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Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and
the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic
circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In
this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and
environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the
design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite
of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that
the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally,
several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the
robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired
behaviors with minimal errors even with nontrivial intrinsic and external noise.

1. Introduction

The cell is the functional unit of all living things either
unicellular or multicellular [1]. A cell can sense many
different signals from the internal or external and respond
to the constantly changing environment via appropriate
cellular processes. Also, cells can interact to each other by
cell-cell communication and achieve specific physiological
functions essential for life cooperatively [1]. However, there
are many fundamental questions: how cellular phenomena
arise from the interactions among genes and proteins, what
features make the cell operate reliably in diverse conditions,
and how cells are responsible for the reliable operation. To
gain insight into the questions, one could construct and
analyze the underlying mechanisms that constitute the web
of interactions. This idea is useful to separate a complicated
network into many simpler ones that resemble the modules
of gene regulation. These modules, which act as simple
switches or oscillators, can work on independently and may

be combined eventually into a functional entity. While the
concept of synthetic gene networks is still in its infancy, the
long-term goal of this work is to design and manufacture the
biological systems with predictable functions [2, 3].

In recent years, the use of existing genetic engineering
technologies together with concepts in circuit design has
developed a new strategy to design gene networks [3–6]. In
this approach, the web of interactions among gene and pro-
tein is then synonymous with genetic circuit which contains
standard and well-characterized components such as pro-
moters, ribosome binding sites, and regulatory sequences.
These biological parts can be combined into devices with
different configurations, which can be further integrated
into a functional whole [3, 7]. In order to build genetic
circuits with the specified purpose, one may need the design
process that involves describing the specification with respect
to the desired goal, converting the technical details into
block diagrams at the abstract stage, evaluating the feasibility
via mathematical model and computational simulation, and
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repeating the earlier stage until the parts in the combination
and configuration could exhibit suitable performance. For
example, Terzer et al. [8] present the construction of a genetic
half adder that comprises two main biological gates, that
is, AND gate and XOR gate. Two biological stimuli, light
signal and chemical signal, are sensed by respective device.
This composition allows the half adder to be in one of three
possible states, RFP synthesis, GFP synthesis, or the absence
of both reporter proteins. In the case when one of two stimuli
signals is present, the XOR gate is activated and produces
RFP protein. When two stimuli signals are present, the AND
is activated and leads to the synthesis of GFP protein. For
lack of both stimuli signals, the state is maintained and
none of reporter protein is synthesized. This study includes
mathematical and computational analysis in determining
the combination of parts among different configurations
to obtain the desired function. A similar design process
has been used in other applications such as switch [9–11],
oscillator [12], timer [13], counter [14], gene regulation [15],
and pattern formation [16].

Although synthetic biologists have accomplished a great
deal in a short time, major obstacles remain to be overcome
before the practical application of the technology can be
realized. One important problem is that the behavior of bio-
engineered systems remains noisy and uncertain. Synthetic
gene circuits also tend to mutate rapidly and become non-
functional [17–20]. Generally, the variability in biological
circuits might be classified into two main categories: intrinsic
fluctuations, which are associated with fluctuations in tran-
scription and translation, random changes in DNA sequence
and variations in molecular concentrations, and extrinsic
disturbances, which correspond to interactions with extra
cellular environment [2]. If the intrinsic fluctuations and
extrinsic disturbances are all considered in mathematical
model and computational simulation to mimic the realistic
environment in the host cell, the biological circuits will be
more robust towards the desired goal under these uncertainty
conditions. Therefore, in this work, a nonlinear stochastic
system with state-dependent noise is introduced to model the
biological systems in vivo with intrinsic perturbations and
extrinsic noise in the cellular context. In fact, a number of
studies recently have developed methodologies for nonlinear
stochastic systems to assist the evaluation of parts in
combinations and configurations. Sensitivity analysis [21] is
a common way used in genetic circuit design to understand
the effect of elements on overall system performance. As
compared with the views available to the conventional design
strategies for assembling devices by intuition alone, the sensi-
tivity information may offer a possible guideline concerning
the selection of the optimal configurations to satisfy the
design consideration. Such analysis tool can help the choice
of an appropriate element combination for biological circuit
that functions well in noisy and uncertain environment.
Recently, some robust synthetic gene network design meth-
ods have been proposed to select certain kinetic parameters
of a gene circuit so that the effect of random parameter
fluctuations and environmental noise can be efficiently atten-
uated by game theory [22] or the synthetic gene circuit can
track a desired reference to satisfy design specifications [23].

As yet, however, applying the analysis of nonlinear
stochastic system to evaluate the flexibility in combination
of biological components is not straightforward in gen-
eral. In light of natural selection on traits best-suited for
environmental change being an important mechanism in
evolution [24], the question arises whether a similar strategy
can be adapted for genetic circuits design. Inspired by
biological evolution such as mutation, recombination, and
selection, the evolutionary algorithm is a population-based
methodology to solve optimization problems [25]. Recently,
evolutionary systems biology focuses on links between evolu-
tion and function, that is, evolutionary interplay between the
genotype and phenotype, to develop methods to reconstruct
and compare transcriptional regulatory network [26–29].
Here, an evolutionary systems biology algorithm is employed
in tuning the kinetic parameters with respect to component
characteristics to maximize the fitness under the parameter
variations and molecular noise in the cellular context. In
order to mimic the naturally occurring biological systems in
the evolutionary process, the fitness function is selected to be
inverse proportion to the tracking error so that evolutionary
kinetic parameters of biological circuit can achieve the
optimal tracking via the maximization of fitness with all
speed to mimic the evolution process of a gene circuit. If
the adaptations of kinetic parameters of biological circuit
are reflected by the proposed evolutionary systems biology
algorithm to achieve the optimal fitness, the evolutionary
gene circuit will track the desired biologic function in spite
of intrinsic parameter fluctuations and extrinsic noise and
will behave more robustly inside a living cell.

