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Microbial communities are pervasive in the natural environment, associated with many

hosts, and of increasing importance in biotechnological applications. The complexity

of these microbial systems makes the underlying mechanisms driving their dynamics

difficult to identify. While experimental meta-OMICS techniques are routinely applied to

record the inventory and activity of microbiomes over time, it remains difficult to obtain

quantitative predictions based on such data. Mechanistic, quantitative mathematical

modeling approaches hold the promise to both provide predictive power and shed light

on cause-effect relationships driving these dynamic systems. We introduce µbialSim

(pronounced “microbial sim”), a dynamic Flux-Balance-Analysis-based (dFBA) numerical

simulator which is able to predict the time course in terms of composition and activity

of microbiomes containing 100s of species in batch or chemostat mode. Activity of

individual species is simulated by using separate FBA models which have access to

a common pool of compounds, allowing for metabolite exchange. A novel augmented

forward Euler method ensures numerical accuracy by temporarily reducing the time

step size when compound concentrations decrease rapidly due to high compound

affinities and/or the presence of many consuming species. We present three exemplary

applications of µbialSim: a batch culture of a hydrogenotrophic archaeon, a syntrophic

methanogenic biculture, and a 773-species human gut microbiome which exhibits

a complex and dynamic pattern of metabolite exchange. Focusing on metabolite

exchange as the main interaction type, µbialSim allows for the mechanistic simulation

of microbiomes at their natural complexity. Simulated trajectories can be used to

contextualize experimental meta-OMICS data and to derive hypotheses on cause-effect

relationships driving community dynamics based on scenario simulations. µbialSim is

implemented in Matlab and relies on the COBRA Toolbox or CellNetAnalyzer for FBA

calculations. The source code is available under the GNU General Public License v3.0

at https://git.ufz.de/UMBSysBio/microbialsim.

Keywords: microbial communities, metabolic modeling, constraint-based modeling, cross-feeding, microbiome

dynamics

INTRODUCTION

Microbial communities are ubiquitous in nature, thriving in diverse habitats ranging from
the deep subsurface (Dutta et al., 2018) over digestive tracts of higher animals (Gould
et al., 2018) to the upper troposphere (Deleon-Rodriguez et al., 2013). They are self-
organizing entities which both modulate the environment they are embedded in, as well
as their own constituents in terms of abundance of individual member populations.
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Typical natural and engineered microbiomes engage in
numerous metabolic and non-metabolic interactions and
contain a large fraction of not-yet cultured species. The
resulting complexity makes microbiomes notoriously difficult to
study. Meta-OMICS techniques help to uncover the metabolic
potential and current activity of microbiomes. However, most
analyses based on such data remain observational in nature
and cannot be used to derive quantitative predictions. The
mathematical modeling of microbiomes holds the promise to
move from observation to a more quantitative understanding
of microbiome dynamics and underlying mechanisms (Song
et al., 2014; Widder et al., 2016; Bosi et al., 2017; Succurro and
Ebenhöh, 2018).

Focusing on metabolic interaction, a number of dynamic
community modeling approaches have been proposed in which
activity of individual species is modeled using constraint-
based techniques based on genome-scale metabolic network
reconstructions (Biggs et al., 2015). Some of these approaches
require the definition of a secondary community objective in
addition to the standard growth maximization objective for
individual species (e.g., d-OptCom; Zomorrodi et al., 2014),
a priority list of objectives (DFBAlab; Gomez et al., 2014),
or a pre-allocation of compounds to competing species (Chiu
et al., 2014). Other models additionally allow for parameter
calibration (MCM; Louca and Doebeli, 2015), or for the inclusion
of space either simulating populations (COMETS; Harcombe
et al., 2014, MetaFlux; Karp et al., 2016) or individual microbial
cells following a rule-based approach (BacArena; Bauer et al.,
2017). With the exception of the last approach, typically
only microbiomes of a few species have been considered in
simulations yet. In order to be able to mirror the diversity of
natural microbiomes, we developed µbialSim. Our simulator
is based on the dynamic Flux-Balance-Analysis approach and
does not require the definition of any additional objectives or
the pre-allocation of compounds. It allows for the simulation
of well-mixed microbiomes of high diversity under batch and
chemostat conditions with high numerical accuracy due to a
novel numerical integration scheme.

