. The foreground con-
tour can be obtained by DRLSE. If the number of slices 
in the whole sequence is represented by n, the first n/3 of 
the slices with the largest contour perimeter are divided 
into a batch called calcaneus group, according to the doc-
tor’s instruction. Take the MRI of a patient as an exam-
ple, Fig.  2a shows the slices of calcaneus group, which 
mainly includes the calcaneus and its surrounding tis-
sues, but does not include the ATFL. Then, the contour 
of the bone with the largest area is extracted by DRLSE 
from the remaining slices, where the pixel area of 20 × 20 
in the center of the image is taken as the initial zero level 
set. The aspect ratio of the minimum bounding rectangle 
of the contour is calculated, which expressed by r . If r is 
less than 1, the slice will be classified into tibia group as 
shown in Fig. 2c, in which tibia and its surrounding tis-
sues are present. On the contrary, the slices with r greater 
than 1 are mainly composed of talus and its surrounding 
tissues as shown in Fig.  2b, and defined as talus group, 
from which the key slice containing the ATFL will be 
found. Since the ATFL exists in the slice with the larg-
est talus area, the slice with the largest contour area in 
the talus group is selected as the key frame, as shown in 
Fig. 2d.

ATFL localization based on feature points extraction
Due to the characteristics of uneven signal, interrupted 
continuity, blurred edge and irregular contour in MR 
image of ligament, it is difficult to locate directly and 
accurately. Thus, an intelligent localization method based 
on feature points detection of talus and fibula was pro-
posed in this study. Figure  3 shows the schematic dia-
gram of ATFL localization process, including image 
preprocessing (Fig. 3a, b), contours extraction of the talus 
and fibula (Fig.  3c–g), and feature points detection and 
ATFL localization (Fig. 3h, i).

As shown in Fig.  3a, the original image can easily 
introduce some noise due to the effect of magnetic field 
intensity, human thermal noise and other factors in MRI 
acquisition process, which probably results in the degra-
dation of image quality, or affects the segmentation accu-
racy [22]. Guided filter [23] and contrast limited adaptive 
histogram equalization (CLAHE) [24] were used to pre-
process the image in this study. The guided filter can be 
used as an edge-preserving smoothing operator like the 
popular bilateral filter [25], but it has better behaviors 
near edges. The preprocessed image is shown in Fig. 3b.

The positioning of ATFL depends on the accurate 
segmentation of the talus and fibula, as it is attached 

Fig. 2 The key slice extraction from cross-sectional T2 weighted images with fat suppression
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to the talus on one side and to the fibula on the other. 
The ATFL arises from the anterior margin of the lateral 
malleolus, runs below anteromedial, terminates at the 
neck of the talus and is attached to the lateral margin 
of the talus aptly in front of the articular surface of the 
fibula. In view of such anatomical structure character-
istics, level set evolution is used to segment the talus 
and fibula, and the structural feature points of ATFL 
are determined by calculating the curvature of the con-
tours, whereupon, ATFL can be located and marked. As 
shown in Fig. 3c, this work used a 20 × 20 pixel area in 
the center of the image as the initial zero level set. The 
contour of the talus in Fig. 3d was obtained by DRLSE. 
However, the initial zero level set of the fibula is related 
to the contours of foreground and talus. The leftmost 
boundary point of the foreground contour is marked as 
P, and the leftmost boundary point of the talus contour 
is marked as Q, as shown in Fig. 3e. The central 10 × 10 
pixel region between P and Q is taken as the initial 

zero level set, and the fibula contour shown in Fig. 3g is 
obtained by DRLSE.

Subsequently, feature points are extracted from the 
contours of the talus and fibula to locate the focus, 
including the neck of talus, the inner edge of fibula, and 
the outer edge of fibula. As shown in Fig. 3h, the point in 
the upper left corner of the image is taken as the origin of 
coordinates to establish a rectangular coordinate system, 
where the right direction is taken as the positive direc-
tion of X axis, and the downward direction is the positive 
direction of Y axis. The steps of feature point extraction 
are as follows.

