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Abstract

In this age of rapid biodiversity loss, we must continue to refine our approaches to describing

variation in life on Earth. Combining knowledge and research tools from multiple disciplines

is one way to better describe complex natural systems. Understanding plant community

diversity requires documenting both pattern and process. We must first know which species

exist, and where (i.e., taxonomic and biogeographic patterns), before we can determine why

they exist there (i.e., ecological and evolutionary processes). Floristic botanists often use

collections-based approaches to elucidate biodiversity patterns, while plant ecologists use

hypothesis-driven statistical approaches to describe underlying processes. Because of

these different disciplinary histories and research goals, floristic botanists and plant ecolo-

gists often remain siloed in their work. Here, using a case study from an urban greenway in

Colorado, USA, we illustrate that the collections-based, opportunistic sampling of floristic

botanists is highly complementary to the transect- or plot-based sampling of plant ecolo-

gists. We found that floristic sampling captured a community species pool four times larger

than that captured using ecological transects, with rarefaction and non-parametric species

estimation indicating that it would be prohibitive to capture the “true” community species

pool if constrained to sampling within transects. We further illustrate that the discrepancy in

species pool size between approaches led to a different interpretation of the greenway’s

ecological condition in some cases (e.g., transects missed uncommon cultivated species

escaping from nearby gardens) but not others (e.g., plant species distributions among func-

tional groups were similar between species pools). Finally, we show that while using tran-

sects to estimate plant relative abundances necessarily trades off with a fuller assessment

of the species pool, it is an indispensable indicator of ecosystem health, as evidenced by

three non-native grasses contributing to 50% of plant cover along the highly modified urban

greenway. We suggest that actively fostering collaborations between floristic botanists and

ecologists can create new insights into the maintenance of species diversity at the commu-

nity scale.
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Introduction

What is the minimum sampling effort needed to adequately document plant community rich-

ness and composition? This question forms a fulcrum upon which multiple branches of plant

science have revolved for decades [1–4]. We still do not have a universal solution, because the

answer depends both on the characteristics of the sampled community and the goals of the

researcher [5]. Further, there are several dimensions of biodiversity including richness, abun-

dance, and evenness, each of which can manifest differently across temporal and spatial scales,

as well as study systems [6,7]. Given the complexity, and increasing urgency, of describing

Earth’s biodiversity, it is necessary to continue refining our sampling approaches.

Combining knowledge and research tools from multiple disciplines is one way to better

describe complex systems [8–10]. One instance where collaboration remains elusive is between

floristic botanists and plant ecologists. While these groups flank each other on the spectrum of

biodiversity scientists, they are often siloed, in part because of their different disciplinary histories

and research goals [11]. Here we explore the unique research lenses and sampling approaches

that floristic botanists and plant ecologists use to describe plant community diversity. We then

illustrate how these different approaches are complementary in describing diversity using

research conducted along an urban greenway. We close by discussing the circumstances under

which collaboration is likely to be most beneficial in this time of rapid biodiversity loss.

Understanding plant community diversity requires documenting both pattern and process.

We must first know which species exist, and where (i.e., taxonomic and biogeographic pat-

terns), before we can determine why they exist there (i.e., ecological and evolutionary pro-

cesses). Botanical specimens, which are routinely collected by floristic botanists, form the

backbone of what we know about plant taxonomy and biogeography, from species discovery

to the generation of exhaustive and meticulously vouchered local and regional floras [12] (Fig

1). While such data can in aggregate be used to test hypotheses about what shapes biodiversity,

the primary data (i.e., physical specimens and species lists) are not designed to uncover site-

level ecological processes. In contrast, ecological data are collected for the express purpose of

answering a question or testing a hypothesis [13]. This often requires statistical design and

analysis, including the use of replicated transects or plots, which are distributed in a manner

that reduces biases in the resulting data [5,14,15]. Unavoidably, this requirement drastically

shrinks the area that plant ecologists can sample [16], which has led to a multitude of papers

concerned with determining “how much sampling is enough?” (with “enough” often approxi-

mated by the asymptote on a species accumulation or rarefaction curve) [17–20].

Floristic botanists, quite powerfully, are not tied to plots. They are free to make informed

decisions about how much area must be covered to adequately sample a plant community of

interest, which can often be completely traversed using an opportunistic sampling approach.

Thus, botanical collectors can cover a considerably larger area than ecologists, thereby finding

species further out on the tail of rarity (Fig 1) and generating a better estimate of the species

pool in a given study area. Further, because botanists collect high-veracity specimens that are

in flower or fruit, they usually have the structures needed for a species-level identification.