We present three exemplary simulation scenarios covering
the complexity range from a mono-culture up to a microbial
community containing 773 species. These simulations are
intended to demonstrate the capabilities and limits of the code
and serve as a starting point for constructing own community
models. Using generic and identical parameter values for
compound uptake across all compounds and microbial species
in the high diversity scenario, the presented simulation results
are to be interpreted as generic and not intended for detailed
biological interpretation.

METHOD

Overview
In order to simulate the fate and metabolic activity of a microbial
community we follow the compartmentalized approach in which
activity and growth of individual species is modeled by separate
genome-scale metabolic network models following the Flux-
Balance-Analysis approach (FBA; Varma and Palsson, 1994).

All species have access to a common set of pool compounds.
This allows for competition between species as they try to
consume the same pool compound and cross-feeding if one
species produces a pool compound another is able to use for
growth. Instead of restricting analysis to steady state dynamics
for which the community composition must be defined as a
model input (e.g., Hamilton et al., 2015; Koch et al., 2016),
we follow the dynamic FBA approach (Mahadevan et al., 2002)
in order to be able to simulate dynamic shifts in microbiomes
as a consequence of the system’s dynamics. In this approach,
the steady-state assumption underlying FBA is assumed to hold
true for the duration of the numerical integration step. FBA-
computed growth and compound exchange rates are then used
to update the state variables of the model which encompass
microbial biomass and pool compound concentrations.µbialSim
is implemented as Matlab code and relies on either the COBRA
Toolbox (Heirendt et al., 2019) or CellNetAnalyzer (von Kamp
et al., 2017) for performing FBA computations. This allows
for the easy incorporation of FBA models prepared with either
software in a community model. Space is neglected in the
model, hence assuming a well-mixed environment similar to a
well-stirred bioreactor. Both batch and chemostat operation can
be simulated. Both compounds and microbial populations can be
defined to be part of the bioreactor inflow.

Mathematical Description
The system state is given by (C, X), with C = (C1, . . . , Cm)
referring to the concentrations (in mM) of m pool compounds
present in the bioreactor and X = (X1,. . . , Xn) referring to the
abundance (in gDW/L) of n microbial populations. For each
of these populations, the exchange reactions in their metabolic
network model which describe the transport of a metabolite
across the cell membrane need to be identified. The selection of
the metabolites which are actually coupled to corresponding pool
compounds is application specific. For example, on the one hand
metabolites assumed never to be growth-limiting can be ignored,
while on the other hand, compounds for which experimental
data is available should be considered. With k the number of
coupled exchange reactions for species j, coupReacj = (r1, . . . ,
rk) records the reaction IDs of the respective exchange reactions,
coupCompj=(idxi, . . . , idxk) the indices of the corresponding
compounds in C, coupSensej=(si, . . . , sk) the directionality of the
exchange reaction with the reaction proceeding in the forward
direction indicatingmetabolite excretion for s= 1 andmetabolite
uptake for s = −1, coupVmaxj the maximal uptake fluxes, and
coupKsj the corresponding Monod constants (see below).

The dynamics of the system is then given by two sets of
ordinary differential equations. Microbial dynamics for species
j is given by

dXj

dt
=

(

X
inflow
j − Xj

) q

V
+ µjXj (1)

with microbial concentration in the inflow X
inflow
i (gDW/L), flow

rate q (L/h), bioreactor volume V (L), and specific growth rate
µj (1/h). The dynamics of pool compound i in the bioreactor is
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given by

dCi

dt
=

(

C
inflow
i − Ci

) q

V
+ (2)

n
∑

j = 1, i ∈ coupCompj

with i the k− th element

coupSense
j

k
× v

j

coupReac
j

k

× Xj

with inflow concentration C
inflow
i (mM) and flux of the exchange

reaction v
j
i (mmol/gDW/h) which is the i-th reaction of the

j-th species.
The specific growth rates µ and exchange fluxes v are derived

by solving the FBA problem for each species individually. For
this purpose, current compound concentrations in the bioreactor
need to be translated to maximal allowable uptake rates. This is
commonly done by assuming Monod-type kinetics. For the i-th
exchange reaction of species jwhich is coupled to pool compound

coupComp
j
i, the current maximal uptake rate is given by:

v
j

maxUptake, i
= coupVmax

j
i

C
coupComp

j
i

coupKs
j
i + C

coupComp
j
i

. (3)