Step 1: Extraction of feature point A.
Among the contour points of the talus, the lateral con-

tour point with the widest width along the X-axis direction 
is the lateral talus fornix, which is extracted as an auxiliary 
feature point and marked as M (xM , yM) . The neck of talus 
(A) is the inflection point between the initial point (S) and 
the lateral talus fornix (M) in the talus contour, which can 

Fig. 3 Schematic diagram of ATFL localization process. (a. the original image, b. the prepocessed image after guided filter and CLAHE, c. the 
initial zero level set of the talus, d. the talus contour is obtained by DRLSE, e. the initial zero level set of the fibula is determined by the contours of 
foreground and talus, f. the initial zero level set of the fibula, g. the fibula contour is obtained by DRLSE, h. feature points extraction of ATFL, and i. 
the final result of ATFL localization.)
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be determined by calculating the curvature. The contour 
extracted by the level set in this work is a discrete digital 
curve that is composed of a series of discrete points, thus 
there is no analytical expression. Considering that the cur-
vature of a discrete point is closely related to the relative 
position of its adjacent points, the method based on chord 
length is used to calculate the curvature of discrete points. 
The talus contour points are represented by a set of ordered 
points that do not coincide, denoted by Ni(xi, yi) , where 
i = 1, 2, . . . ,n . As shown in Fig. 4, the curvature at the dis-
crete point Ni(xi, yi) is approximately calculated by using 
point Ni−k(xi−k , yi−k) that is k intervals away from Ni for-
ward, and Ni+k(xi+k , yi+k) that is k intervals away from 
Ni backward. Connect points Ni and Ni−k , Ni and Ni+k to 
make the contour be a broken line segment. The length of 
the line segment from point Ni−k to Ni is denoted by Li−k , 
and the length of the line segment from point Ni to Ni+k is 
denoted by Li+k . Refer to the curvature calculation method 
for continuous curves based on arc length, this work used 
chord length to replace arc length approximatively [26]. 
The first derivative at point Ni can be expressed as

and

The second derivative at point Ni can be expressed as

and

where

(1)x
′

i =
xi+k − xi−k

Li−k + Li+k

(2)y
′

i =
yi+k − yi−k

Li−k + Li+k

(3)x
′′

i =
x
′

if − x
′

ib

Li−k + Li+k

(4)y
′′

i =
y
′

if − y
′

ib

Li−k + Li+k

Then, the curvature of point Ni is calculated by 
Eq. (7).

The curvature of each pixel in the talus contour 
within the range of initial point S and auxiliary point 
M is calculated according to the above method (k = 10), 
where the point of maximum curvature is the neck of 
talus denoted by A(xA, yA) , as shown in Fig. 3h.

Step 2: Extraction of feature point B.
The inner edge point of fibula is a inflection point in 

the fibula contour near the talus side. Therefore, the cur-
vature of every point within this range is calculated, and 
the coordinate of the minimum curvature point is taken 
as the inner edge point of fibula denoted by B(xB, yB).

Step 3: Extraction of feature point C.
Connect point A and B, and the vertical segment of 

line AB through point B intersects the fibula contour 
on the other side at point C, which is taken as the outer 
edge point of fibula denoted by C(xC , yC).

Step 4: Localization of the focal area of ATFL.
The positioning results of feature points A, B and C 

are shown in Fig. 3h. The minimum horizontal and ver-
tical coordinates of feature points A, B and C are taken 
as the upper-left coordinate and the maximum as the 
lower-right coordinate, to make a rectangle to locate 
the focal area of ATFL. Figure 3i shows the final posi-
tioning of ATFL.

Quantitative analysis of MRI characteristics of ATLF
After acquiring the positioning of nidus, the MRI char-
acteristics of ATFL can be quantified. In this study, the 
first-order gray features and the second-order texture 
features were extracted to analyse the quantitative fea-
tures of ATFL.