Conversely, as part of their effort to reduce sampling biases, ecologists must identify every-

thing captured in a plot regardless of phenological stage, potentially reducing the veracity of

the identification or constraining it to the genus level (especially for graminoids). Still, ecolo-

gists typically capture the most abundant species in a community, with such species often driv-

ing ecological processes including nutrient cycling and response to disturbances like fire and

grazing [21]. Importantly, only by using plot- or transect-based approaches can researchers

move beyond documenting plant presence (richness) to quantitatively relating plant relative

abundances to environmental variation.
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Here we illustrate that the sampling approaches of botanists and ecologists are complemen-

tary, with the former providing critical context about the community species pool, and the lat-

ter layering on quantitative data for a subset of abundant species. We demonstrate the utility

of implementing both approaches with a case study from an urban greenway in Colorado,

USA. First, we compare species richness estimates generated using opportunistic sampling to

those generated using ecological (line-point intercept) transects, assuming that the intensive

floristic search will best approximate the “true” community species pool (sensu [28]). We then

use rarefaction and species richness estimation to determine how closely the transect-based

species-pool estimate reflects the larger species pool. This opportunistic versus bounded com-

parison of species pools is unusual (although not unique; see [5,22] for examples with mosses

and lichens), with most vascular plant studies instead using plots of increasing size to estimate

species pools [23]. Second, we explore whether the composition of the species pools captured

by each approach leads to different ecological interpretations of the greenway’s flora. To this

end, we compare the taxonomic coverage of each approach, as well as how species are distrib-

uted in relationship to functional group, biogeographic origin, floristic quality (based on Coef-

ficients of Conservatism), and Wetland Indicator Status. Third, we integrate abundance

estimates from the ecological transects into our interpretation of the greenway’s ecological

condition to show that abundance is a desirable, if not necessary, complement to richness in

Fig 1. Conceptual diagram illustrating the different research foci, sampling approaches, and research outputs of

floristic botanists and plant ecologists, placed within the context of the species-rank abundance curve. This curve

typifies many plant communities in which a few species are common, while many species are rare. Plant ecology

research often focuses on common species that drive ecological processes. Describing these processes requires transects

or plots that allow for statistical hypothesis-testing to answer specific questions. This approach necessarily shrinks the

area that can be sampled, causing species far out on the tail of rarity to be missed. Conversely, floristic botany focuses

on species discovery, taxonomy, systematics, and the building of floras, which do not rely on statistically designed field

sampling. This frees floristic botanists to search exhaustively for unique species in a study area, moving them farther

out on the tail of rarity for a better estimate of a site’s “true” species pool. Each approach yields unique outputs. For

example, the ecological approach may quantify contemporary relationships between plant relative abundances and

their environment (top left of figure), while the floristic approach generates specimens, phylogenies, or floras with

species distribution maps (top right of figure). The research outputs of each field could be more mutually informative

(cycling arrows), e.g., if a collected specimen was linked to a plot-based estimate of that species relative abundance at

the collection location.

https://doi.org/10.1371/journal.pone.0244982.g001
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any setting with applied conservation or management goals. Finally, we highlight areas of

opportunity for collaboration between floristic botanists and plant ecologists.

Methods

Study system and field sampling

We sampled plant communities along the High Line Canal greenway, a 66-mile recreational

trail that passes through 11 municipalities in the Denver-Metro area of Colorado. The trail

runs alongside a 71-mile earthen canal (owned by Denver Water), which was excavated in the

late 1800s to support agriculture and human settlement in what was historically native plains

and foothills shrubland vegetation (see S1 Fig for a map of the greenway in relationship to

EPA Ecoregions). The greenway thus represents a human-created waterway that is highly

managed, yet supports a species pool that contains native flora (see [24] for habitat

descriptions).

The greenway’s length (with the Canal’s inception located at 39.48362, -105.11293) is

demarcated by mile markers that we used to generate a random subset of 45 locations at which

the botanical and ecological field crews could synchronize their data collection. As is typical

for collections-based floristic surveys, the botanical crew sampled exhaustively from early

spring (7 May) through late summer (28 September) to capture early-, middle-, and late-sea-

son species. Starting at each of the 45 mile markers, the crew walked in the Canal’s down-

stream direction, searching the greenway for newly encountered species to collect and

accession to the Kathryn Kalmbach Herbarium (KHD) at Denver Botanic Gardens [25]. Per-

mission to collect plant specimens was provided by Denver Water. Most mile marker locations

were sampled once during the inventory, but a few were revisited if they occurred in a vegeta-

tion type that would not be re-encountered later in the season at the other mile markers (e.g.,

mile markers zero and one at the inception of the Canal were the only locations in the foothills

shrubland Ecoregion; S1 Fig).