In this study, the intrinsic parameter fluctuations and
external noise are modeled in the stochastic dynamic systems
of biologic circuits to mimic the stochastic behaviors of
biological system in the host cells. Then, based on the evo-
lutionary systems biology algorithm, the kinetic parameters
of biologic circuits can be self-adaptively tuned to optimally
track the desired biologic function to achieve the optimal
fitness to mimic the natural selection of naturally occurring
gene circuits in evolution. Because the optimal tracking of
evolutionary gene circuit to a desired logical function is
achieved under intrinsic parameter fluctuations and external
noise, the designed gene circuit will be more robust when
embedded in the host cells with the similar stochastic
environments. The remainder of this article is organized as
follows. In the next section, we provide a brief description
of the biologic model under intrinsic parameter fluctuation
and extrinsic noise. Then an evolutionary systems biology
design algorithm and several design examples with computer
simulation will be presented. Finally, a conclusion is given to
summarize the results in the last section.

2. Stochastic Model for Biological
System In Vivo under Intrinsic Parameter
Fluctuations and Extrinsic Noise

The dynamic behaviors of biological circuits have been mod-
eled by nonlinear differential equations. These nonlinear
differential equations contain four types of dynamics to
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Figure 1: An example of a biological module. The substrate S is
designed to bind an enzyme E essential for the reaction, which can
be triggered by the input signals, say u1 and u2, cooperatively. In
the biologic process, the two proteins can combine together to form
a complex C which then breaks down into the production P with
E being released. The presence of production P alone leads to the
synthesis of the output signal, the reporter protein GFP.

describe constitutive transcription, enzymatic transforma-
tion, regulated transcription, and translation [30]. A simple
biological module as shown in Figure 1 is given to illustrate
the nonlinear dynamic equation of these biochemical pro-
cesses [8]. Suppose this module generates an output signal
only when it gets biochemical signals from both of its inputs.
Based on the requirement, the substrate S is designed to
bind an enzyme E essential for the reaction, which can be
triggered by the input signals, say u1 and u2, cooperatively.
In the process, the two proteins can combine together
to form a complex C which then breaks down into the
production P releasing E, that is, the conversion of substrate
S into production P is catalyzed by an enzyme E. Here the
presence of production P alone leads to the synthesis of the
output signal, the reporter protein GFP. The following is a
more detailed system description about dynamic interaction
equations for biological module in synthetic gene circuit.

2.1. Constitutive Transcription. The constitutive transcrip-
tion is the process of creating message RNA from the
stimulation of biochemical signal. In this case, transcription
of gene s occurs only when the input signal u1 is present.
This is similar to gene e if only the input signal u2

appears. Both of these reactions result in the accumulation
of mRNA molecular with respect to each gene, which can be
balanced by the degradation process. Thus the dynamics of
mRNA governed by the production and degradation as the
equations below:

dxmS

dt
= k1u1 − λ1xmS,

dxmE

dt
= k2u2 − λ2xmE,

(1)

where xmS is the concentration of mRNA transcribed from
u1 and xmE is the concentration of mRNA transcribed from
u2. The input signals, say u1 and u2, represent the number
of RNA polymerases per unit of time to transcribe the gene s
and gene e, respectively. The parameters k1 and k2 stand for
the reaction rate constant; the parameters λ1 and λ2 are the
degradation constant for mRNA.

2.2. Enzymatic Transformation. Followed by the constitutive
transcription of gene s and gene e, the mRNA molecules
can be further translated into substrate S and enzyme E.
The process of enzymatic transformation is for the reaction
catalyzed by an enzyme, which helps convert substrates into
productions. Here we suppose that the substrate S combined
with E can form the complex C which then dissociates
into enzyme E and production P. The reverse reaction for
complex C synthesis is also considered here. Thus the change
in concentration of substrate S, enzyme E, complex C, and
production P with respect to time is given by

dxS
dt

= k3xmS − k5xSxE + k6xC − λ3xS,

dxE
dt

= k4xmE − k5xSxE + (k6 + k7)xC − λ4xE,

dxC
dt

= k5xSxE − (k6 + k7)xC − λ5xC ,

dxP
dt

= k7xC − λ6xP ,

(2)

where xS, xE, xC , and xP denote the concentration of substrate
S, enzyme E, complex C, and production P, respectively.
The parameters k3 and k4 stand for the kinetic constants
of translation for substrate S and enzyme E, respectively.
The parameter k5 is the forward reaction rate constant for
complex C, and k6 is the backward one. The production
formation rate constant is k7. The parameters λ3, λ4, λ5 and
λ6 are the degradation constants for substrate S, enzyme E,
complex C and production P, respectively.

2.3. Regulated Transcription. The process related to the
transcriptional regulation is to create message RNA resulted
from the control of transcription factor. Transcription factor
can bind to a specific DNA site to increase the rate of
transcription when an activator, or to reduce the rate when
a repressor. In this example, the production P is made to
activate the green fluorescent protein gene, rendering the
accumulation of mRNA molecules. It means that the tran-
scription of the green fluorescent protein gene is regulated
by an activator, that is, the production P. Then the mRNA
dynamics for the GFP gene is described as the equation
below:

dxmGFP

dt
= PmGFP +

k8(xP/K)n

1 + (xP/K)n
− λ7xmGFP, (3)

where xmGFP denotes the concentration of mRNA for green
fluorescent protein gene. The parameters k8 and λ7 are the
kinetic constant of transcription and degradation constant,
respectively. PmGFP represents the constant of background
level. Cooperativeity is denoted by the Hill coefficient n and
K is the Hill constant.

2.4. Translation. Translation corresponds to the process for
coding protein from message RNA. Here the mRNA codon
with respect to green fluorescent protein gene is translated
into the output signal, the reporter protein GFP. It leads to
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the accumulation of reporter protein, which can be balanced
by the degradation process. Then the dynamical evolution
of the output signal is affected by synthesis and degradation.
Consequently, the term of the GFP rate equation will be as
follows:

dxGFP

dt
= k9xmGFP − λ8xGFP, (4)

where xGFP represents the concentration of the reporter
protein. The parameters k9 and λ8 are the kinetic constant of
translation and degradation constant for GFP, respectively.