The normal ATFL shows uniform low signal on MRI, 
while the injured ATFL shows enhanced high signal 
due to ligament swelling. Therefore, compared with the 
normal ATFL, the gray value of injured area is higher 
in the torn group. The first-order grayscale features can 
be obtained by counting the frequency distributions 
of different gray levels in ATFL area. Suppose the total 
grayscale in the ATFL region is L , the gray histogram is 
defined by

(5)x
′

if =
xi+k − xi

Li+k
; y

′

if =
yi+k − yi

Li+k

(6)x
′

ib =
xi − xi−k

Li−k
; y

′

ib =
yi − yi−k

Li−k

(7)Ci =
x
′

iy
′′

i − x
′′

i y
′

i

(x
′2
i + y

′2
i )

3/2

Fig. 4 Curvature calculation method of discrete points based on 
chord length
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where ni is the total number of pixels with gray level i , 
and N  is the total number of pixels in ATFL region.

The gray histograms of ATFL area for normal, partial 
tear and complete tear are shown in Fig. 5, in which the 
histograms are bimodal, and the gray level correspond-
ing to the right peak of the torn sample is higher than 
that of the normal sample. According to the part marked 
by the rectangles in Fig.  5, the torn sample has a larger 
proportion of high signal pixels than the normal sample. 
Therefore, the above mentioned proportion of high signal 
pixels and grayscale corresponding to the right peak are 
used as the first-order gray features of the ATFL region. 
Moreover, the conventional histogram statistical features, 
such as mean value, variance, skewness, kurtosis, energy 
and entropy, are added into the feature set to form an 
eight-dimensional first-order gray feature vector. Table 2 
shows the calculation formulas of these characteristic 
parameters.

This work used texture features based on gray level co-
occurrence matrix (GLCM) to quantitatively describe the 
second-order characteristics of ATFL area, which mainly 
reflected the variation of spatial gray distribution in 
ATFL area. Assume that the total number of gray levels 
of the ATFL image is L , then the size of GLCM is L× L , 
and the formula can be expressed as

where ∀i, j ∈ {1, 2, ...L} , (r, g), (t, v) ∈ L× L , and the for-
mula of (t, v) in different angles satisfies

Let p(i, j) represent the value at (i, j) in GLCM. Then, 
five texture features including angular second moment, 
contrast, entropy, inverse differential moment and cor-
relation can be extracted using the GLAM method. 
Table  3 shows the calculation formulas of these texture 
parameters.

The texture parameters of the four directions 
( θ = [0◦, 45◦, 90◦, 135◦] ) are extracted, respectively, so 
the second-order texture feature vector based on GLCM 
is 20 dimensions.

Evaluation of ATFL injury
The first-order gray features and second-order texture 
features are merged as a 28-dimensional feature vec-
tor. Due to the correlation between different features, 

(8)H(i) =
ni

N
, i = 0, 1, . . . , L− 1

(9)
GLCMθ

d(i, j) = |{((r, g), (t, v)) : l(r, g) = i, l(t, v) = j}|

(10)(t, v) =











r + d, g θ = 0◦

r + d, g + d θ = 45◦

r, g + d θ = 90◦

r − d, g + d θ = 135◦

it is easy to cause information redundancy. Therefore, 
this study used principal component analysis (PCA) 
[27] for feature dimension reduction. Figure  6 shows 
the explained variance ratio of different principal com-
ponents, in which the first five principal components 
contain more than 90% of the original feature informa-
tion. Thus, these five principal components are selected 
to replace the original 28-dimensional features, which 
not only reduces the computational complexity, but also 
retains most of the effective information in the original 
features.

Support vector machine (SVM) [28] is used to classify 
the experimental samples, including 68 normal samples, 
64 partial tear samples and 26 complete tear samples. 
SVM is one of the most successful machine learning 
methods, which aims to seek the optimal hyperplane 
with the maximum margin principle. Considering the 
nonlinearity of experimental data, kernel function is 
introduced to solve the classification problem. The input 
of SVM is the principal component features after PCA. 
Since the dimension of features is small and the number 
of samples is medium, RBF kernel function is selected to 
map the features to the high-dimensional space for clas-
sification, defined as:

where γ is the only hyper-parameter, xi and xj are sample 
characteristics.