Numerical Integration Scheme
While µbialSim can make use of Matlab solvers for
numerically integrating Equations 1 and 2 (options
solverPars.solverType and solverPars.solver),
the computational cost quickly becomes prohibitive for more
complex microbial communities. Instead, we have implemented
a novel augmented forward Euler method in µbialSim. The
forward Euler method uses the system state at time t, evaluates
Equations 1 and 2 and uses computed rates to derive the system
state at time t + 1t, with 1t being the integration step size:

X (t + 1t) = X (t) + 1t ×
dX (t)

dt
, (4)

C(t + 1t) = C(t)+ 1t ×
dC(t)

dt
.

For syntrophic interactions such as in syntrophic propionate
degradation (see Example 2), a compound produced by one
species (here: hydrogen), needs to be quickly consumed by
the syntrophic partner (here: a methanogenic archaeon) as
propionate degradation is thermodynamically only feasible for
low hydrogen concentrations. This means that typically, the
partner features an effective uptake of the compound with a
small Ks value in Equation 3. As consumption can become
much faster than production, a very negative rate for hydrogen
may result in Equation 2. This can lead to the computation of
negative concentrations during an integration step (Equation 4).
Similarly, this can also be caused by many species competing
for a highly attractive compound. Simply setting negative values
to zero in each integration step induces a numerical error.
Instead, choosing a smaller integration step size can solve this

problem, but might significantly prolong simulation time. Hence,
in µbialSim the integration step size is reduced only temporarily
whenever this situation occurs in order to avoid numerical
error at an affordable increase in computational cost. The time
step size is reduced in such a way that the concentration of
compound o at the next time step is close to its steady-state
concentration under the assumption that the production process
remains constant. We first identify all species which are either
producing or consuming compound o. We then compute the
current total production rate p and the current total uptake rate
u for the compound by summing across the identified species.
Additionally, let f describe the current rate of concentration
change for compound o due to a prescribed flow if a chemostat
is simulated. The steady-state condition is then given by p =

u - f. Treating p as fixed, we find that the right-hand side of
this equation depends on the compound concentration Co when
combining Equations 2 and 3:

u− f = (5)
∑

j is a consuming species

∣

∣Vmaxj
∣

∣

Co

Ksj + Co
× Xj −

(

C
inflow
o − Co

) q

V
.

Under the assumption that compound o is the growth-limiting
factor for the second species (i.e., the maximal uptake rate is
indeed realized) and that growth remains viable for smaller
concentrations, the steady-state concentration C∗

o for compound
o can be found by reducing concentration Co in Equation 5 until
p = u(C∗

o) - f(C
∗
o). The time step size 1t which leads Co(t + 1t)

to be evaluated to C∗
o can then be computed with the help of

Equation (4) to:

1t =
(C∗

o − Co(t))
dCo(t)
dt

.
(6)

If for more than one chemical compound negative
concentrations were calculated using the default time step size,
for each of these compounds the described scheme is applied
and ultimately the smallest time step size used. We note that
reducing the time step size does not require the recomputation
of FBA problems, of only 1t changes in Equation 4. For the
next time step, the default time step size is restored. Compounds
which required the reduction of the time step size are flagged
as strongly consumed compounds, as their consumption rate
surpassed their production rate. In order to avoid oscillatory
behavior for these compounds, µbialSim allows to additionally
restrict the time step size in subsequent iteration steps such that
the concentration change of these compounds does not surpass a
given threshold (parameter solverPars.maxDeviation).
If negative biomass concentrations occur, the time step
size is reduced such that the biomass concentration is at
most reduced by a selectable factor, set to 2 as a default
(parameter solverPars.biomassReductionFactor).
The flowchart in Figure 1 depicts the complete algorithmic
logic of the augmented forward Euler method implemented
in µbialSim.
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FIGURE 1 | The augmented forward Euler scheme implemented in µbialSim. In each numerical integration step, first the FBA solutions are computed for all member