From the nonlinear differential equations as mentioned
above, it can be known that the dynamics of a biological
module depends on some factors, such as the kinetic con-
stants, degradation constant, and background level. How-
ever, these factors or parameters are uncertain inherently and
the biological circuit also suffers from environmental noise in
the context of host cell. In this situation, the dynamic model
of biological circuit in vivo should be modified as follows:

dxmS

dt
= (k1 + Δk1n1)u1 − (λ1 + Δλ1n4)xmS + v1,

dxmE

dt
= (k2 + Δk2n1)u2 − (λ2 + Δλ2n4)xmE + v2,

dxS
dt

= (k3 + Δk3n2)xmS − (k5 + Δk5n3)xSxE

+ (k6 + Δk6n3)xC − (λ3 + Δλ3n4)xS + v3,

dxE
dt

= (k4 + Δk4n2)xmE − (k5 + Δk5n3)xSxE

+ (k6 + Δk6n3 + k7 + Δk7n3)xC

− (λ4 + Δλ4n4)xE + v4,

dxC
dt

= (k5 + Δk5n3)xSxE − (k6 + Δk6n3 + k7 + Δk7n3)xC

− (λ5 + Δλ5n4)xC + v5,

dxP
dt

= (k7 + Δk7n3)xC − (λ6 + Δλ6n4)xP + v6,

dxmGFP

dt
= PmGFP +

(k8 + Δk8n1) (xP/K)n

1 + (xP/K)n

− (λ7 + Δλ7n4)xmGFP + v7,

dxGFP

dt
= (k9 + Δk9n2)xmGFP − (λ8 + Δλ8n4)xGFP + v8,

(5)

where Δki, Δλi denote the amplitudes of parameter fluctu-
ations around kinetic constants and degradation constants
due to genetic variations, respectively. n1, n2, n3, and n4

are random white noise with zero mean and unit variance,
which denote the independent random fluctuation sources in
transcription, translation, reaction, and degradation process,
respectively. The variances of kinetic parameter perturba-
tions are given as var(Δkinj) = (Δki)

2, var(Δλinj) = (Δλi)
2;

that is, Δki and Δλi represent the standard deviations of the
corresponding stochastic parameter fluctuations. vi denotes
the corresponding external stochastic noise with variance
σ2
i . Note that the perturbation of background level PmGFP is

merged into v7. Then depending on the stochastic system
in (5), a more general stochastic model for any synthetic
biological gene circuit with intrinsic parameter fluctuations
and extrinsic noise in vivo can be represented as a set
of nonlinear stochastic differential equation with state-
dependent noise in the form

ẋ = f (x, k,u) +
m∑

i=1

hi(x,Δk,Δλ)ni + v,

y = cx,

(6)

where f is a nonlinear nominal interaction vector func-
tion concerning the state vector x = [x1, . . . , xn]T for
concentrations of n reactant species, kinetic constants k,
and input signals u. ni are the independent intracellular
random fluctuation sources. hi are fluctuation functions due
to random fluctuation source ni. v = [v1, . . . , vn]T represents
the vector of external disturbances. y stands for the output
vector. In Figure 1, y = xGFP and c = [0, 0, 0, 0, 0, 0, 0, 1].

In real biological system, the gene circuit in (6) could
evolve adaptively with kinetic parameters in k by natural
selection through mutation and genetic variation so that
y(t) can robustly achieve some desired behavior in spite of
intracellular molecular noise and external disturbance. In
this study, we will mimic the evolutionary biological system
to adapt the kinetic parameters of synthetic gene network
in (6) through an evolutionary systems biology algorithm
under a fitness function so that the synthetic gene circuit can
achieve a desired behavior in spite of intracellular noise and
external disturbance specified beforehand to be tolerated in
vivo.

3. Robust Design of Biological Circuit
via Evolutionary Systems Biology Algorithm

Once a model describing the biological circuit system of
interest has been constructed, the next step for synthetic
biologists is to select adequate parameters ki, i = 1, . . . , l,
to achieve some design specifications. For example, in
the design of biological logic circuit [8], transcriptional
rate constants k1, k2, and k8 in (5), which depend on
the affinity of binding site in the promoter region of the
corresponding target gene, should be selected to achieve the
robust synthetic biological circuit design to optimally track a
desired logic function under intrinsic parameter fluctuations
and extrinsic noise in vivo. Based on the analysis above, the
design specifications of robust synthetic biologic circuits for
tracking a desired logic circuit are given as follows.

(i) Choose a desired logic circuit to be tracked by the
synthetic biologic circuit.

(ii) Give the standard deviations Δki, Δλi in (6) to rep-
resent the stochastic parameter fluctuation to be tol-
erated and the variances σ2

i to represent the external
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Figure 2: The block diagram of the proposed optimal tracking
scheme for synthetic biological circuit design via an evolutionary
systems biology algorithm.

stochastic disturbances vi to be attenuated by the syn-
thetic biologic circuit in host cells.

(iii) Give the feasible ranges of design parameters ki
according to the real design condition in vivo:

ki ∈
[
kLi , kUi

]
, i = 1, 2, 3, . . . , l. (7)

Given the above design specifications, our design objective
is to tune the design parameters ki ∈ [kLi , kUi ], i =
1, 2, 3, . . . , l, to achieve the optimal tracking under intrinsic
parametric fluctuations and extrinsic noise as shown in
Figure 2. Suppose the tracking error is defined as

e = yd − y, (8)

where yd denotes the output of the desired logic circuit.
Then, our design purpose is to tune design parameter ki by
evolutionary systems biology algorithm so that the dynamic
gene circuit in (6) can achieve the following optimal tracking:

min
ki,i=1,...,l

E
∫ Tp

0
eT edt, (9)

where E denotes the expectation, Tp denotes the present
time, and eT denotes the transpose of e. If the above
mean square tracking error can be minimized under the
design specifications (i)–(iii), the robust synthetic gene
circuit design can be achieved under the stochastic parameter
fluctuation and external noise in vivo so that the stochastic
biologic circuit can track a desired logic circuit more reliably
in the host cells.

