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abstract

 

We previously demonstrated that the outer vestibule of activated Kv2.1 potassium channels can be in
one of two conformations, and that K

 

�

 

 occupancy of a specific selectivity filter site determines which conforma-
tion the outer vestibule is in. These different outer vestibule conformations result in different sensitivities to inter-
nal and external TEA, different inactivation rates, and different macroscopic conductances. The [K

 

�

 

]-dependent
switch in outer vestibule conformation is also associated with a change in rate of channel activation. In this paper,
we examined the mechanism by which changes in [K

 

�

 

] modulate the rate of channel activation. Elevation of sym-
metrical [K

 

�

 

] or [Rb

 

�

 

] from 0 to 3 mM doubled the rate of on-gating charge movement (Q

 

on

 

), measured at 0 mV.
Cs

 

�

 

 produced an identical effect, but required 40-fold higher concentrations. All three permeant ions occupied
the selectivity filter over the 0.03–3 mM range, so simple occupancy of the selectivity filter was not sufficient to pro-
duce the change in Q

 

on

 

. However, for each of these permeant ions, the speeding of Q

 

on

 

 occurred with the same
concentration dependence as the switch between outer vestibule conformations. Neutralization of an amino acid
(K356) in the outer vestibule, which abolishes the modulation of channel pharmacology and ionic currents by the
K

 

�

 

-dependent reorientation of the outer vestibule, also abolished the K

 

�

 

-dependence of Q

 

on

 

. Together, the data
indicate that the K

 

�

 

-dependent reorientation in the outer vestibule was responsible for the change in Q

 

on

 

. More-
over, similar [K

 

�

 

]-dependence and effects of mutagenesis indicate that the K

 

�

 

-dependent change in rate of Q

 

on

 

can account for the modulation of ionic current activation rate. Simple kinetic analysis suggested that K

 

�

 

 reduced
an energy barrier for voltage sensor movement. These results provide strong evidence for a direct functional inter-
action, which is modulated by permeant ions acting at the selectivity filter, between the outer vestibule of the
Kv2.1 potassium channel and the voltage sensor.
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I N T R O D U C T I O N

 

Opening of voltage-gated K

 

�

 

 channels depends on the
interaction between the voltage sensor and a volt-
age-sensitive gate within the pore. Upon depolariza-
tion, positive gating charge within the channel protein
moves in the outward direction (Hodgkin and Huxley,
1952; Armstrong and Bezanilla, 1974). The region of
the channel that contains most of these gating charges,
and therefore primarily constitutes the voltage sen-
sor, is the S4 transmembrane domain (Aggarwal and
MacKinnon, 1996; Seoh et al., 1996). As the S4 domain
translocates in the outward direction, the activation
gate within the conduction pathway opens, and allows
ions to flow through the pore. Abundant evidence has
demonstrated that the primary, voltage-sensitive activa-
tion gate lies at the cytoplasmic end of the conduction
pathway (Armstrong and Hille, 1972; Holmgren et al.,
1997, 1998; Liu et al., 1997; del Camino and Yellen,
2001; Hackos et al., 2002). Although the details remain

to be fully worked out, the S4 domain appears to be
linked to the activation gate at the cytoplasmic end of
the channel protein (Lu et al., 2002; Tristani-Firouzi et
al., 2002; Ding and Horn, 2003).

Cysteine modification and cross-linking experiments
indicate that the S4 domain is also within very close
proximity of the outer vestibule (Elinder et al., 2001a,b;
Broomand et al., 2003; Gandhi et al., 2003; Laine et al.,
2003; Neale et al., 2003). The possibility that this close
proximity is functionally important is suggested by fluo-
rescence measurements that demonstrated a link be-
tween movement of the S4 domain and slow inactiva-
tion, which involves a conformational change in the
outer vestibule (Yellen et al., 1994; Liu et al., 1996;
Loots and Isacoff, 2000). However, whether the associa-
tion between S4 movement and slow inactivation re-
sults from a direct interaction between the S4 domain
and outer vestibule or via a more indirect mechanism is
not known (see Elinder et al., 2001b; Broomand et al.,
2003).

Several types of evidence have raised the possibility
that the outer vestibule and/or selectivity filter might
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also be involved in the activation process. First, it is now
clear that the selectivity filter is a dynamic region of the
channel (Ikeda and Korn, 1995; Liu et al., 1996; Kiss et
al., 1999; Wang et al., 2000; Zhou et al., 2001). Second,
fluorescence measurements have demonstrated that
conformational changes occur in the outer vestibule
during activation (Cha and Bezanilla, 1997). Third,
site-directed mutagenesis near the selectivity filter re-
gion of the channel alters the kinetics of activation gat-
ing (Liu and Joho, 1998; Zheng and Sigworth, 1998).
Fourth, open-close gating transitions continue to occur
when the cytoplasmic activation gate is uncoupled from
the S4 domain (Bao et al., 1999). Finally, several studies
suggest that the primary activation gate in inward recti-
fier K

 

�

 

 channels and cyclic nucleotide–gated channels,
which are closely related to Kv channels, may be associ-
ated with the selectivity filter region (Sun et al., 1996;
Flynn and Zagotta, 2001; Lu et al., 2001a,b; So et al.,
2001; Proks et al., 2003). Together, these data provide
compelling circumstantial evidence that a second gate,
near the selectivity filter and/or outer vestibule region,
might contribute to the activation process in Kv chan-
nels. The ability of the S4 domain to move to within sev-
eral angstroms of the outer vestibule suggests the possi-
bility that it may influence gating transitions associated
with the selectivity filter and/or outer vestibule.

We recently demonstrated that the outer vestibule of
activated Kv2.1 potassium channels can be in one of
two conformations, and that the occupancy by K

 

�

 

 of a
specific selectivity filter site determines which confor-
mation the outer vestibule is in (Immke et al., 1999;
Immke and Korn, 2000). These different conforma-
tions are associated with differences in channel phar-
macology, current magnitude and inactivation rate
(Immke et al., 1999; Immke and Korn, 2000; Wood and
Korn, 2000). In this manuscript, we demonstrate that
occupancy of this same selectivity filter site by permeat-
ing ions influences the rate of on-gating charge move-
ment, and consequently, the rate of ionic current acti-
vation. Moreover, we show that this effect of ions within
the conduction pathway influences the rate of gating
charge movement as a result of the previously de-
scribed K

 

�

 

-dependent change in outer vestibule con-
formation. These results indicate that changes in outer
vestibule conformation, controlled by ion occupancy of
a site within the pore, can influence the movement of
the voltage sensor during the activation process.