species of the simulated microbiome. The new system state is then computed using obtained rates and the default time step size. If negative concentration values for

biomasses or compounds occur, the time step size is reduced as required.
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Features
FBA computations can have non-unique solutions such that
different flux distributions lead to the same maximal growth
rate. In dFBA simulations, this can cause discontinuities in
metabolic fluxes over time. To avoid this, µbialSim implements
two features which can individually or in tandem be activated.
The first feature is a secondary optimization step which seeks
to realize the optimal growth rate as determined by the
initial FBA computation, but with minimal fluxes, known as
parsimonious FBA (Lewis et al., 2010). This takes into account
that high fluxes come with a cost in terms of larger enzyme
abundancies and hence should be avoided. The second feature
takes a flux distribution and tries to modify it, maintaining
the optimal growth rate, to best resemble the flux distribution
which was active in the last integration step, a methodology
similar to the minimization of metabolic adjustment approach
(MOMA; Segrè et al., 2002), which has been applied in the
context of dFBA before (Succurro et al., 2019). In contrast to
another previous dFBA implementation (Wilken et al., 2018),
we do not limit this step to metabolic fluxes crossing the cell
membrane, but consider all fluxes to avoid the random flipping
of activity on parallel internal pathways between integration
steps. In the default settings, both features are activated,
leading to three constraint-based computation per model and
integration step. First, a regular FBA is performed to identify
the optimal growth rate. Second, the absolute sum over all
fluxes is minimized while maintaining the determined growth
rate. And third, the computed flux distribution is compared
to the last integration step and modified to minimize the
deviation, maintaining the optimal growth rate, ensuring smooth
changes of individual fluxes over time. Simulation results can
be stored at each integration step in individual files or in a
single result file at the end of the simulation. The former
feature (parameter solverPars.recording) is helpful for
complex simulations as simulated data are not lost in case of
unforeseen server downtimes or other computational calamities.
A subsequent simulator run can use the saved data to initialize
the simulator and continue the interrupted simulation run
(parameter solverPars.readInitialStateFrom).

As loading SBML files and preparing the corresponding data
structures can take a while for complex microbiomes, the data
structures of the loaded models can be saved as a single file and
be used in subsequent simulation runs to speed up initialization
(parameter solverPars.saveLoadedModelToFile).

Once the simulation is done, µbialSim computes the overall
activity during the simulation for all exchange fluxes of
all species (including both exchange reactions which were
coupled to pool compounds and those which were not) if
desired (parameter solverPars.doMassBalance). This
indicates the total compound turnover per species in terms
of compound production minus consumption (in mM), and
the resulting increase in biomass concentration (in gDW/L).
Additionally, three figures to visualize the simulation result
are automatically generated. The first figure gives a quick
overview over the temporal evolution of all microbial biomass

concentrations and all pool compound concentrations over

time. In the second figure, all biomass concentrations are
plotted in one panel as an offset to the initial biomass

concentration, to make dynamics easy to inspect for species
having very different initial biomass concentrations, and
individual panels for each pool compound. The third figure
contains two panels for each microbial species and shows
the evolution of coupled exchange reactions, and exchange
reactions which were not coupled. Only non-zero exchange fluxes
are shown.

For speeding up simulation time, µbialSim can make use
of multi-core CPUs (parameters solverPars.parallel,
solverPars.maxWorkers). The specified number of
Matlab worker processes will be requested at program start
and in each numerical iteration step, the FBA problems to be
computed will be distributed over the available worker processes.

Two more auxiliary functions are provided to assist in model
parametrization and evaluation of cross-feeding patterns. If for
a microbial species only an observed maximal specific growth
rate µmax is known, the function estimateVmax can be used
to derive the maximal uptake rate coupVmax which leads to the
given specific growth rate. For inspecting compound exchange in
detail, the function getCmpndExchangeTable can be used
that given a simulated trajectory and a specific time generates
a table with all coupled exchange fluxes for all species at the
specified time. The function filterCmpndExchangeTable
can then be used to remove zero entries in this table, or
focus on only consumption or production fluxes, or only retain
compounds which are at least produced by one species and
consumed by at least some other species.