In general, it is not easy to solve the constrained optimal
tracking design problem in (9) for nonlinear stochastic gene
network in (6) by the conventional optimal method directly.
Here, to mimic the parametric tuning of biological circuit
to achieve a desired function via natural selection in evolu-
tion, an artificial evolutionary systems biology algorithm is

employed to tune the design parameter ki to achieve the opti-
mal tracking in (9) but with a faster speed than natural selec-
tion. Evolutionary algorithms [25, 31] are a result of an effort
to model adaptation phenomena in natural and artificial sys-
tems. These evolutionary algorithms will be modified to tune
the kinetic parameters of nonlinear stochastic synthetic gene
network in (6), that is, the so-called evolutionary systems
biology algorithm, to fast evolve to a desired output behavior
via a fitness function. In the nonlinear stochastic system of
biological circuit in (6), the state vector x is considered as
phenotype and the kinetic parameter vector k = (k1, . . . , kl)
is considered as genotype. In the evolutionary systems
biology algorithm, the kinetic parameter vector k is called
chromosome. Let us denote the mean square error in (9) as

J(k) = E
∫ Tp

0
eT edt, (10)

where the chromosome ki ∈ [kLi , kUi ], for i = 1, . . . , l, the
feasible parameter space or feasible genotype space. Define
the fitness function F(k) as

F(k) = 1
J(k)

, (11)

that is, a small mean square error means a large fitness and
vice versa. If we adapt a parameter vector (chromosome)
ki ∈ [kLi , kUi ] by evolutionary systems biology algorithm to
minimize J(k) in (10) or (11), then we achieve the maximiza-
tion of fitness function in (11) for synthetic gene circuit (6) to
meet the natural selection in evolution. Therefore, the robust
biological circuit design in (6) with a desired output behavior
y(t) is equivalent to solving the following fitness maximiza-
tion problem by the evolutionary systems biology method:

F(k∗) = max
k

F(k). (12)

The evolutionary systems biology algorithm is employed
to solve the above fitness maximization problem via the
genetic operators such as selection, crossover, and mutation
to mimic the nature selection in the evolutionary process
to tune the kinetic parameter vector k of synthetic gene
circuit to solve the optimization problem in (12) to achieve
robust optimal tracking of the desired behavior. A simple
evolutionary systems biology algorithm is proposed as
follows [25, 31].

3.1. Initialization. Initialize a population of candidate solu-
tions to the problem, that is, randomly generate a population
of candidate chromosomes. In the real coding representation,
each chromosome with the same length as the vector of
decision variables is encoded as a vector of floating-point
numbers. The vector k = (k1, . . . , kl) is as a chromo-
some to represent a solution of optimization problem for
the desired behavior tracking of nonlinear synthetic gene
circuit. Initialization procedure produces M chromosomes
k1, . . . , ki, . . . , kM , where M denotes the population size.

3.2. Fitness. Fitness is a measure to evaluate the suitability
of chromosome. By the principle of survival of the fittest,
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a chromosome with higher fitness value has a higher prob-
ability of contributing one or more offspring in the next gen-
eration. By employing evolutionary algorithms to our fitness
optimization problem, we must relate the M chromosomes
with their fitness functions F(k1), . . . ,F(kM). In our synthetic
gene circuit design problem, an optimal tracking circuit
design is to select a maximum fitness function F(k∗) among
these fitness functions F(k1), . . . ,F(ki) . . . ,F(kM).

3.3. Reproduction. Reproduction is a basic operator of evolu-
tionary algorithms to generate more offspring to increase the
possibility to search for the optimal fitness. It is operated on
the basis of the survival of the fitness. In each generation, the
chromosomes of the current population are reproduced or
copied in the next generation according to their reproduction
probability pri , which are defined as

pri =
F
(
ki
)

∑M
i=1F(ki)

, i = 1, . . . ,M, (13)

where M is the population size. It is shown that the higher
fitness value, the higher reproduction probability. Once
the chromosomes are reproduced or copied in the next
generation, the other chromosomes stay in a mating pool
as shown in Figure 3 and await the action of the other two
genetic operators.

3.4. Crossover. Reproduction directs the search of evolu-
tionary algorithms toward the best individuals. Crossover
performs to exchange the information of any chromosomes
via probabilistic decision in the mating pool and provides
a mechanism to mix and match the desirable qualities
through a random process. For two chromosomes ki and k j

randomly selected according to the crossover probability pc,
the resulting offspring k′ is

k′ = r
(
ki + k j

)
, (14)

where r ∈ (0, 1).

3.5. Mutation. Reproduction and crossover provide the most
search power for evolutionary algorithms. However, the
mating pool tends to become more and more homogeneous
as one better solution begins to dominate after several
generations and leads to premature convergence. In the
situation, the third operator, mutation, is introduced into
the evolutionary algorithm with appropriate probability pm.
For a given chromosome k = (k1, k2, . . . , kn, . . . , kl), if the
element kn is randomly selected for mutation, the resulting
offspring is k′ = (k1, k2, . . . , k′n, . . . , kl). The new gene k′n is

k′n = kn + σnmn, (15)

where σn is standard derivation and mn is a random variable
with standard normal distribution function. Mutation is an
insurance strategy to ensure that all points in the search space
can be ultimately reached. Note that mutation should be used
sparingly because it is inherently a random search operator.

The evolutionary algorithm could become more similar to
random search if the mutation probability is high.

Since the proposed evolutionary systems biology design
method not only achieves the best fitness for optimal desired
behavior tracking but also robustly tolerates random kinetic
parameter fluctuation and external disturbance simultane-
ously, it will play an important role for synthetic gene
network from the evolutionary systems biology perspective.
The evolutionary systems biology approach of how to select
a parameter vector (or chromosome) k to solve the fitness
maximization problem in (12) for the optimal behavior
tracking is summarized as follows.

Step 1. Give the design specifications (i)–(iii).

Step 2. Model the synthetic gene network as the nonlinear
stochastic system in (6).

Step 3. Specify the probabilities pc and pm for crossover and
mutation, respectively, and the population size M.