 

M A T E R I A L S  A N D  M E T H O D S

 

Molecular Biology and Channel Expression

 

Experiments were done on the wild-type and several mutant
Kv2.1 channels. Mutations were made with the Quickchange site-
directed mutagenesis kit (Stratagene), as described previously
(Immke et al., 1999). Mutations were confirmed by sequence
analysis. K

 

�

 

 channel cDNA was subcloned into the pcDNA3.1 ex-

pression vector and channels expressed in the human embryonic
kidney cell line, HEK 293 (American Type Culture Collection).
Cells were maintained in DMEM plus 10% fetal bovine serum
(Hyclone Laboratories, Inc.) with 1% penicillin/streptomycin.
Cells (2 

 

�

 

 10

 

6

 

 cells/ml) were cotransfected by electroporation
(Bio-Rad Gene Pulser II @ 220 V, 350 

 

�

 

F) with K

 

�

 

 channel ex-
pression plasmid (0.5–10 

 

�

 

g/0.2 ml) and CD8 expression plas-
mid (1 

 

�

 

g/0.2 ml). After electroporation, cells were plated on
glass coverslips submerged in maintenance media. Electrophysio-
logical recordings were made 18–28 h later. On the day of re-
cording, cells were washed with fresh media and incubated with
Dynabeads M450 conjugated with antibody to CD8 (0.5 

 

�

 

l/ml;
Dynal). Cells that expressed CD8 became coated with beads,
which allowed visualization of transfected cells (Jurman et al.,
1994).

 

Electrophysiology

 

Currents were recorded at room temperature in the whole cell
patch clamp configuration. Patch pipets were fabricated from
N51A glass (Garner Glass Co.), coated with Sylgard, and firepol-
ished. Currents were collected with an Axopatch 1D amplifier,
pClamp 9 software, and a Digidata 1322A A/D board (Axon In-
struments, Inc.). Currents were filtered at 2 KHz and sampled at
40–200 

 

�

 

s

 

/

 

pt. Series resistance ranged from 0.5 to 2.5 M

 

�

 

 and
was compensated 80–90%. The holding potential was 

 

�

 

80 mV,
and depolarizing stimuli were presented once every 6–10 s, de-
pending on the experiment. Gating currents were collected us-
ing a P/4 protocol (voltage was stepped from 

 

�

 

80 to 

 

�

 

100 mV at
5.5 Hz). All displayed gating currents are averages of 5–12 cur-
rents evoked consecutively. In most experiments, gating currents
were recorded at 0 mV with symmetrical internal and external
permeant ion concentrations. This protocol was used for three
reasons. First, 0 mV was approximately centered on the rising
phase of the Q-V curve. Second, recording gating currents at the
reversal potential (0 mV) eliminated contamination from ionic
currents when permeant ions were used. Third, recording at a re-
versal potential of 0 mV avoided complications of voltage-depen-
dent influences on permeant ion access to sites within the pore
from both internal and external solutions.

Data were analyzed with Clampfit 9 (Axon Instruments, Inc.);
curve fitting and significance testing (unpaired Student’s 

 

t

 

 test)
were done with SigmaPlot 8.0 (SPSS, Inc.). Gating currents were
integrated with both SigmaPlot and Origin 6.0 (Microcal Soft-
ware, Inc.), which gave identical results. All plotted data are rep-
resented as mean 

 

�

 

 SEM, with the number of data points de-
noted by 

 

n

 

. EC

 

50

 

 values for concentration-response curves were
determined from the best fit of the mean data. Consequently, 

 

n

 

values are expressed as a range, which reflects a different num-
ber of cells examined for different data points on the curve. Dif-
ferences between means were considered statistically significant
if p values in unpaired Student’s 

 

t

 

 tests were 

 

�

 

0.05.

 

Curve Fitting

 

Gating currents were fit to a single exponential function. In all
cases, cursors were set at the peak of the gating current and at
the end of the depolarization that activated the gating current.
As will become clear later in the manuscript, the mechanistic ex-
planation for our data suggests that currents should decay with
two exponentials (having time constants of 

 

�

 

2.5 and 

 

�

 

5 ms),
with weightings that depend on the percentage of channels in
each of two proposed conformational states of the channel. How-
ever, a two exponential function with these time constants can-
not be distinguished from a single exponential function of inter-
mediate time constant. Consequently, we chose to use single ex-
ponential functions to quantify gating current decay. These
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produced good fits (see Fig. 2 A) and were suitable for the pur-
poses of our analysis and interpretations.

Concentration-response curves were fit with the equation:

 

(1)

 

where max is the maximum value on the ordinate, min is the
minimum value on the ordinate, x is the drug concentration,
and n is a power value that corresponds to a Hill-type coefficient.
During curve fitting, max, min, EC

 

50

 

, and n were free parame-
ters. Q-V curves were fit to the Boltzmann equation, y 

 

	

 

 1/(1 

 

�

 

exp((V

 

1/2

 

 – V)/r)), where Vh is the voltage of half maximal acti-
vation, V is the membrane voltage, and r is a slope value.

 

Electrophysiological Solutions

 

Currents were recorded in a constantly flowing, gravity-fed bath.
Solutions were placed in one of six reservoirs, each of which fed
via PE tubing into a Delrin perfusion manifold. Solution exited
the manifold via PE tubing (

 

�

 

580-

 

�

 

m diameter). Flow rates were
carefully matched among barrels. Cells were lifted off of the dish
before recording and placed 

 

�

 

20 

 

�

 

m from the tip of the perfu-
sion tube. One solution was always flowing, and solutions were
switched manually (solution exchange was complete within 5–10 s).
Control internal solutions contained (in mM): 130 XCl (X 

 

	

 

 a
combination of K

 

�

 

, Na

 

�

 

 and/or NMG

 

�

 

), 10 HEPES, 10 EGTA, 1
CaCl

 

2

 

, 4 MgCl

 

2

 

; pH 7.3, osmolality 285. Control external solu-
tions contained (in mM): 160 XCl, 10 HEPES, 10 glucose, 2
CaCl

 

2

 

, and 1 MgCl

 

2

 

; pH 7.3, osmolality 325. The [K

 

�

 

] and [Na

 

�

 

]
used in each experiment are described in the text (NMG

 

�

 

 pro-
vided the balance of the [monovalent cation] present).