We used a staggered sampling design in which 5 mile markers spanning the southwestern

to northeastern extent of the Canal were sampled every other week from May to September.

The floristic survey was carried out over 57 days, comprising 850 search-hours and an esti-

mated distance covered of 42 miles (calculated from our daily starting and stopping waypoints

logged with a GPS unit; S2 Fig). The botanical crew consisted of two botanists trained in the

local flora and one to two additional non-botanists who assisted with specimen collection. All

members of the crew searched for species within an ~50 to 75-foot-wide viewshed moving

from the bed of the Canal, up the Canal bank, across the greenway trail, and over to the prop-

erty line that marked the end of Denver Water’s ownership (S3 Fig). High-veracity (with iden-

tifying structures) herbarium specimens were accessioned for every species encountered

during the floristic survey (numbering 1570 specimens, including duplicates; collections data

available; 26). Identifications were made using [27–29].

The ecological sampling was carried out over 10 days, from May 22, 2018 to June 6, 2018, to

capture a snapshot of plant communities around peak biomass. This method of deploying a

concerted sampling effort over a short time period is common in ecological sampling, because

it is often of interest to detect treatment differences that could be obscured by confounding

time lags between sample dates (as opposed to the floristic botany goal of exhaustively delineat-

ing a species pool over time). At each of the 45 miles markers, we laid a 12 m × 2 m transect,

the length of which captured habitat variation across the greenway corridor (S3 Fig). We used

the line-point intercept method [30] to make field observations of plant species presence every

0.25 m along the 12 m transect (as well as bare ground, plant litter, and rocks, which we do not

report herein) [31]. In the associated data set [32], the “first hit” was used to generate the
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reported percent cover estimates (number of hits per species per total number of hits), while

the “second hit” was used to add species to our presence list. We also searched each of the two,

one-meter-wide belt transects for additional species that were not encountered along the line-

point transect. Voucher specimens were collected for the species encountered during the

observational ecological sampling (collected outside the transects so as not to influence long-

term sampling). However, given the short time period of the ecological sampling, not all speci-

mens had flowers or fruits, and therefore were not of sufficient quality to be curated. All speci-

mens were kept during the field season and subsequent analyses to facilitate identifications,

but only higher quality specimens were accessioned to the herbarium [collections data avail-

able; 32]. Please note that one example specimen exists for potentially hundreds of field obser-

vations (i.e., each time a species was encountered along the transects).

We chose the line-point method as the most appropriate for our system, with its narrow

and steep canal bank that could not accommodate other plot designs. Additionally, our aim

with the ecological transects was to estimate not only species presence, but also composition.

For questions about composition, the line-point method is highly repeatable across individuals

and rapidly deployed, thereby maximizing sampling replicates across many locations in a sin-

gle season [30]. Such transects will capture fewer species than other methods (e.g., Modified-

Whitaker plots); however, any bounded sampling approach will cover considerably less area

than can be achieved with opportunistic sampling based in the floristic tradition of using the

habitat itself as the sampling unit [5]. Importantly, we note that it was not our goal to equalize

the temporal or spatial scales of the two sampling approaches (which in our experience is not

often done in practice), but rather to sample in a manner that is broadly consistent with collec-

tions-based versus ecological disciplines. The particulars of our comparison, such as the sam-

pling window and the use of transects rather than any number of plot types, contextualize the

results.

Community species pools and ecological metrics

We first estimated the species pools captured by the collections-based floristic and quantitative

ecological sampling approaches, and then compared the pools in ecologically meaningful

ways. Species pools are hierarchical and scale dependent, having been variously defined, but

they are typically partitioned from larger scale (regional pools), to mid-scale (local pools), to

smaller scale (actual or community pools). Here, we define a community species pool accord-

ing to [33] as “the set of species present in a target community,” with our target community

being the urban greenway. We consider the species found during the intensive floristic sam-

pling as a best estimate of the greenway’s “true” community species pool and expect that the

ecological transects will capture a subset of this larger pool. (We acknowledge that even the

intensive floristic sampling will not capture the true pool, but the goal is to employ realistic

sampling schemes used in botanical floristics and plant ecology to see how they compare).