Step 4. Generate randomly a population of candidate chro-
mosomes.

Step 5. Evaluate the fitness F(ki) for each candidate solution
(chromosome) ki in the population to find the best fit k∗ to
achieve the best fitness F(k∗).

Step 6. If the search goal is achieved, or an allowable
generation is attained, then stop. Otherwise, continue.

Step 7. Replace the current population with a new pop-
ulation by applying selection, crossover, and mutation
operations on the current population. Go to Step 5.

Remark 3.1. (1) In addition, in the evolutionary systems
biology algorithm, the elitist strategy can be incorporated
to enhance the convergence of evolutionary systems biology
algorithm. This strategy copies the best chromosomes from
the old population into the next population to prevent losing
the best solutions in the succeeding iterations. It has been
shown that the elitist strategy can improve the performance
of evolutionary systems biology algorithm.

(2) The proposed evolutionary systems biology algo-
rithms is a powerful search algorithm for parameter selection
in the synthetic gene network design procedure based on
natural genetics and are inherently parallel, because they
simultaneously evaluate many points in the parameter space
(genotype space) for the best fitness F(k∗) to achieve the
robust synthetic gene network deign with a desired behavior
in vivo.

4. Design Example In Silico

After the development of design procedure for the robust
gene circuits in the above section, two examples will be given
in silico to illustrate the design procedure and to confirm
the performance of synthetic gene circuit by the proposed
evolutionary systems biology design method.
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Figure 3: The flowchart of evolutionary systems biology algorithm for solving the best fit k∗ from the maximization problem of fitness
function in (12).

4.1. Robust Biological AND Gate Design. Consider the bio-
logical AND gate as shown in Figure 4 [8]. The biological
AND gate generates an output signal only when it gets
biochemical signals from both of its inputs. In the pro
cess, the input signal u1 leads to the transcription of T7
polymerase gene, containing an early stop codon in the

coding sequences that block translation. The input signal u2

leads to the synthesis of a suppressor tRNA, which prevents
the premature termination and enables the translation of
polymerase. When both of these inputs are present, the
functional T7 RNA polymerase leads to the synthesis of
the output signal, the reporter protein GFP. The following
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Figure 4: Synthetic gene AND gate. The input signal u1 leads to the transcription of T7 polymerase gene, containing an early stop codon in
the coding sequences that block translation. The input signal u2 leads to the synthesis of a suppressor tRNA, which prevents the premature
termination and enables the translation of polymerase. When both of these inputs are present, the functional T7 RNA polymerase leads to
the synthesis of the output signal, the reporter protein GFP.

is a description about dynamic differential equations of
biological AND gate in Figure 4 [8]:

dxmT7Pol

dt
= k1u1 − λ1xmT7Pol,

dxmtRNA

dt
= k2u2 − λ2xmtRNA,

dxT7Pol∗

dt
= k3xmT7Pol − λ3xT7Pol∗ ,

dxtRNA

dt
= k4xmtRNA − λ4xtRNA,

dxT7Pol

dt
= k5xmT7PolxtRNA − λ5xT7Pol,

dxmGFP

dt
= PmGFP +

k6(xT7Pol/K)n

1 + (xT7Pol/K)n
− λ6xmGFP,

dxGFP

dt
= k7xmGFP − λ7xGFP,

(16)

where xmT7Pol, xmtRNA, and xmGFP are the concentrations of
mRNA transcribed from genes T7Pol, tRNA, and gfp, re-
spectively; concentrations of the corresponding proteins
are represented by xT7Pol∗ , xtRNA, and xGFP, respectively.
k1, k2, and k6 are the transcription rate. λ1, λ2, and λ6

are the respective degradation rate of mRNA for T7Pol,
tRNA, and gfp. Parameters k3, k4, and k7 are the translation
rates of the proteins from the mRNAs, and λ3, λ4, and λ7

represent the degradation rate of protein nonfunctional T7
RNA polymerase, tRNA and GFP, respectively. xT7Pol is the
concentration of functional T7 RNA polymerase. k5 is the
reaction rate constant and λ5 stands for the corresponding
degradation constant. n is the Hill coefficient and K is the
Hill constant. PmGFP is the basal level.

From the nonlinear differential equations as mentioned
above, it can be seen that the dynamics of the biological AND
gate depends on some biochemical factors, such as the kinetic
constant, degradation constant, and basal level. However,
these factors or parameters are uncertain inherently and the
biological circuit also suffers from environmental noise. In

this situation, the dynamic model of synthetic biological
circuit in vivo should be modified as follows:

dxmT7Po

dt
= (k1 + Δk1n1)u1 − (λ1 + Δλ1n4)xmT7Pol + v1,

dxmtRNA

dt
= (k2 + Δk2n1)u2 − (λ2 + Δλ2n4)xmtRNA + v2,

dxT7Pol∗

dt
= (k3 + Δk3n2)xmT7Pol

− (λ3 + Δλ3n4)xT7Pol∗ + v3,

dxtRNA

dt
= (k4 + Δk4n2)xmtRNA − (λ4 + Δλ4n4)xtRNA + v4,

dxT7Pol

dt
= (k5 + Δk5n3)xmT7PolxtRNA

− (λ5 + Δλ5n4)xT7Pol + v5,

dxmGFP

dt
= PmGFP +

(k6 + Δk6n1)(xT7Pol/K)n

1 + (xT7Pol/K)n

− (λ6 + Δλ6n4)xmGFP + v6,

dxGFP

dt
= (k7 + Δk7n2)xmGFP − (λ7 + Δλ7n4)xGFP + v7,

(17)

where Δki, Δλi denote the amplitudes of parameter fluc-
tuations for kinetic constants and degradation constant,
respectively. nj are random white noise with zero mean and
unit variance, which denote the independent random fluc-
tuation sources in transcription, translation, reaction, and
degradation process, respectively. The variances of parameter
perturbations are given as var(Δkinj) = (Δki)

2, var(Δλinj) =
(Δλi)

2, that is, Δki and Δλi represent the standard deviations
of the corresponding stochastic parameter fluctuations to be
tolerated by the synthetic gene circuit in vivo. vi denotes the
corresponding external noise with variance σ2

i . Note that the
perturbation of basal level PmGFP is merged into v6.