Finally, the option solverPars.recordLimiting
Fluxes which is activated by default records over time for
each species, which fluxes where at their respective upper
or lower limit. This option can be used to identify growth
limiting compounds.

Setting Up and Running a Microbiome
Simulation
The bioreactor and its operational parameters are defined
in the function reactorDefinition_∗.m. Here,
the reactor volume, flow rate, and the list of pool
compounds is defined. Additionally, initial concentrations
for compounds and biomasses are specified, as well as
their concentration in the inflow in case a chemostat is to
be simulated.

Loading a FBA model of an individual species of the
microbiome to be simulated is recommended to be done in
two steps. First, the model is loaded by using the appropriate
commands of either the COBRA Toolbox or CellNetAnalyzer in
the Matlab function prepareFBAmodel_∗.m. After loading,
if necessary, general constraints on particular reactions can
be set, for example to implement a particular scenario. Next,
the reaction IDs of the biomass reaction and the non-growth
associated maintenance reaction (NGAM) need to be specified.
Reaction IDs refer to their running order in the SBML file (or
corresponding CellNetAnalyzer data structure). Furthermore,
all exchange reactions need to be identified by their IDs and
their directionality, that means whether a positive flux indicates
compound secretion (Sense= 1) or compound uptake (Sense
= −1). Finally, those exchange reactions are identified in the
vector IDs which will be coupled to pool compounds present
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TABLE 1 | Model parameters and initial conditions for mono culture simulation.

Model parameters for M. maripaludis model iMR539 Initial conditions

µ (1/d) vmax
a (mmol/gDW/h) Ks (mM) NGAM (mmol

ATP/gDW/h)

Biomass (gDW/L) H2 (mM) CO2 (mM)

2.1 (Weinrich and

Nelles, 2015)

189.3 4.375 x 10−4 (Weinrich

and Nelles, 2015)

5.1176 (Richards et al.,

2016)

1.0 x 10−4 0.01 1.0

aWas chosen such that the maximal FBA-predicted growth rate matched the specific growth rate µ reported in first table column.

FIGURE 2 | Simulating a hydrogenotrophic batch culture. A M. maripaludis population converts H2 and CO2 to CH4 until H2 becomes depleted. Both Matlab’s

ode15s ODE solver (lines) and µbialSim’s novel augmented forward Euler method (symbols, every 15th data point is plotted) lead to identical results.

in the bioreactor. The mapping of coupled reactions to reactor
compounds is done in the vector reactorCompoundIDs of
length k, with k indicating the number of coupled reactions.
The entry at the i-th position specifies for the i-th coupled
reaction, as defined before in the vector IDs, the index of the
reactor compound (referring to vector reactor.compounds)
to which the exchange reaction is coupled. After this general
setup of the FBA model, model parameters are defined in the
second step in the function parametrizeFBAmodel_∗.m.
Here, the values for NGAM, and vmax and KS to define uptake
kinetics for all coupled compounds are set.

Finally, the target simulation time, default time step size and
other options (see Features) and numerical accuracy parameters
are set in the main simulator file microbialSimMain.m.

RESULTS

Three exemplary simulation scenarios are presented to
demonstrate µbialSim’s numerical accuracy and performance
when dealing with high diversity microbiomes. In all simulations,
a reactor of 1 L volume under batch conditions was used (setting
V = 1 L, q= 0 L/h).

Mono Culture
A batch culture of the hydrogenotrophic methanogen
Methanococcus maripaludis was simulated using the established

genome-scale FBA model iMR539 (Richards et al., 2016). The
archaeon transforms H2 and CO2 to CH4. Excess CO2 was
provided such that H2 was the growth limiting factor. Model
parameters and initial conditions are listed inTable 1. Simulation
results show an almost linear growth of M. maripaludis until
t = 0.6 h when H2 becomes depleted and growth stops
(Figure 2). Simulations using Matlab’s ODE solver ode15s and
the augmented forward Euler method lead to identical results
(Figure 2).