 

MTSET Experiments

 

In some experiments (Figs. 8–10), channels containing a cysteine
at position 356 or 379 were modified by [2-(trimethylammo-
nium)ethyl] methanethiosulfonate (MTSET; Toronto Research
Chemicals). MTSET solutions were made by adding dry powder to
the external recording solution to a final MTSET concentration of
2 mM (Fig. 8) or by serial dilution to 100 

 

�

 

M from a 5-mM stock so-
lution in ice cold water (Figs. 9 and 10). MTSET was applied in one
of two ways. Either MTSET was perfused onto the cell at the time of
recording or cells were preincubated with MTSET immediately be-
fore recording. Both approaches produced identical results.

 

R E S U L T S

 

We previously demonstrated that currents through the
Kv2.1 potassium channel are potentiated upon elevation
of external [K

 

�

 

] (Wood and Korn, 2000). This effect is il-
lustrated in Fig. 1 A. In addition to causing an increase
in current magnitude, elevation of [K

 

�

 

] increased the
rate of ionic current activation. This is most clearly ob-
served by the normalized set of currents in Fig. 1 B. With
100 mM internal K

 

�

 

, elevation of external [K

 

�

 

] from 0
to 10 mM nearly doubled the rate of activation for cur-
rents activated by depolarization to 0 mV (Fig. 1 C).

The K

 

�

 

-dependent potentiation of current magni-
tude is associated with a change in outer vestibule con-
formation (Wood and Korn, 2000). Similarly, the differ-
ent activation rates could also be associated with the
two different K

 

�

 

-dependent outer vestibule conforma-
tions. Alternatively, the different activation rates may be

y min max min–( ) 1 10 EC50 x–log( )n+⁄[ ],+=

 

completely independent of the change in outer vesti-
bule conformation, but affected by an action of K

 

�

 

somewhere else within the pore. For each of these pos-
sibilities, the change in activation rate could occur via
either of two mechanisms. First, the increased activa-
tion rate could be associated with an increased rate of
voltage sensor movement. Alternatively, the increased
activation rate might be due to a change in pore gating,
independent of voltage sensor movement.

In the experiments below, we examined the involve-
ment of the voltage sensor in this speeding of activa-
tion, and tested whether the K

 

�

 

 sensitivity of activation
rate resulted from the modulation of outer vestibule
conformation by K

 

�

 

 occupancy of the selectivity filter.

Figure 1. K�-dependent increase in current magnitude and acti-
vation rate. (A) Two superimposed traces recorded consecutively
from a single cell illustrate currents activated in the presence of 0
mM external K� (dashed line) and 10 mM external K� (solid
line). (B) Traces in A were normalized to the peak current magni-
tude to illustrate the speeding of activation in higher [K�]. (C)
Plot of activation time constants, measured from single exponen-
tial fits of the rising phase of the current. Each bar represents the
mean � SEM from eight cells (0 and 10 K� values were obtained
in pairs from the same cells).
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Influence of Permeant Ions on Gating Currents

 

Fig. 2 A illustrates two superimposed gating currents,
recorded at 0 mV, from two different cells (single expo-
nential fits are superimposed on each gating current).
One gating current was recorded in the complete ab-
sence of internal or external permeant ions (0 K). The
other trace was recorded with 3 mM internal and exter-
nal K

 

�

 

 (3 K). Clearly, the rate of decay of the gating
current was faster when recorded in 3 mM K

 

�

 

. Gating
currents were reasonably well fit by single exponential
functions, with decay time constants of 4.83 

 

�

 

 0.19 ms
(

 

n

 

 

 

	

 

 11; 0 K) and 2.77 

 

�

 

 0.18 ms (

 

n

 

 

 

	

 

 6; 3 K).
Fig. 2 B illustrates the cumulative charge movement,

derived from the same data as in Fig. 2 A. This transfor-
mation also utilizes the rising phase of the gating cur-
rent, and therefore includes information neglected
when fitting only the decay of the raw gating currents.
The time constants obtained from exponential fits to
these two curves (4.85 ms [0 K], 2.37 ms [3 K]) were es-
sentially identical to those obtained from the decay
phase of the two currents illustrated in Fig. 2 A (4.86
ms [0 K], 2.36 ms [3 K]). Consequently, for the remain-

der of the paper, we calculated time constants from fits
of gating current decay.

Fig. 3 A illustrates gating currents recorded in the ab-
sence of permeant ions and in the presence of symmet-
rical concentrations of internal and external K

 

�

 

, Rb

 

�

 

,
or Cs

 

�

 

. The rate of gating charge movement (Q

 

on

 

) was
increased similarly by 3 mM K

 

�

 

 and 3 mM Rb

 

�

 

. In con-
trast, 3 mM Cs

 

�

 

 was without effect. However, elevation
of [Cs

 

�

 

] to 100 mM increased the rate of Q

 

on

 

 to that
produced by 3 mM K

 

�

 

 and 3 mM Rb

 

�

 

. Fig. 3 B illus-
trates complete concentration-response curves for the
influence of the three permeant ions on Q

 

on

 

. The con-
centration-dependent influences of K

 

�

 

 and Rb

 

�

 

 were
nearly identical, with calculated EC

 

50

 

s of 0.86 

 

�

 

 0.01
(

 

n

 

 

 

	

 

 5–11) and 1.13 

 

�

 

 0.06 (n 	 3–6) (Fig. 3 B). While
just as efficacious, Cs� was much less potent, with a cal-
culated EC50 of 41.5 � 0.05 (n 	 3–6).

As described previously (Immke and Korn, 2000;
Wood and Korn, 2000), the influence of K� on ionic
current magnitude involved the occupancy of a specific
selectivity filter site. The difference in permeant ion po-
tency observed in Fig. 3 presented an opportunity to

Figure 2. Speeding of gating charge
movement by K�. (A) Gating currents
recorded from two different cells, one
recorded in the absence of K� (or any
other permeant ion; 0 K) and one re-
corded with 3 mM internal and exter-
nal K� (3 K). Superimposed on each
current trace is the single exponential
fit used to obtain the time constant of
decay. (B) The area under the cur-
rents in A was measured to obtain a
plot of the cumulative rate of charge
movement. These were then normal-
ized to the maximum charge move-
ment to give a plot of the fractional Qon. Time constants, calculated from single exponential fits, were nearly identical for the decay
phase of the currents in A and the Qon curves in B (4.86 and 4.85 ms [0 K], 2.36 and 2.37 ms [3 K]).