The design specifications and parameters are given as
follows. The desired transient behaviors of biological AND
gate are as shown in Figure 5. The standard deviations of
uncertain fluctuations of kinetic parameters and decay rates



Journal of Biomedicine and Biotechnology 9

0 1 2 3 4 5 6 7

×104

0

0.5

1

Time (min)

u
1

(a)

0 1 2 3 4 5 6 7
0

0.5

1

×104Time (min)

u
2

(b)

0 1 2 3 4 5 6 7

×104Time (min)

0

1000

2000

O
u

tp
u

t

(c)

Figure 5: Desired transient behaviors of biological AND gate. The biological AND gate generates an output signal only when it gets
biochemical signals from both of its inputs.
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Figure 6: Simulation result of biological AND gate. (a) In order to confirm the robustness and filtering ability of the synthetic gene network,
the parameters are specified as follows. The standard deviations of uncertain kinetic parameters and decay rates to be robustly tolerated are
specified as Δk1 = 0.2, Δk2 = 0.2, Δk3 = 0.02, Δk4 = 0.02, Δk5 = 0.000005, Δk6 = 0.2, Δk7 = 0.02, Δλ1 = 0.04, Δλ2 = 0.04, Δλ3 = 0.05,
Δλ4 = 0.05, Δλ5 = 0.05, Δλ6 = 0.04, and Δλ7 = 0.05. The variance of external disturbance vi is σ2

i = (0.1)2. The Monte Carlo simulations are
performed by 50 rounds. The mean error is e = (1/50)

∑50
i=1ei = 121.95 with a standard deviation of 9.93, where ei is the root mean squared

error of the ith Monte Carlo simulation. (b) In contrast to the above design case, the design parameters are specified aside the optimal design
parameter k∗, with k1 = 0.9, k2 = 0.6, k3 = 0.95, k4 = 0.25, k5 = 0.00002, k6 = 0.6, and k7 = 0.15. In this design case, the mean error is
e = 165.90 with standard deviation of 18.67.

to be robustly tolerated are specified as Δk1 = 0.2, Δk2 = 0.2,
Δk3 = 0.02, Δk4 = 0.02, Δk5 = 0.000005, Δk6 = 0.2,
Δk7 = 0.02, Δλ1 = 0.04, Δλ2 = 0.04, Δλ3 = 0.05, Δλ4 = 0.05,
Δλ5 = 0.05, Δλ6 = 0.04, and Δλ7 = 0.05. The variance of
external disturbance vi is σ2

i = (0.1)2. The feasible ranges of
kinetic parameters to be designed are specified in the range
from 0 to 1. The other parameters are set as λ1 = λ2 = λ6 =
0.0231, λ3 = λ5 = λ7 = 0.0023, λ4 = 0.0002, K = 400, and
n = 1 [8].

Given the above design specifications, our design objec-
tive is to adapt the design parameters by the proposed
evolutionary systems biology method to achieve the optimal
tracking under intrinsic parametric fluctuations and extrin-

sic noise. In this example, the parameters of evolutionary
algorithm are chosen as M = 100, pc = 0.9, and pm = 0.2.
The software MATLAB is used to perform the simulation.
After 100 generations, the best fit design parameters k∗1 =
0.6042, k∗2 = 0.8410, k∗3 = 0.9272, k∗4 = 0.2063, k∗5 =
0.00001, k∗6 = 0.8640, and k∗7 = 0.1235 are obtained by the
proposed evolutionary systems biology method with the best
fitness F(k∗) = 1.09×10−4. By Monte Carlo simulation with
50 rounds, the output of the synthetic gene network with the
design parameters under intrinsic parametric fluctuations
and extrinsic noise is shown in Figure 6(a). It can be seen that
the synthetic gene network has robust regulation ability to
achieve the desired transient behaviors in spite of uncertain
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Figure 7: Synthetic transcriptional cascade loop for repressilator. TetR represses lacI, LacI represses cI, and CI represses tetR.

initial state, kinetic parameter fluctuations, and disturbances
on the host cell. On the contrary, as shown in Figure 6(b), if
the design parameters are selected aside the optimal design
parameter k∗, for example, with k1 = 0.9, k2 = 0.6, k3 =
0.95, k4 = 0.25, k5 = 0.00002, k6 = 0.6, and k7 = 0.15
and the fitness F(k) = 3.54 × 10−5, the expression of the
synthetic gene network is with more fluctuation and cannot
achieve the desired transient behaviors. Obviously, the robust
synthetic gene network by the proposed evolutionary systems
biology method has a good robust stability to overcome the
uncertain initial conditions and an enough filtering ability
to attenuate the disturbances on the host cell and eventually
approach the desired transient behaviors.

4.2. Robust Repressilator Design. Consider the biological
repressilator (biological oscillator) as shown in Figure 7. The
repressilator is a network of three genes, whose products
inhibit the transcription of each other in a cyclical manner
[32]. The gene lacI (from E. Coli.) expresses protein LacI,
which inhibits transcription of the gene tetR. The product
of TetR inhibits the transcription of gene cI (from λ phage),
and the protein product CI in turn inhibits expression of
lacI, completing the cycle. From the scheme of coupled
repressilator in Figure 7, the mRNA dynamics is governed by
repressible transcription for three genes [32]:

dxa(t)
dt

= k1
1

μ + xnC(t)
− λ1xa(t),

dxb(t)
dt

= k2
1

μ + xnA(t)
− λ2xb(t),

dxc(t)
dt

= k3
1

μ + xnB(t)
− λ3xc(t),

(18)

where xa, xb, and xc are the concentrations of mRNA
transcribed from genes tetR, cI, and lacI, respectively; con-
centrations of the corresponding proteins are represented by
xA, xB and xC , respectively. k1, k2, and k3 are the transcription
rate in the absence of repressor and μ is the repression
coefficient. λ1, λ2, and λ3 are the respective degradation rate
of mRNA for tetR, cI, and lacI, respectively, and n is the Hill
coefficient. Followed by the transcription, the dynamics of
proteins TetR, CI and LacI is given, respectively, as [32]

dxA(t)
dt

= k4xa(t)− λ4xA(t),

dxB(t)
dt

= k5xb(t)− λ5xB(t),

dxC(t)
dt

= k6xc(t)− λ6xC(t),

(19)

where parameters k4, k5, and k6 are the translation rates of
the proteins from the mRNAs, and λ4, λ5, and λ6 represent
the dimensionless degradation rate of protein TetR, CI, and
LacI, respectively.