70% of the sample data are used as training set and 30% 
as test set. tenfold cross validation [29] is used to divide 
the training samples into ten parts, in which nine parts 
are taken as training set, and the corresponding one part 
is taken as test set in turn. The latest model is selected as 
the final model to test the samples of the test set. Accu-
racy, sensitivity, specificity, precision and F1 score are 
used to evaluate the classification effect of the model. 
The calculation formulas of these indices are shown in 
Table 4, where TP is true positives, FP is false positives, 
TN is true negatives, and FN is false negatives.

Results
The results of ATFL localization
This experiment used Intel Core i7-7700  K CPU @ 
3.80 GHz processor, NVIDIA GeForce RTX 2080TI and 
operation system based on windows 10 to implement 
ATFL localization algorithm. PyCharm was used as Inte-
grated Development Environment (IDE), and Python was 
used as programming language. In order to objectively 
evaluate the performance of ATFL localization, the posi-
tioning accuracy (PA) and Dice Similarity Coefficient 
(DSC) are used as evaluation index [30]. The closer the 

(11)κ(xi, xj) = e−γ ||xi−xj ||
2
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Fig. 5 The gray histograms of the ATFL area for normal, partial tear and complete tear
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value is to 1, the better the positioning effect is. The two 
metrics are defined as follows:

where �1 and �2 represent the localization results of pro-
posed method and ground truth, respectively. Table  5 
shows the mean values of PA and DSC for normal group, 
partial tear group and complete tear group. The mean 
values on PA and DSC of all samples are 87.7% and 
77.1%, respectively. Compared with organ segmenta-
tion, the accuracy of ATFL positioning in this work is 
not high enough, due to the larger positioning area, but it 
does not affect feature extraction and quantitative evalu-
ation in the following. Therefore, the positioning method 
combined with prior knowledge is reasonable and feasi-
ble, which can be a breakthrough in the localization of 
ligaments.

The results of ATFL injury classification
The computing environments for ATFL injury classifica-
tion are the same as the localization algorithm. Scikit-
learn based on Python was used to train the SVM, where 
the version of scikit-learn is 0.19.2. By training the SVM 
model and adjusting the hyper-parameter, the value of γ 
is determined to be 0.5, and the prediction results of 48 
samples in the test set are shown in Table 6. Confusion 

(12)PA =
|�1 ∩�2|

|�2|
× 100%

(13)DSC =
2|�1 ∩�2|

|�1| + |�2|
× 100%

matrix [31] can improve the visualization of classification 
results, of which the columns represent the predicted 
results, the rows represent the actual labels, and the diag-
onal represents the number of accurate classifications per 
category. As shown in Table 6, the classification accuracy 
of the model for normal samples is extremely high, reach-
ing 100%, while the accuracy of partial tear and complete 
tear samples are 70% and 57.1%, respectively. The average 
accuracy of the entire test set is 81.3%. Furthermore, the 
average precision is 82%, and the average F1 score is 80%.

Due to the poor classification effect of partial tear and 
complete tear group, we combined them into one class 
called tear group with the consent of doctors. SVM was 
used again to classify the normal samples and the injury 
samples. Similarly, 30% of all samples are taken as the 
test set including 21 normal samples and 27 tear sam-
ples. After several training, the value of hyper-parame-
ter γ is 0.7, and Table 7 shows the classification results. 
The average accuracy is 93.8%. For tear group, it gives a 
good prediction ability with sensitivity of 88.9%, speci-
ficity of 100%, precision of 100%, and F1 score of 94.2%. 
Compared with Table  6, the classification effect of nor-
mal and tear is better than that of normal, partial tear and 
complete tear, which means the feature discrimination of 
normal group and tear group is stronger, while the dis-
crimination of partial tear and complete tear is worse. It 
can be concluded that the first-order gray features and 
the second-order texture features can well explain the 
differences of MRI lesion area in patients with ATFL 
injury compared with normal patients.