Syntrophic Co-culture
The syntrophic conversion of propionate to methane was
simulated by using a binary FBA model community of
Syntrophobacter fumaroxidans (iSfu648) and Methanospirillum
hungatei (iMhu428) which has previously been simulated at
steady state (Hamilton et al., 2015). An initial relative biomass
ratio of 3:4 (M. hungatei:S. fumaroxidans) was chosen as before
(Hamilton et al., 2015), and all model parameters are listed in
Table 2. Initial compound concentrations were set to 20mM for
propionate, 0.9561µM for H2 and 8.215µM for CO2 which
was considered not to be growth limiting for the methanogen.
Being produced by S. fumaroxidans and quickly consumed byM.
hungatei, H2 was flagged as a strongly consumed compound in
the simulation. The time step size became reduced and reached
a minimum just prior to the depletion of H2 as growth of
S. fumaroxidans ceased due to low propionate concentrations
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TABLE 2 | Model parameters and initial biomass concentrations for syntrophic co-culture simulation.

Model µ (1/d) vmax
a (mmol/gDW/h) Ks (mM) NGAM (mmol ATP/gDW/h) Initial biomass (gDW/L)

S. fumaroxidans iSfu648 0.15 (Stams et al., 2005) 1.1738 2.7 (Batstone et al., 2002) 0.14 (Hamilton et al., 2015) 28.57

M. hungatei iMhu428 1.2 (Stams et al., 2005) 27.6 0.006 (Stams et al., 2005) 0.025 (Hamilton et al., 2015) 21.43

aWas chosen such that the maximal FBA-predicted growth rate matched the specific growth rate µ reported in first table column.

FIGURE 3 | Simulating a syntrophic batch co-culture. Propionate is utilized by S. fumaroxidans and converted to acetate, CO2, and H2. M. hungatei then converts

CO2 and H2 to CH4. Both Matlab’s ode15s ODE solver (lines) and µbialSim’s augmented forward Euler method (symbols, every 15th data point is plotted) lead to

similar results. As H2 is faster consumed than produced, the time step size gets frequently reduced, most notably just prior to the depletion of propionate after which

growth of both populations ceases.

at t = 0.76 h (Figure 3). Except for H2, simulation results
agreed well if using Matlab’s ODE solver or the augmented
Euler method. For H2, minor fluctuations around the ODE
result were apparent at about 0.1 h and between 0.3 and 0.6 h
of simulated time when using the augmented Euler method
(Figure 3). Most notably, the final H2 concentration was 0
instead of the ODE prediction of a final concentration of 43.9
pM. This concentration leads to a growth rate of the methanogen
which is just below the threshold below growth is ignored
(parameter solverPars.minimalGrowth), and hence no-
growth conditions were assumed. A much smaller time step
size is required to achieve the same result with the augmented
Euler method.

Human Gut Microbiome
Simulations of the human gut microbiome were based on
the AGORA model collection (Version 1.01) comprising 773
microbial human gut species (Magnúsdóttir et al., 2017).
Maximal substrate uptake rates (vmax) were taken from the
individual SBML models, which were configured to mimic
a typical western diet (Magnúsdóttir et al., 2017). Exchange
reactions in individual models were automatically identified
by searching for “EX_” in reaction names. Pool compounds
enabling compound exchange were automatically identified by
considering those exchange reactions which had at least one flux
boundary which was neither zero nor unlimited, hence being