From the nonlinear differential equations as mentioned
above, it can be seen that the dynamics of the biological
repressilator depends on some biochemical factors, such
as the kinetic constant, degradation constant, and basal
level. However, these factors or parameters are uncertain
inherently and the biological circuit also suffers from envi-
ronmental noise. In this situation, the dynamic model of
synthetic biological circuit in vivo should be modified as
follows:

dxa(t)
dt

= (k1 + Δk1n1(t))
1

μ + xnC(t)

− (λ1 + Δλ1n3(t))xa(t) + v1,

dxb(t)
dt

= (k2 + Δk2n1(t))
1

μ + xnA(t)

− (λ2 + Δλ2n3(t))xb(t) + v2,

dxc(t)
dt

= (k3 + Δk3n1(t))
1

μ + xnB(t)

− (λ3 + Δλ3n3(t))xc(t) + v3,

dxA(t)
dt

= (k4 + Δk4n2(t))xa(t)− (λ4 + Δλ4n3(t))xA(t) + v4,

dxB(t)
dt

= (k5 + Δk5n2(t))xb(t)− (λ5 + Δλ5n3(t))xB(t) + v5,

dxC(t)
dt

= (k6 + Δλ6n2(t))xc(t)

− (λ6 + Δλ6n3(t))xC(t) + v6,

(20)

where Δki, Δλi denote the amplitudes of parameter fluc-
tuation for kinetic constant and degradation constant,
respectively. n1, n2, and n3 are random white noise with
zero mean and unit variance, which denote the independent
random fluctuation sources in transcription, translation, and
degradation process, respectively. The variances of parameter
perturbations are given as var(Δkinj) = (Δki)

2, var(Δλinj) =
(Δλi)

2, that is, Δki and Δλi represent the standard deviations
of the corresponding stochastic parameter fluctuations to be
tolerated by the synthetic gene circuit in vivo. vi denotes the
corresponding external stochastic noise with variance σ2

i .
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Figure 8: Monte Carlo simulation of biological repressilator by the proposed evolutionary systems biology method. (a) TetR; (b) CI; (c) LacI.
The parameters are specified as follows. The standard deviations of uncertain kinetic parameters and decay rates to be robustly tolerated are
specified as Δk1 = 0.2, Δk2 = 0.2, Δk3 = 0.2, Δk4 = 0.02, Δk5 = 0.02, Δk6 = 0.02, Δλ1 = 0.04, Δλ2 = 0.04, Δλ3 = 0.04, Δλ4 = 0.05,
Δλ5 = 0.05, and Δλ6 = 0.05. The variance of external disturbance vi is σ2

i = (0.03)2. The Monte Carlo simulations are performed by 50
rounds. The mean errors e are 0.85, 0.90, and 0.90 with standard deviations of 0.38, 0.38, and 0.37 for TetR, CI, and LacI, respectively.
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Figure 9: Simulation of biological repressilator: (a) TetR; (b) CI; (c) LacI. In contrast to the above design case, the design parameters are
specified aside the best fit parameter k∗, for example, with k1 = 1.5, k2 = 1.9, k3 = 1.2, k4 = 0.79, k5 = 1.1, and k6 = 0.96. In this design
case, the mean errors e are 0.91, 1.36, and 1.18 with standard deviations of 0.29, 0.35, and 0.27 for TetR, CI, and LacI, respectively.

The design specifications and parameters are given as
follows. The desired transient behaviors of biological repres-
silator are as shown in Figure 8. The standard deviations of
random fluctuations of kinetic parameters and decay rates to
be robustly tolerated are specified as Δk1 = 0.2, Δk2 = 0.2,
Δk3 = 0.2, Δk4 = 0.02, Δk5 = 0.02, Δk6 = 0.02, Δλ1 = 0.04,
Δλ2 = 0.04, Δλ3 = 0.04, Δλ4 = 0.05, Δλ5 = 0.05, and Δλ6 =
0.05. The variance of external disturbance vi is σ2

i = (0.03)2.
The feasible ranges of kinetic parameters to be designed are
specified in a range from 0 to 2. The other parameters are set
as λ1 = 0.4, λ2 = 0.4, λ3 = 0.4, λ4 = 0.5, λ5 = 0.5, λ6 = 0.5,
μ = 1.3, and n = 4.

Given the above design specifications, our design objec-
tive is to adapt the design parameters by the proposed
evolutionary systems biology method to achieve the optimal
tracking under intrinsic parametric fluctuations and extrin-
sic noise. In this example, the parameters of evolutionary
algorithm are chosen as M = 100, pc = 0.9, and pm =
0.2. The software MATLAB is used to perform the simula-
tion. After 100 generations, the best fit design parameters
k∗1 = 1.7799, k∗2 = 1.3432, k∗3 = 1.4602, k∗4 = 0.8298,

k∗5 = 1.0683, and k∗6 = 0.9337 are obtained by the proposed
evolutionary systems biology method with the best fitness
F(k∗) = 2.03. By Monte Carlo simulation with 50 rounds,
the output of the system with the best fit design parameters
under intrinsic parametric fluctuations and extrinsic noise
is shown in Figure 8. It can be seen that the synthetic gene
network has robust tracking ability to achieve the desired
transient behaviors in spite of uncertain initial state and
disturbances on the host cell. On the contrary, as shown in
Figure 9, if the design parameters are selected aside the best
fit parameter k∗, for example, with k1 = 1.5, k2 = 1.9,
k3 = 1.2, k4 = 0.79, k5 = 1.1, and k6 = 0.96 and the
fitness F(k) = 0.29, the expression of the synthetic gene
network is with more fluctuation and cannot achieve the
desired transient behaviors. Obviously, the robust synthetic
gene network by the proposed evolutionary systems biology
design method has a good tracking ability to achieve the
desired behavior, robust stability to overcome the uncertain
initial conditions, and kinetic parameters fluctuations and
an enough filtering ability to attenuate the disturbances on
the host cell and eventually approach the desired transient
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behaviors. If the parameters of decay rate λ1, . . . , λ6 are also
considered to be designed by the proposed method, then the
robust tracking performance can be improved significantly
because of more design freedom to choose. However, this will
make the design procedure more complicated.