Discussion
In this work, we have developed a novel method for intel-
ligent localization and quantitative evaluation of ATFL 
injury. The key slice extraction is a significant topic in 
clinical diagnosis, which can ease the burden on doc-
tors. According to the specific characteristics of organs 
or tissues in different slices, the key slice was extracted by 
image segmentation and characteristic analysis. The idea 
of extracting target images from a series of images can 
be applied to the diagnosis of other diseases and lesions. 
Furthermore, in order to solve the difficult problem of 
direct localization caused by blurred edges and irregular 
structures of injured ligaments, this work has proposed 
an indirect method to locate the ATFL by segmenting the 
talus and fibula with clear contour and detecting their 
anatomical feature points. Experimental results indicate 
that the localization method is feasible.

After acquiring the ATFL area, quantitative analysis 
of MRI characteristics of lesions can be underwent. The 
first-order gray features and the second-order texture fea-
tures were extracted to describe the difference between 
normal and injured ligaments. The normal ATFL shows 

Table 2 The calculation formulas of first-order gray features

Characteristic parameters Calculation formulas

Mean value
µ =

L−1
∑

i=0

iH(i)

Variance
σ 2 =

L−1
∑

i=0

(µ− i)2H(i)

Skewness
Hs =

1
σ 3

L−1
∑

i=0

(µ− i)3H(i)

Kurtosis
Hk =

1
σ 4

L−1
∑

i=0

(µ− i)4H(i)− 3

Energy
He =

L−1
∑

i=0

H(i)2

Entropy
Ht = −

L−1
∑

i=0

H(i) log2(H(i))

Proportion of high signal pixels
P = 1

N

L−1
∑

i=L/2

ni

Grayscale corresponding to the 
right peak

Gs = g(max{nr}, r = 50, . . . , L− 1)
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uniform low signal on MRI, while the injured ATFL 
shows enhanced high signal due to ligament swelling [11]. 
The reason is that inflammation causes tissue fluid to 
seep into ligament area once ligament fibers are partially 
or completely torn [32]. The first-order grayscale features 
can be obtained by counting the frequency distributions 

of different gray levels in the region of ATFL. The nor-
mal ATFL shows continuous fibers without tortuosity 
and regular texture, while the injured ATFL shows bro-
ken fibers, tortuous ligament, irregular texture and fuzzy 
edge. The second-order texture features based on gray 
level co-occurrence matrix can be obtained to reflect the 
variation of spatial gray distribution in ATFL area. Com-
pared with qualitative characteristics, quantitative analy-
sis can reduce subjective judgment and make the results 
more convincing.

In recent years, there has been a significant increase 
in the number of studies using deep learning technique 
for purposes such as disease detection and classification, 
organ and lesion segmentation in the medical imaging 

Table 3 The calculation formulas of second-order texture features

Texture parameters Calculation formulas

Angular second moment
Asm =

L−1
∑

i=0

L−1
∑

j=0

[p(i, j)]2

Contrast
Con =

L−1
∑

i=0

L−1
∑

j=0

p(i, j)(i − j)2

Entropy
Ent = −

L−1
∑

i=0

L−1
∑

j=0

p(i, j) log p(i, j)

Inverse differential moment
Idm =

L−1
∑

i=0

L−1
∑

j=0

p(i,j)

1+(i−j)2

Correlation
Cor = 1

σxσy

L−1
∑

i=0

L−1
∑

j=0

[p(i, j)ij] − µxµy

 where 
µx =

L−1
∑

i=0

L−1
∑

j=0

ip(i, j)
 , 

µy =
L−1
∑

i=0

L−1
∑

j=0

jp(i, j) σx =
L−1
∑

i=0

L−1
∑

j=0

(i − µx)
2p(i, j)

,

σy =
L−1
∑

i=0

L−1
∑

j=0

(j − µy)
2p(i, j)

Fig. 6 The explained variance ratio of different principal components

Table 4 The calculation formulas of evaluation indices

Evaluation indices Calculation formulas

Accuracy Acc = TP+TN
TP+FN+FP+TN

Sensitivity Sen = TP
TP+FN

Specificity Spe = TN
FP+TN

Precision Pr e = TP
FP+TP

F1 score F1 = 2∗Pr e∗Sen
Pr e+Sen

Table 5 The results of ATFL localization

Normal Partial tear Complete tear Mean

PA (%) 90.7 86.6 85.9 87.7

DSC (%) 77.9 76.7 76.5 77.1

Table 6 The classification results of the test set for normal, 
partial tear and complete tear