Figure 3. Concentration-
dependent speeding of gat-
ing charge movement by dif-
ferent permeant ions. (A)
Pairs of traces illustrate gating
currents recorded at 0 mV in
the absence of permeant ions
and the presence of symmet-
rical 3 mM K�, 3 mM Rb�, 3
mM Cs�, and 100 mM Cs�.
Raw gating current magni-
tudes ranged from 40 pA
(3 Cs) to 270 pA (100 Cs).
(B) Concentration-response
curves for speeding of Qon by
the 3 different permeant ions. Data were fit by Eq. 1 (materials and methods). Calculated EC50 values for K�, Rb�, and Cs� were: 0.86 �
0.01 mM (n 	 5–11), 1.13 � 0.06 mM (n 	 3–6) and 41.5 � 0.05 (n 	 3–6). The calculated minimum time constant (saturation of the
concentration-response curve) for Cs� data was 2.12 ms. Calculated slope values were 1.72, 1.74, and 1.51. Vertical dashed lines are drawn
at the calculated EC50 values for K� and Cs�.
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evaluate the involvement of specific selectivity filter
sites on gating charge movement.

Involvement of the Selectivity Filter Site that Controlled Outer 
Vestibule Conformation

First, we asked whether Cs� could occupy the selectivity
filter at concentrations similar to those required for oc-
cupancy by K� and Rb�. To test this, we examined the
ability of the three permeant ions to block Na� cur-
rents through the channel. Fig. 4 A illustrates inward
Na� currents in the absence (Na) and presence of 1
mM K� (panel 1), Rb� (panel 2), or Cs� (panel 3). Fig.
4 B illustrates the concentration-dependent block of
Na� current by each of the three ions. All three ions
blocked Na� currents with identical concentration de-
pendence, which indicates that all three ions were able
to singly occupy the selectivity filter at identical low
concentrations.

We then asked whether Cs� occupied the specific se-
lectivity filter site that controlled outer vestibule con-
formation at the same concentrations as K� and Rb�.
Occupancy of this specific site not only influences ionic
current magnitude, but also affects TEA efficacy
(Immke et al., 1999; Immke and Korn, 2000). In K�-
conducting channels, TEA can block the channel only
if this specific selectivity filter site is occupied by K�.
TEA cannot block the channel if this site is unoccupied
or if Na� is the only permeant ion used. Fig. 4 C illus-
trates three pairs of currents. The control traces illus-
trate inward currents recorded in the presence of 130
mM Na� plus 1 mM K� (panel 1), Na� plus 1 mM Rb�

(panel 2) or Na� plus 1 mM Cs� (panel 3). The second
trace illustrates block of the current by 30 mM TEA.
TEA blocked currents in the presence of K� and Rb�

almost identically. However, TEA did not block cur-
rents in the presence of 1 mM Cs�. Concentration-
response curves for permeant ion concentrations up to
10 mM are illustrated in Fig. 4 D. K� and Rb� allowed
TEA to block with identical concentration depen-
dence, which indicates that occupancy of the specific
selectivity filter site that controls outer vestibule confor-
mation was identical for K� and Rb�. In contrast, at
[Cs�] up to 10 mM, there was little TEA block, which
suggested that even though Cs� could occupy the selec-
tivity filter at these concentrations, it did not occupy
the specific site that controlled outer vestibule confor-
mation. This conclusion was confirmed by the some-
what different experiment in Fig. 5.

For Fig. 5, TEA block was examined in the pres-
ence of symmetrical ion concentrations (no Na� was
present), so that results could be compared with the gat-
ing current data in Fig. 3. For K� and Rb�, we examined
block by 3 mM TEA for a complete range of permeant
ion concentrations. Maximum block by TEA was identi-
cal for the two ions (see Fig. 5 legend). Moreover, the

EC50s at which K� and Rb� allowed TEA to block were
essentially identical for the two ions (Fig. 5). These re-
sults indicate that, with symmetrical ion concentrations,
K� and Rb� occupied the selectivity filter site that con-
trolled outer vestibule conformation identically.

In contrast, a much higher [Cs�] was required for
TEA to block the channel (Fig. 5; to increase resolution
in the presence of Cs�, 100 mM TEA was used—see leg-
end). The EC50 for Cs� was 44.8 � 0.9 mM (n 	 3–6),
which is virtually identical to the EC50 at which Cs� in-
creased the rate of Qon (see Fig. 3). Indeed, compari-
son of the data in Fig. 3 B and 5 illustrates that the
EC50s for the speeding of Qon and the promotion of

Figure 4. Interaction of permeant ions with the selectivity filter.
(A) Pairs of consecutively recorded traces illustrate inward cur-
rents carried by 130 mM external Na� (Na) or 130 mM Na� plus 1
mM K�, Rb�, or Cs�. Inward Na� current magnitude was 2,400,
2,500, and 1,800 pA in the three pairs of records shown. (B) Con-
centration-dependent block of inward current by K�, Rb�, or Cs�,
applied externally. Data points represent the mean � SEM of 3–5
cells. (C) Pairs of consecutively recorded traces. The control in-
ward current was recorded in the presence of 130 mM Na� plus 1
mM K�, Rb�, or Cs�. The second trace illustrates currents evoked
following equimolar replacement of 30 mM external NMG� with
TEA. Inward current magnitude in the absence of TEA was 420,
900, and 3,200 pA in the three pairs of records shown. (D) Block
of inward current by 30 mM TEA in the presence of the indicated
concentration of external K�, Rb�, or Cs�. Data points represent
the mean � SEM of 3–6 cells.
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TEA block were virtually identical for each of the three
permeant cations. These results strongly support the
conclusion that occupancy of the specific selectivity fil-
ter site that controls outer vestibule conformation also
modulated the rate of gating charge movement.

Involvement of the Outer Vestibule Conformational Change in 
Speeding of Qon

The K�-dependent increases in TEA efficacy, ionic cur-
rent magnitude, and ionic current activation rate are
abolished specifically by mutation of the outer vestibule
lysine at position 356 to a glycine (Immke and Korn,
2000; Wood and Korn, 2000). In contrast, mutation of
the other exposed outer vestibule lysine, at position
382, to a valine had no effect on the K� dependence of
these functional parameters. Mutation of K356 does
not abolish the K�-dependent conformational change
itself (Immke et al., 1999). Rather, the effects of differ-
ent outer vestibule conformations on TEA efficacy and
ionic current properties appear to depend specifically
on the reorientation of the K356 sidechain within the
outer vestibule. Thus, we tested whether the [K�]-
dependent increase in rate of gating charge movement
was similarly associated with reorientation of K356 by
determining the [K�] dependence in mutant channels
that lacked one or more outer vestibule lysines.