provided by the western diet. Monod constants for compound

uptake were set to 0.01mM for all pool compounds. Two

different simulations were performed: a simplified human gut

microbiome consisting of eight microbial species (see Figure 4

for species list) and 139 pool compounds (SIHUMIx, Becker
et al., 2011) and the full collection of 773 microbial species with
166 pool compounds. Batch growth was simulated for 1 h of
simulated time. Initial biomass concentrations were set to 0.1
gDW/L for all species, resulting in a total community biomass
concentration of 0.8 gDW/L for SIHUMIx and 77.3 gDW/L for
the full microbiome. To ensure food consumption within 1 h of
simulated time, different initial pool compound concentrations
were selected, using 0.01mM for all compounds in the SIHUMIx
simulation and 1.0mM for the full microbiome, constituting a
complex medium which facilitates growth of all species. Indeed,
simulations show in both cases, that initially, all species grow.
However, as the substratemix becomes depleted, growth stops for
each species at individual times. For the SIHUMIx simulation, E.
coli has the longest growth phase, stopping at ∼0.6 h (Figure 4).
In the complex simulation, growth of at least some species
is sustained up to almost 1 h (Figure 5). In both simulations,
microbial growth is accompanied by the accumulation of acetate
and formate (Figures 4, 5). Inspecting compound production
and consumption rates for all species at a given time point enables
the examination of microbial compound exchange patterns. At
0.1 h into the simulation, compound exchange is straightforward
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FIGURE 4 | Simulating the SIHUMIx community consisting of 8 microbial species as a batch, using identical initial biomass concentrations for all species and identical

compound concentrations for all compounds. The legend for compounds only contains the 8 most abundant compounds (out of 139) at the end of the simulation

with abbreviations h[e]: proton, ac[e]: acetate, for[e]: formate, h2[e]: hydrogen, h2s[e]: hydrogen sulfide, ade[e]: adenine, nac[e]: nicotinate, ptrc[e]: putrescine.

for the syntrophic co-culture (Figure 6A). But already for the
simplified human gut microbiome, a complex network emerges
(Figure 6B). For 20 compounds, at least one species produces
it while another consumes it. The overall largest observed rates
are associated with the production of formate and acetate by E.
coli and C. butyricum. Both compounds are produced by all but
one microbial species of the community and consumed by the
remaining one. Other readily exchanged compounds associated
with rates above 0.01 mM/h for four or more species are ethanol,
produced by two and consumed by three species and succinate,
produced by one and consumed by three species (Figure 6B).

Performance and Runtime
In order to enable the simulation of microbiomes containing
hundreds of species, a novel numerical scheme as an extension
to the Euler method was designed and implemented in µbialSim.
When comparing simulation runtimes of the presented
examples, we find that surprisingly, for the simple examples
containing one or two species, Matlab’s ODE solver ode15s
outperforms the augmented Euler method by up to a factor of
three (Table 3). This is likely due to the fact that the augmented
Euler method can reduce but not increase the time step size
beyond the selected value as the steady state is reached, while
Matlab’s solver utilizes a fully dynamic time stepping, allowing
for large time step sizes as the derivatives become zero. The

computational benefit of the augmented Euler method becomes
apparent in the eight-species human gut microbiome simulation
in which it is more than 50 times faster than the ODE solver. A
further speed-up can be achieved by using µbialSims support for
parallel computation. In each time step, one FBA computation
needs to be performed for each species, which only depends
on the current compound concentrations. This allows for an
embarrassingly parallel implementation, such that theoretically,
at best a linear speed-up in relation to the utilized number
of CPU cores can be expected. We find that when using 12
instead of one core in the most complex human microbiome
simulation, runtime can be reduced by almost a factor of 8.2
(Table 3). This falls short of the theoretical expectation, but
nevertheless brings simulation times into feasible timeframes
(from weeks to days), hence enabling for the first time the
simulation of microbiomes whose diversity resembles that of
their natural counterparts.

DISCUSSION

The simulator code µbialSim significantly expands the microbial
diversity which can be addressed in the computational modeling
of microbiome dynamics following the constraint-based
methodology. However, a number of restrictions apply. For
example, a well-mixed system is assumed. Furthermore, the
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FIGURE 5 | Simulating batch growth of a 773 species gut microbiome with 166 compounds, using identical initial biomass concentrations for all species and identical

compound concentrations for all compounds. The legends only account for the 10 most abundant entities at the end of the simulation, with compound abbreviations

h[e]: proton, ac[e]: acetate, for[e]: formate, h2[e]: hydrogen, h2o[e]: water, h2s[e]: hydrogen sulfide, ade[e]: adenine, gua[e]: guanine, nac[e]: nicotinate, thymd[e]:

thymidine.