 The actual 
labels / The 
predicted 
results

Normal Partial tear Complete 
tear

Total Sen (%)

Normal 21 0 0 21 100

Partial tear 4 14 2 20 70

Complete tear 1 2 4 7 57.1

Total/avg 26 16 6 48 81.3
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fields [33, 34]. With all these developments, the use of 
deep learning networks to interpret radiological images 
in musculoskeletal radiology has also become widespread 
[35, 36]. In terms of assessing ligament injuries, Chang 
et al. [37] proposed a customized 3D deep learning archi-
tecture based on dynamic patch-based sampling, which 
demonstrated high performance in detection of com-
plete anterior cruciate ligament tears with over 96% test 
set accuracy. Liu et al. [38] developed a fully automated 
diagnosis system by using two deep convolutional neu-
ral networks to isolate the anterior cruciate ligament on 
MR images, followed by a classification convolutional 
neural network to detect structural abnormalities within 
the isolated ligament. The experimental results verified 
the feasibility of deep learning method in detection of 
anterior cruciate ligament tears. Awan et al. [39] used a 
customized 14 layers ResNet-14 architecture of convo-
lutional neural network with six different directions by 
using class balancing and data augmentation.  The aver-
age accuracy for healthy ligament, partial tear and fully 
ruptured tear had result of 92%. However, deep learning 
models require large amounts of data to train, on account 
of the complex structure of networks. The acquired data 
in this work are very limited, and data amplification tech-
nology may cause data redundancy. So deep learning net-
works are not suitable for the localization and evaluation 
of ATFL lesions at present. While the proposed method 
in this study does not need a large number of samples, 
which greatly reduces the computational expense and 
the complexity of the model. Features extraction method 
based on doctors’ prior knowledge and image processing 
algorithm can satisfy the classification problem of small 
sample data set. Also, the presented method shows good 
performances in rapid localization, feature quantification 
and classification of lesions, which has a certain potential 
value for clinical auxiliary diagnosis.

A potential limitation of our study was that we used 
a relatively simple model architecture to train the data, 
instead of convolutional neural network or deep learning. 
The reason is that the existing deep learning networks are 
very huge, and need a large number of samples to sup-
port. In addition, the training effect depends greatly on 
the accuracy of labels. In the field of medical imaging 

processing, the labeling of the lesion area involves a 
wealth of medical knowledge and experience, cou-
pled with privacy and ethical issues involved in medical 
data, it is impossible for medical images to be processed 
by a large number of outsourced personnel like natural 
images. Thus, considering the limitation of our prepared 
data and the difficulty of labeling, the training of thou-
sands of network parameters cannot be completed. But 
we will continue to accumulate samples and labels, so as 
to use appropriate networks to improve the accuracy of 
ATFL localization and classification. Further work will 
focus on more precise classification in acute ATFL injury 
with  different  severity. Deep learning networks will be 
needed to improve the performance of ATFL positioning 
and evaluation using larger and more varied sets of sam-
ples. More importantly, optimizing and generalizing the 
model to diagnose other ligamentous injury is necessary.

Conclusion
This study presented a novel method for intelligent local-
ization and quantitative evaluation of ATFL injury, which 
is helpful for clinical diagnosis. The key slice with ATFL 
was firstly obtained by extracting the foreground contour 
and the central bone contour from MRI cross-sectional 
images. By segmenting the talus and fibula in the key 
slice and calculating the curvature of their contour pixels, 
feature points were found to locate ATFL injury area. We 
have analyzed the first-order gray features and second-
order texture features of ATFL area quantitatively, and 
then classified the normal samples and tear samples. It is 
concluded that the proposed method gives a good pre-
diction ability for evaluation of ATFL injury, and shows 
excellent performances in rapid localization, feature 
quantification and classification of lesions.
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