First, we examined whether outer vestibule mutations
influenced gating charge movement in the absence of
permeant ions. Fig. 6 illustrates gating currents re-
corded at �50 mV (Fig. 6 A) and �10 mV (Fig. 6 B)
from two channels, wild-type Kv2.1 and the well-charac-
terized mutant channel, Kv2.1 K356G K382V. Fig. 6 C
illustrates the complete Q-V curve for each of these two
channels. These results demonstrate that, in the ab-
sence of K�, the kinetics of the gating current and the
voltage dependence of gating charge movement were
unaffected by these two mutations.

We next examined whether mutation of one or more
outer vestibule lysines eliminated the [K�]-dependent
change in rate of gating charge movement. Fig. 7, A
and B, illustrate that 3 mM K� had essentially no effect
on the rate of gating charge movement in Kv2.1 K356G
K382V. Fig. 7, C and D, illustrate the effect of single
lysine mutations. The K�-dependent effect remained in
Kv2.1 K382V (which contained the lysine at position
356; Fig. 7 C) and was completely abolished by the
K356G mutation alone (Fig. 7 D). As shown below (Fig.
9), changing the charge on the residue at position 379
in the outer vestibule also had no impact on gating cur-
rent characteristics in either the presence or absence of
K�. Thus, it was not merely the presence of exposed
positive charges in the outer vestibule that influenced
gating currents. Rather, these data strongly suggest that
the [K�]-dependent change in rate of gating charge
movement depended specifically on the K�-dependent
reorientation of the lysine at position 356.

Finally, we examined the necessity of the lysine-like
properties of the amino acid side chain at position 356.
Just as with the K356G mutation, mutation of K356 to a
cysteine abolished the K�-dependent speeding of Qon

(Fig. 8 A, top, and B). However, modification of the po-
sition 356 cysteine with MTSET, which produces a
sidechain quite similar to that of a lysine, restored the
K�-dependent speeding of Qon (Figs. 8 A, bottom,
B). Modification of C356 with MTSET produced no
change in Qon in 0 mM K� (Fig. 8 B). These results
demonstrate that the outer vestibule mutations did not
fundamentally alter the conformation or K�-depen-
dent reorientation of the outer vestibule. Rather, muta-
tion-based abolition of the K�-dependence of gating
current rate resulted simply from the change in amino
acid sidechain at position 356.

Together, the results in Figs. 2–8 demonstrate that
changes in [K�] influence the rate of gating charge
movement via the same mechanism that is involved in
modulation of TEA efficacy and potentiation of ionic
current magnitude. Thus, the increase in rate of gating
charge movement is associated with the occupancy of
the specific selectivity filter site that appears to regulate a
switch in outer vestibule conformation. Moreover, the in-
fluence of K� on gating currents depends on the pres-

Figure 5. Permeant ion dependence of TEA sensitivity. Ion con-
centrations on the abscissa represent the concentration of both in-
ternal and external permeant ion. Currents were evoked by depo-
larization to �40 mV, and then TEA was applied to block the cur-
rent. Changes in block represent changes in TEA efficacy, not
potency (see Immke and Korn, 2000). 3 mM TEA was used to
block K� and Rb� currents; 100 mM TEA was used to block Cs�

currents. Data points represent the mean � SEM of 3–6 cells, from
which a single best fit was calculated using Eq. 1. The calculated
maximum block by 3 mM TEA was 32.8 � 0.3% for K� currents
and 33.3 � 1.4% for Rb� currents. The calculated maximum block
by 100 mM TEA in the presence of Cs� was 90.7 � 1.0%. Calcu-
lated EC50 values for K�, Rb�, and Cs� were: 1.6 � 0.1 mM, 1.9 �
0.3 mM, and 44.8 � 0.9 mM. Vertical dashed lines are drawn at the
calculated EC50 values for K� and Cs� concentration-response
curves.
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ence of the lysine at position 356, and is associated with
the change in outer vestibule conformation that appar-
ently reorients K356.

K� Does Not Shift the Voltage Dependence of Qon

A simple explanation for the K�-dependent speeding
of gating charge movement at a single membrane po-
tential would be a shift to the left in the voltage depen-

dence of Qon. To test for this, we needed to examine
Qon at a series of voltages in the presence of K�. In wild-
type channels, this procedure would also produce con-
taminating ionic currents. Poorly conducting Kv2.1
channels have been described (Malin and Nerbonne,
2002; Lee et al., 2003). However, a small K� conduc-
tance remains in these channels, and the reason that
these mutant channels conduct poorly is not well un-

Figure 6. Comparison of Q-V curves
for wild-type Kv2.1 and the mutant, Kv2.1
K356G K382V. (A and B) Superimposed
(normalized) gating currents from two
different cells, one that contained Kv2.1
channels and one that contained Kv2.1
K356G K382V. Panel A illustrates cur-
rents evoked by depolarization to �50
mV, and panel B illustrates currents
evoked by depolarization to �10 mV. (C)
Complete Q-V curves for the two chan-
nels, recorded in the absence of per-
meant ions. Normalized charge, plotted
on the ordinate, was calculated from the
integrated gating currents and fit by the
Boltzmann equation described in mate-
rials and methods. Data points repre-
sent the mean � SEM of 3–4 cells at each
potential. The calculated V1/2 values for
Kv2.1 and the mutant channel were
15.1 � 1.5 mV and 12.8 � 0.8 mV. Slope
values were 8.4 and 8.5, respectively.

Figure 7. K�-dependent speeding of
gating charge movement is abolished
by the K356G mutation. (A) Two su-
perimposed (normalized) currents re-
corded from two different cells that
contained the mutant channel Kv2.1
K356G K382V. One current was re-
corded in the absence of permeant
ions, one in the presence of symmetri-
cal 3 mM K�. Time constants for the
current decay in each of these two con-
ditions were: 4.80 � 0.12 ms (n 	 5;
0 K) and 4.39 � 0.11 ms (n 	 4; 3 K).
(B) Plot of gating current decay time
constant in the presence of different
symmetrical [K�] in wild type Kv2.1 and
Kv2.1 K356G K382V. (C) Normalized
currents from two cells that contained
the mutant channel Kv2.1 K382V. Time
constants for the current decay in each
of these two conditions were: 4.59 �
0.06 ms (n 	 4; 0 K) and 2.75 � 0.08 ms
(n 	 4; 3 K). (D) Normalized currents
from two cells that contained the mu-
tant channel Kv2.1 K356G. Time con-
stants for the current decay in each of
these two conditions were: 4.45 � 0.18
ms (n 	 4; 0 K) and 4.01 � 0.11 ms
(n 	 6; 3 K).
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derstood. Moreover, it is not known whether the muta-
tions that reduce ionic conductance in these channels
would influence the physiology that we are studying.
Consequently, we chose a different approach to gener-
ating Q-V curves in the presence of K�.