FIGURE 6 | Compound exchange at t = 0.1 h for the syntrophic co-culture (A) and the simplified human gut microbiome (B). Microbial species (blue circles) produce

and consume compounds (yellow diamonds) as indicated by arrows. Numbers indicate production and consumption rates (in mM/h). In (B), only those compounds

are shown, which are both produced and consumed by at least one microbial species, and fluxes below 0.01 mM/h as well as compounds H2O and proton were

omitted for clarity. Abbreviated compound names refer to: ac: acetate, CO2: carbon dioxide, cys_L: L-cysteine, dad_2: 2-deoxyadenosine, etoh: ethanol, for: formate,

gln_L: L-glutamine, glu_L: L-glutamate(1-), gly: glycine, gua: guanine, h2/H2: hydrogen, h2s: hydrogen sulfide, nac: nicotinate, no2: nitrite, phe_L: L-phenylalanine,

ser_L: L-serine, succ: succinate.
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TABLE 3 | Simulation runtime.

Example Mono culture Syntrophic co-culture Human gut microbiome

Species 1 2 8 773a

ODE solver 1.75min 7.24min 31.95 h, parallel (8 cores): 8.69 h Not tested

Augmented Euler method 3.67min 22.29min 0.63 h, parallel (8 cores): 0.22 h 15.40 d, parallel (12 cores): 1.87 d

aThe option to record limiting fluxes was disabled for simulating the 773-species microbiome.

consideration of microbial interactions is restricted to the
exchange of growth-related compounds between populations.
Even despite these simplifications, the adaptation to experimental
data is a challenge, in particular, if microbiomes contain species
for which no monoculture data is available. Besides typical
constraint-based model parameters to adjust, such as biomass
composition and requirements for cellular maintenance, the
dynamic simulation calls additionally for the parametrization
of the uptake process for all growth-limiting compounds.
Two parameters, the maximal uptake rate and the Monod
constant, need to be identified for each relevant compound
and species. New parameter estimation methods are required
to do this efficiently as the complexity in terms of number of
parameters and computational demand for forward simulations
preclude the application of standard techniques. Our simulator
can serve as an invaluable tool during method development.
Simulations of arbitrary complexity with known parameter
values can provide both the ground truth to compare inference
results against, and data of varying density and fidelity as input,
enabling a thorough method evaluation. Another challenge is
the comparability of simulation output with measured data.
While compound concentrations can be readily compared,
the model records individual biomass abundancies in gDW/L,
which is usually not directly measurable in experiments. PCR-
based quantification methods such as amplicon sequencing
can provide the required data, but care must be taken during
the conversion to a mass-based unit (Bonk et al., 2018). The
inclusion of meta-OMICS data to constrain intracellular fluxes
for individual species over time is another promising strategy
for improving model fit to experimental data. This approach
also circumvents the transferability issue of growth behavior
in mono and mixed cultures, but faces its own challenges.
Once these hurdles are overcome, experimental data from
microbiome studies can be directly used to parametrize
the simulation model. Such a model will not only provide
quantitative predictions regarding microbiome dynamics and
activity in response to interventions such as changes in the
substrate or bioaugmentation, but will also enable to trace
observed behaviors back to their mechanistic causes. This
knowledge will inspire novel strategies for directed and precise
control of microbiomes in environmental, biotechnological, and
medical applications.

Besides its application to measured data, µbialSim can
also be used to explore general principles in microbial

ecology in a quantitative way, such as substrate competition,
facilitation, and the diversity—redundancy relationship.
While complex in silico microbiomes fall short of a true
representation of natural microbiomes due to the discussed
limitations, they still capture general features which are
likely important driving forces in natural microbiomes.
Future versions of µbialSim can additionally consider non-
metabolic interactions such as predation, effects of antibiotics,
phage dynamics, or host interactions. Furthermore, chemical
reactivity of pool compounds could be included as well
as a reactor headspace and corresponding gas exchange
processes to ease the comparison to experimental data
from typical experimental reactor setups. Finally, non-
constant chemostat operating regimes could be implemented
to facilitate, for example, periodic feeding regimes for
simulated microbiomes.
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