After delineating the species pools, we chose several ecologically informative metrics to

compare them: species distributions among families; plant functional group based on longevity

and growth form; floristic quality (based on Coefficients of Conservatism or C values) [34];

Wetland Indicator Status [35]; and biogeographic origin (assigned as native or introduced to

Colorado according to [27], and if introduced, whether it is cultivated). Plant functional

groups are extensively used to aggregate large numbers of species into a few classes that are

expected to respond similarly to changes in their environment, or to similarly affect their envi-

ronment [36–38]. Floristic Quality Analysis is often used in the conservation realm to assess

an area’s conservation value [34]. Sites with high floristic quality are relatively pristine, having

departed little from the disturbance regime that existed prior to European settlement. Related
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to this, species in a community can be ranked on a scale of zero to 10 according to their “con-

servatism,” or their fidelity to habitats that are more (or less) degraded by human use. Species

that can only persist in undegraded, native habitats are assigned high C values, while ruderal

species, which can withstand substantial degradation, are assigned low scores (rankings below

adapted from [39]).

0–3: Introduced species (always = 0), plus native species that occur in moderately to highly

degraded sites (1–3)

4–6: Native species that show some affinity to natural areas and are often dominant or are

present across a wide range of habitats and environments

7–8: Native species associated mostly with natural areas, but that can sometimes persist in

degraded habitat

9–10: Native species that tolerate very little or no habitat degradation

Wetland Indicator Status ranks species according to their dependence on saturated soils, or

wetland conditions. This metric is meaningful in our study system because the Canal repre-

sents a novel waterway in an otherwise semi-arid landscape. The status rankings are as follows.

1) Obligate Wetland: almost always a hydrophyte, rarely found in uplands; 2) Facultative Wet-

land: usually a hydrophyte but occasionally found in uplands; 3) Facultative: commonly occurs

as either a hydrophyte or non-hydrophyte; 4) Facultative Upland: occasionally a hydrophyte,

but usually occurs in uplands; 5) Upland: rarely a hydrophyte, almost always found in uplands

[40]. Our study area occurs on the interface of the Western Mountain Valleys and Coasts and

Great Plains regions, which can occasionally have different wetland indicators assigned for the

same species. If there was a discrepancy between regions, we chose the more hydrophilic

option to generate a conservative list in terms of species reliance upon water.

Data analysis

We calculated the expected number of species in our pooled samples using species rarefaction.

The rarefaction curve was produced from 1000 random resamples drawn without replacement

from the pool of species in the transects. We extrapolated out to 1.5X the original sample size

(68 transects), as extrapolation past doubling or tripling of the reference sample size is not rec-

ommended due to increased uncertainty [41]. Asymptotic species richness was estimated

using the Chao2 estimator in EstimateS version 9.1.0 [42] using the incidence of each species

within each sampling transect.

We used Pearson’s Chi-square tests of independence ([43]; chisq.test in R v. 3.6.2) to

explore whether the floristic and ecological sampling approaches generated different distribu-

tions of species in relationship to taxonomic coverage, functional groups, C values, Wetland

Indicator Status, and biogeographic origin. For each data set (floristic and ecological) we

summed species frequencies from the 45 mile markers to alleviate low cell counts within mile

markers. When the sampling approaches generated significantly different (P� 0.05) distribu-

tions of species among groups, we used the adjusted standardized residuals to assess which

groups contributed to the disparity (with residuals exceeding an absolute value of approxi-

mately 2 considered important; [44]). We could not assign functional groups to nine species

that were only identified to the level of genus. We also could not assign C values to a subset of

species that did not have them available (n = 18 species or 4% of all collections and six species

or 5% from transects). The same was true for Wetland Indicator Status, in particular for culti-

vated species, which are not assigned this type of indictor (n = 76 species, or 17% of all collec-

tions, and 10 species, or 8% from transects).
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For the purpose of assessing species composition along the greenway, we calculated abun-

dance using percent cover from the ecological transects. Abundance estimates were calculated

by taking the number of hits per species divided by the total number of hits sampled over the

entire Canal [raw data available; 31].