5. Discussion

One of main challenges for synthetic biology is that the
engineered biological circuits are influenced by the effects
of unavoidable intracellular fluctuations and environmental
disturbances [17, 18, 20, 33–36]. The noise and uncer-
tainties currently hinder us from engineering synthetic
gene circuits with reliable functions. In this study, we
propose an evolutionary systems biology methodology to
select an adequate parameter set for nonlinear stochastic
gene circuit systems. The proposed algorithm can evaluate
biological parts in different combinations and configurations
for their tracking ability. Therefore, our approach may
offer a possible design guideline concerning the selection
of the optimal configuration of a robust synthetic gene
network with desired behavior. Each circuit is represented
by a set of transcription rate vector k, which in turn uses
a combination of corresponding promoters and ribosome
binding site (RBS) from preconstructed libraries [3, 7] to
satisfy the design considerations under noisy and uncertain
environment in vivo.

In the light of natural selection on traits best suited
for environmental change being an important mechanism
in evolution [24], the similar evolutionary strategy seems
more suitable to gene circuit design if we can speed up
the evolutionary process through fast parallel evolutionary
computations. Inspired by biological evolution such as
reproduction, mutation, recombination, and selection, the
evolutionary algorithm is an efficient method to solve opti-
mization problems [25]. An evolutionary systems biology
algorithm is employed here to solve the best fitness function
to gradually improve the desired behavior tracking ability
of a synthetic gene circuit design one generation by one
generation to mimic the natural selection in the evolutionary
process. Unlike the necessity of some complicated computa-
tions in the conventional design strategies, only some simple
operators (e.g., selection, crossover, and mutation) and
some simple calculations are required for selecting optimal
design parameters iteratively by the proposed evolutionary
systems biology design method, but with synthetic gene
circuit robust enough against intrinsic parameter fluctuation
and external disturbance. This attractive property makes
the proposed design method being easily implemented in
the practical applications. Since the proposed evolutionary
systems biology method has included design specifications
such as the tolerable variances of intrinsic stochastic param-
eter variations and external disturbances, the feasible ranges
of design kinetic parameters and decay rates, and the
desired steady state or transient behaviors of output y(t),
the synthetic gene circuit can be guaranteed to achieve
all possible design purposes by only solving a constrained
optimization problem in (9) by maximizing a corresponding

fitness function F(k) in (12) through evolutionary algorithm.
Though the proposed evolutionary gene circuit designs may
not produce the best tracking performance within the finite
generations of evolutionary algorithm, they are near optimal
gene circuit designs to achieve the desired behavior. There-
fore, the proposed design method has potential applications
to the synthetic gene circuit design for biotechnological
purposes in the near future.

Given the above evolution framework, we are given the
foundation to build robust biological parts. To achieve this
goal, there are many more interesting problems to be solved.
For gene circuits, it may not be feasible to implement the
optimal set of transcription rate vector k, where limited
choices are available. It could be necessary to turn the
above proposed algorithm into searching a set of biological
parts from libraries of genetic devices, but the algorithm
should remain flexible at choosing biological parts. The
other design problem comes from the assumed noise level:
an accurate estimation may not readily be available for
fluctuations of all parameters in biochemical processes.
Of course, we may start from basic operation principals
and models to calculate the fluctuation level. For example,
noise in gene regulation can be modeled from transcription
control, alternative splicing, translation, and diffusion to
biological modification reactions of transcription factors.
Such stochastic process noise can affect significantly the
dynamics of biological systems. Knowledge (and multitude
in experimental analysis and design) in this regard in fact
may help determine the flexibility of biological parts in com-
binations and configurations. However, absolute accuracy
is not required in the above design process, since we can
always include design margins into the rate parameters by
considering tracking problems outside (near) the boundary
of the noise ranges. Also, we cannot always control external
environment fluctuations. A different set of gene circuits may
be enabled through sensing environmental transcription
factors, that are designed to handle wide variety of outside
changes. Lastly but not the least, we have to consider the
complexity of interacting with other gene operations, that
may directly impact the designed circuit and cannot be
modeled as pure noise. It is certainly possible to extend the
proposed algorithm by considering relational biochemical
reactions. Still, at certain level, we would like to abstract more
information in the design process for the method to handle
larger scale biological systems.

6. Conclusion

Robust design to overcome intrinsic and external molecular
noise in vivo to achieve a desired behavior becomes an
important topic in synthetic gene networks. The contribu-
tion of the paper includes the following. (1) A stochastic
synthetic biologic circuit with the intrinsic parameter fluc-
tuations and external noise is modeled as an evolutionary
nonlinear stochastic system with the state-dependent noise
and external disturbance to mimic the stochastic behavior
of synthetic biological circuit in host cells. (2) Based
on nonlinear stochastic system and design specifications,
the design problem of robust synthetic biological circuit
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with desired behavior is transformed to an equivalent
optimal tracking problem and then a fitness optimization
problem in evolution. (3) An evolution systems biology
algorithm is proposed to tune the design kinetic parameters
(chromosomes) of synthetic gene network to achieve the
fitness optimization to some desired behaviors to mimic
the evolutionary process of biological genetic circuit to fit
the change of environment via nature selection. Finally,
several simulation results have also confirmed the robust
desired behavior tracking performance of synthetic biologic
circuits by the proposed evolutionary systems biology design
method.
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