Ionic currents through the Kv2.1 I379C channel can
be completely blocked by cysteine-modifying reagents
(Kurz et al., 1995). Thus, we chose to examine the Q-V
curve in this mutant after complete blockade of ionic
current by MTSET. The data in Fig. 9, A and B, demon-
strate the feasibility of this approach. Fig. 9 A illustrates
four superimposed gating currents from Kv2.1 I379C.
One pair of traces illustrates currents recorded in 0 and 3
mM K�. The rate of gating current decay in this channel
in 0 mM K� was essentially identical to that in wild-type
Kv2.1 (Fig. 9 B). Also similar to the wild-type channel,
symmetrical 3 mM K� increased the rate of gating charge
movement, such that the time constant of gating current
decay was similar to that of wild-type Kv2.1 (Fig. 9 B). Ele-
vation of symmetrical [K�] up to 10 mM produced no
additional effect (Fig. 9 B). Modification of the cysteine
at position 379 by MTSET had no effect on gating cur-
rent decay rate with either 0 or 3 mM K� (Fig. 9, A and
B). Thus, this MTSET-modified channel behaved, almost
quantitatively, like wild-type Kv2.1 with respect to the K�-
dependent change in gating current decay.

The inset in Fig. 9 C illustrates the block of ionic cur-
rent by MTSET when currents were recorded at �40
mV in the presence of symmetrical 3 mM K�. Fig. 9 C il-
lustrates a family of gating currents evoked from MT-
SET-modified Kv2.1 I379C, generated by depolariza-
tions between �80 and �60 mV, recorded in the
presence of symmetrical 3 mM [K�]. As is especially ap-
parent from the trace recorded at �60 mV (the largest,
fastest current), there was little or no contaminating
ionic current in these recordings. Fig. 9 D illustrates
full Q-V curves derived from channels, recorded in 0
K� (filled squares) and 3 mM symmetrical K� after
treatment with MTSET (open triangles). The V1/2 val-
ues were identical, which demonstrates that the speed-

ing of gating charge movement, evident in Fig. 9 A, did
not result from a leftward shift in the Q-V curve.

Effect of [K�] on Voltage Dependence of 
Gating Current Kinetics

Elevation of [K�] increased the rates of both gating and
ionic current activation, yet had no effect on either the
Q-V curve (Fig. 9) or G-V curve (Wood and Korn, 2000).
Starace et al. (1997) demonstrated that the S4 domain
can shuttle protons across the membrane, and that the
rate of proton transport varied with the Q-V relation-
ship. This observation demonstrated that, at a single
voltage within the activation range, the net gating cur-
rent is composed of both a forward and backward trans-
membrane movement of the S4 domain; the decay of
the gating current to 0 represents the achievement of
the new steady-state condition. The rate of proton trans-
port, which represented S4 cycling, was greatest near
the midpoint of the Q-V curve and decreased to near 0
at the peak of the Q-V curve (Starace et al., 1997). The
results described above, wherein the rate of gating
charge movement was increased without a concomitant
change in the Q-V relationship, would result if elevation
of [K�] were to increase the cycling rate. In this case,
the absolute forward and back reaction rates for move-
ment of the S4 domain across the membrane would be
increased, but the ratio of the rates would remain the
same. This mechanism would also predict that the influ-
ence of [K�] on gating current kinetics would vary with
the Q-V. The largest effects would occur near the mid-
point of the Q-V (�16 mV), where cycling is greatest,
and the effect of [K�] would diminish near the peak of
the Q-V (�30 mV), where the reaction rates approach
limits. The experiment in Fig. 10 tested this hypothesis.

Gating currents in Kv2.1 I379C were examined at dif-
ferent membrane potentials under two conditions, 0
mM K� (Fig. 10, filled circles) and 3 mM symmetri-
cal K� after treatment with MTSET (Fig. 10, open
squares). As observed in other K� channels (Tag-
lialatela and Stefani, 1993; Islas and Sigworth, 1999;

Figure 8. Restoration of the K�-dependent ef-
fect on gating current by chemical modification of
a cysteine at position 356. (A, top) Normalized gat-
ing currents from two cells, one recorded in the
absence of permeant ions and one recorded in
the presence of symmetrical 3 mM K�, that con-
tained the mutant channel, Kv2.1 K356C. (A, bot-
tom panel) Similar to A, except that cells were pre-
incubated with 2 mM MTSET for 5 min (B) Plot of
decay time constants for currents recorded under
the four conditions in A. Bars represent mean �
SEM for the number of cells shown in parenthe-
ses. The horizontal dashed lines are drawn at the
time constant values obtained at 0 and 3 mM sym-
metrical K� with wild-type Kv2.1 channels.
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Ledwell and Aldrich, 1999), gating current kinetics
slowed between �40 and �10 mV and then increased
in rate with additional depolarization (Fig. 10 A). The
largest effect of K� on gating current kinetics occurred
near �10 mV, the approximate midpoint of the Q-V.
The effect progressively decreased until, near �30 mV,
elevation of [K�] had no influence on the gating cur-
rent. Fig. 10 B illustrates the same data, plotted semi-
logarithically. With both 0 and 3 mM K�, the time con-
stant of gating current decay was well fit by a linear
function between �10 and �50 mV. At �60 mV, the ki-
netics of the gating current appeared to approach satu-
ration, which suggests that regardless of voltage or
[K�], the forward rate of voltage sensor movement was
approaching a limit.

The biphasic data in Fig. 10 A, together with the
demonstrated cycling of the S4 domain (Starace et al.,
1997), is consistent with a simple two state model of
gating current kinetics, consisting of a forward and
backward first order reaction (although a more compli-
cated model is undoubtedly necessary for a precise de-
scription of gating current kinetics [c.f. Schoppa and
Sigworth, 1998], this simplified model is appropriate
given our data and purpose of this analysis). From the

Q-V curve (Fig. 9), and the time constant values at dif-
ferent voltages (Fig. 10 A), we calculated the forward
and backward rate constants (
 and �) for this model,
from: Qnorm 	 
/(
 � �) and Tau 	 1/(
 � �). The
log values of 
 and � are plotted as a function of volt-
age in Fig. 10, C and D. As expected for this two state
model, the value of 
 increased, and the value of � de-
creased, as a function of increasing depolarization. Ele-
vation of [K�] increased the values of both 
 and �.
The largest effect of K� on both 
 and � occurred at
more negative potentials (near the midpoint of the
Q-V). At the most positive potentials, K� had little (Fig.
10 D) or no (Fig. 10 C) effect on the rate constants. Al-
though the absolute values of both 
 and � were in-
creased by K�, there was virtually no effect on the ratio
of 
 to � (Fig. 10 E). All of these data are consistent
with a mechanism whereby elevation of [K�] decreased
an energy barrier for voltage sensor movement, and
thus increased the rate of voltage sensor cycling.

Association of Ionic and Gating Current Activation Rates

Fig. 11 A illustrates ionic currents activated by depolar-
ization to �40 mV in the presence of symmetrical 0.3
mM and 10 mM [K�]. The complete [K�] dependence

Figure 9. K� does not speed gating
charge movement by shifting voltage-
dependence: use of Kv2.1 I379C.
(A) Four superimposed (normalized)
traces are shown from four different
cells containing the mutant channel
Kv2.1 I379C. Two traces were recorded
in the absence of K� (0 K) and two in
the presence of symmetrical 3 mM K�

(3 K). One cell in each of these condi-
tions was recorded after application of
100 �M MTSET to cells for 2 min. In
these experiments, MTSET was applied
during recording, as in panel C inset.
(B) Decay time constants under each of
the four conditions in A, in addition to
that calculated from currents recorded
in the presence of symmetrical 10 mM
K�. Note that at 3 mM K�, the speeding
of gating charge movement had satu-
rated. Bars represent mean � SEM of
number of cells shown in parentheses.
Horizontal lines illustrate decay time
constants obtained from Kv2.1 at 0 and
3 mM K�. (C) Family of gating currents
from a single cell, obtained by depolar-
ization to potentials between �80 and
�60 mV after preincubation with 100
�M MTSET for 2 min. (Inset) Illustra-
tion of block of ionic current by appli-
cation of 100 �M MTSET, from a cell
recorded in symmetrical 3 mM K�. (D)
Q-V curve from Kv2.1 I379C under two

conditions: in the absence of K� (no MTSET treatment) and in the presence of symmetrical 3 mM K� after pretreatment with MTSET. Cal-
culated V1/2 values were �16.6 � 2.7 mV (n 	 3) and �16.4 � 1.9 mV (n 	 3). Slope values were 13.4 and 14.9.
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of ionic current activation rate is plotted in Fig. 11 B
(open triangles). Superimposed on this plot is the [K�]
dependence of the gating current time constant (filled
circles). The [K�] dependence of these two effects was
identical, which supports the conclusion that the
change in ionic current activation rate can be ac-
counted for by the change in rate of voltage sensor
movement. Thus, these data strongly support the con-
clusion that K� in the pore, at a specific site in the se-
lectivity filter, alters the rate of movement of the voltage
sensor, and that this change is translated into a change
in the rate of ionic current activation.

D I S C U S S I O N

In the Kv2.1 potassium channel, elevation of external
[K�] between 0 and 10 mM produces a concentration-
dependent increase in outward current magnitude, acti-
vation rate, and inactivation rate (Immke et al., 1999; Wood
and Korn, 2000). The elevation in [K�] also changes
both internal and external TEA sensitivity of the channel
(Immke et al., 1999; Immke and Korn, 2000). The
changes in current magnitude and external TEA sensitiv-
ity were attributed to the reorientation of an outer vesti-

bule lysine within the conduction pathway, which oc-
curred as a consequence of a change in K� occupancy of
a specific selectivity filter site (Immke et al., 1999; Immke
and Korn, 2000; Wood and Korn, 2000). Consequently,
in one conformation, which exists when K� occupies this
selectivity filter site, currents through the channel are
larger and activate and inactivate faster (Immke et al.,
1999; Wood and Korn, 2000). In the other conformation,
which occurs when this selectivity filter site is not occu-
pied by K�, currents are smaller and display slower activa-
tion and inactivation kinetics. Transition between these
two outer vestibule conformations is not dynamic during
the conduction process; once open, channels do not
change conformation (Andalib et al., 2002).

The experiments in this paper indicate that binding
of K� to the selectivity filter site that controls outer ves-
tibule conformation also influences the rate of on-gat-
ing charge movement. Four lines of evidence strongly
support the conclusion that the change in rate of Qon

was directly associated with the K�-dependent change
in outer vestibule conformation. First, the change in
rate of Qon occurred over the same range of [K�] that
produced a switch in outer vestibule conformation, as
measured by changes in channel pharmacology and

Figure 10. [K�]-dependent change in Qon ki-
netics as a function of voltage. Gating currents
were recorded in Kv2.1 I379C under two condi-
tions: 0 internal and external K� (filled circles)
and 3 mM symmetrical K� plus MTSET (open
squares). (A) Decay time constant as a function of
voltage. Each data point represents the mean of
measurements obtained from 3 to 13 cells. (B)
Semilogarithmic plot of the data in A. Linear re-
gression curves were fit for data between �10 and
�50 mV. (C and D) 
 and � as a function of volt-
age, calculated as described in the text. (E) Ratios
of 
 and �, from the data in C and D.
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ionic current properties. Second, experimental manip-
ulations that produced or eliminated the outer vesti-
bule–based effects on channel pharmacology and ionic
currents similarly altered the K�-dependent effects on
Qon. Third, Rb� and Cs� influenced the outer vestibule
conformation over the same concentration range as
they influenced the rate of Qon (compare Figs. 3 B and
5). Most tellingly, however, while Rb� and K� altered
these two functional parameters over the same concen-
tration range, Cs� altered these two functional parame-
ters over a dramatically different range (Figs. 3 B and
5). Fourth, the specificity of this site was further dem-
onstrated by the observation that Cs� bound to the se-
lectivity filter at a much lower concentration than re-
quired to affect either outer vestibule conformation or
Qon (Fig. 4). Thus, it was not merely the occupancy of
any selectivity filter site that influenced gating charge
movement. Together, these data strongly indicate that
the different rates of gating charge movement resulted
from [K�]-dependent differences in outer vestibule
conformation.

Experiments that demonstrated identical [K�] de-
pendence and identical effects of mutations on gating
and ionic currents suggest that this increased rate of
gating charge movement can fully account for the in-
creased rate of ionic current activation.

Ions in the Pore and Gating

In voltage-gated K� channels, permeant ions in the
conduction pathway influence a number of gating pro-
cesses. The presence of ions in the pore can slow deac-
tivation (Swenson and Armstrong, 1981; Cahalan et al.,
1985; Matteson and Swenson, 1986, Sala and Matteson,
1991), speed opening rate (Neyton and Pelleschi, 1991;
Demo and Yellen, 1992), slow inactivation in channels
that undergo classical C-type inactivation (Lopez-Bar-
neo et al., 1993; Baukrowitz and Yellen, 1996; Kiss and
Korn, 1998), and speed recovery from this same inacti-
vation mechanism (Levy and Deutsch, 1996). The slow-
ing of deactivation was most easily interpreted as an in-
ability of the activation gate to close with an ion located

somewhere inside the pore. Similarly, the influence of
K� on opening rate was most easily explained as a de-
stabilization of the closed state when an ion occupied a
site in the pore, possibly at the selectivity filter (Neyton
and Pelleschi, 1991; Demo and Yellen, 1992). The slow-
ing of C-type inactivation by K� is thought to be due to
a “foot-in-the-door” mechanism, by which K� located at
the selectivity filter prevents the local constriction of
the pore that produces inactivation (Baukrowitz and
Yellen, 1996; Liu et al., 1996; Kiss and Korn, 1998; Kiss
et al., 1999). Similarly, the speeding of recovery from
inactivation is most easily explained as a destabilization
of the inactivated (constricted) conformation of the
channel by K� from inside of the pore (Levy and
Deutsch, 1996). Thus, K� at some location within the
constricted pore appears to encourage the deconstric-
tion of the outer mouth of the pore. Consequently, all
of these previously observed effects of permeant ions
on gating are most easily explained as resulting from an
interaction of K� with gates inside of the conduction
pathway.

In contrast to these previously observed effects, our
data indicate that permeant ions inside of the conduc-
tion pathway of Kv2.1 can influence gating by changing
the operation of the voltage sensor, which is outside
of the conduction pathway. Although several regions
within the S1-S4 span of the channel are involved in the
gating process, the charged residues that make up the
gating current are located primarily in the S4 domain
(Aggarwal and MacKinnon, 1996; Seoh et al., 1996).
Moreover, although other channel domains may move
during activation (Milligan and Wray, 2000; Jiang et al.,
2003), the fundamental protein movement that under-
lies gating charge movement appears to be the outward
translocation of the S4 domain (Larsson et al., 1996;
Yang et al., 1996; Starace et al., 1997; Jiang et al., 2003).
Thus, the increased rate of gating charge movement as-
sociated with K� occupancy of the selectivity filter most
likely reflects the increased rate of translocation of the
S4 domain. Starace et al. (1997) demonstrated that,
upon depolarization, the S4 domain cycles between an

Figure 11. [K�]-dependent increase
in rate of ionic current activation. (A)
Superimposed, (normalized) ionic cur-
rents from Kv2.1 recorded at �40 mV
in the presence of symmetrical 0.3 mM
K� and 10 mM K�. Peak current magni-
tudes were 110 pA (0.3K) and 4,400 pA
(10K). Due to the large transient, the
first 5 ms of the 0.3 mM K� current
were blanked. (B) Plots of time con-
stants of ionic current activation and
gating current decay at different sym-
metrical [K�]. Data represent mean �
SEM of 4–6 cells.
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inward and outward position, relative to the plasma
membrane. Thus, the decay of the gating current to 0
reflects the time it takes to achieve a new steady-state
level of cycling. The data in Fig. 10 suggest that K�

speeds the rate of gating charge movement by lowering
an energy barrier for voltage sensor movement and
thus increasing the cycling of the S4 domain across the
membrane.

Potential Location of Interaction between S4 and the Pore

A large portion of the Kv2.1 channel, ranging from the
turret in the outer vestibule to the channel region in-
ternal to the selectivity filter, undergoes a reorientation
as a function of K� occupancy of the selectivity filter
(Immke et al., 1999). As with the other changes in
channel function associated with this K�-dependent re-
orientation, the modulation of voltage sensor move-
ment requires the presence of a positive charge at a
specific turret location (356 in Kv2.1). Because the con-
formational change internal to the selectivity filter still
occurs after neutralization of position 356 (Immke et
al., 1999), it appears unlikely that manipulation of posi-
tion 356 influences voltage sensor movement at this re-
mote location. Rather, it appears that the functional
changes upon manipulation of position 356 are pro-
duced locally (also, see below). Indeed, several studies
have demonstrated an intimate juxtaposition between
the S4 domain and the turret (Loots and Isacoff, 2000;
Elinder et al., 2001a,b; Broomand et al., 2003; Gandhi
et al., 2003; Laine et al., 2003; Neale et al., 2003), which
supports the conclusion that the interaction between
the voltage sensor and the conduction pathway occurs
in the region of the turret. Our hypothesis, therefore, is
that the rate of S4 translocation in Kv2.1 is directly in-
fluenced by the conformation of the outer vestibule,
which takes on one of two orientations depending on
the occupancy of a selectivity filter site by K�.

An alternative possibility, that the effect of K� on gat-
ing charge movement was transmitted allosterically via
the activation gate located in the cytoplasmic end of
the channel, seems unlikely for several reasons. First,
neither K� nor the outer vestibule mutations influ-
enced the voltage dependence of activation of either
gating or ionic current (Figs. 6 and 9; Wood and Korn,
2000). These results suggest that the function of the cy-
toplasmic gate, and the coupling between this gate and
the voltage sensor, were unaffected by these manipula-
tions. Second, it is not clear how a selective mutation of
one amino acid residue (K356) in the turret of the
outer vestibule could abolish the effect of K� on Qon,
nor how chemical modification of K356C in the outer
vestibule by MTSET could reinstate the K�-dependent
speeding of Qon, if the effect of K� were transmitted via
the internal gate with no involvement of the outer vesti-
bule. Third, the influence of K� on voltage sensor

movement depended specifically on the occupancy of a
selectivity filter site that is responsible for the switching
of outer vestibule conformation.

Conclusion

The outer vestibule is clearly involved in channel inacti-
vation, and appears to be involved in the activation pro-
cess as well. Several recent studies have demonstrated
that the S4 domain is quite near the outer vestibule tur-
ret, and that during activation, it moves even closer to
the turret. Our data indicate that the conformation of
the outer vestibule, which is dynamic and modulatable
in at least the Kv2.1 potassium channel, can influence
both the mobility of the S4 domain and the activation
kinetics of ionic current. Moreover, the reorientation
of the outer vestibule that influences S4 movement oc-
curs with physiologically relevant changes in external
[K�] (Immke and Korn, 2000), and may be especially
relevant when internal K� channel blockers are present
(Wood and Korn, 2000).
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