Results

We found 452 species using the opportunistic sampling approach used in floristic botany [col-

lections data available; 45] and 126 species using ecological transects (see S1 Table for full spe-

cies list). Species richness modeled from the transect data underestimated the floristic estimate

by 41% (mean = 184; 95% CI lower bound = 151; 95% CI upper bound = 253; Fig 2). This

marked underestimate manifested despite using the Chao2 estimator, which statistically

accounts for the fact that uncommon species will likely be missed. The species rarefaction

curve showed that a 51% increase in our sampling effort, from 45 to 68 transects, would only

capture 31% of the species pool observed during the opportunistic sampling (mean = 141; 95%

CI lower bound = 125; 95% CI upper bound = 157; Fig 2). While neither the species rarefaction

curve nor the Chao2 estimator reached a definitive asymptote (although they were distinctly

leveling off), our transect sampling effort was based on what we could reasonably achieve with

the available financial and personnel resources. We expect that other researchers are similarly

constrained in most applied situations.

The taxonomic coverage of the ecological versus botanical sampling became less complete

moving hierarchically from family, to genus, to species (with transects capturing 50% of fami-

lies [39 versus 78], 36% of genera [103 versus 289], and 28% of species [126 versus 452]; see S4

Fig for species distributions among families). The distribution of species among functional

groups was statistically similar for the two sampling approaches (Fig 3A; χ2 = 5.6, df = 7,

P = 0.59), although perennial grasses were weakly over-represented (by 6%) along transects,

reflecting the pattern found for family distributions (see Poaceae, S4 Fig). The floristic quality

of the greenway, based on the distribution of species among C values (Fig 3B; χ2 = 9.9, df = 10,

P = 0.45), did not differ significantly between the two sampling approaches. Wetland Indicator

Status significantly differed (Fig 3C; χ2 = 10.6, df = 4, P = 0.03), with transects underestimating

obligate wetland species by 5% (adjusted residuals = -2.05) and upland species by 10%

(adjusted residuals = 2.0) relative to the larger species pool. In terms of biogeographic origin,

the transects over-estimated (although non-significantly) the proportion of introduced species

(55%) relative to the opportunistic sampling (46%; χ2 = 2.75, df = 1, P = 0.10). The composi-

tion of introduced species captured by the two approaches differed in an important respect,

with the floristic approach capturing a substantial number of uncommon, non-native garden

cultivars (79 cultivars out of 208 introduced species, or 38%) that the transects missed (four

cultivars out of 68 introduced species, or 6%).

In terms of abundance, the greenway revealed a typical species-rank abundance curve in

which a few species dominated, while a long tail of uncommon species contributed to species

richness (Fig 4). The three most abundant species, which comprised ~50% of plant cover dur-

ing our sampling window, were three non-native grasses: Bromus inermis L. (smooth brome),

Bromus tectorum L. (cheatgrass), and Agropyron cristatum (L.) Gaertn. (crested wheatgrass).

Discussion

Here we illustrate that sampling approaches from floristic botany and plant ecology capture

complementary dimensions of biodiversity. As hypothesized, opportunistic sampling gener-

ated a markedly more robust (nearly four times larger) empirical estimate of the greenway’s

community species pool than did the transects. Yet, the transects revealed that only three
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species of introduced grasses comprised 50% of plant cover at the time of sampling. Generat-

ing this critical indicator of the greenway’s ecological condition necessarily traded off with a

fuller assessment of the species pool. This long-acknowledged trade-off is typically addressed

by using rarefaction and accumulation curves and species richness estimators based on tran-

sect or plot data [46]. Our findings suggest that for sampling designs with limited areal cover-

age, such tools may not adequately capture the long tail of uncommon species that contribute

disproportionately to species richness [13,47,48]. This issue was raised by Heilmann-Clausen

and Læssøe [49], who clarified that species accumulation curves and species richness estima-

tors address “how many species will be recorded if [a particular] sampling regime is followed

in perpetuity or extended to cover all available habitat,” rather than telling the size of the spe-

cies pool in the system. Related, Newmaster et al. (2005) illustrated that rarefaction and Chao

estimates of common forest moss species reached an asymptote at small sample sizes (25

plots), while estimates of richness for rare species never leveled off. Thus, the very transect- or

plot-based studies that often rely on estimator tools to determine the completeness of sampling

likely produce underestimates of the true species pool [50,51]. Of course, many ecological

questions can be rigorously answered without exhaustive documentation the species pool.

Still, it is worthwhile to address these interpretive nuances when presenting results based on

species estimators.

The question then becomes whether and when the transect-based sampling constraint, and

any attendant underestimate of the species pool, affects how the ecology of the sampled area is

interpreted (at least in terms of species richness). To assess this, we grouped species into eco-

logically meaningful categories to reduce complexity and uncover general patterns that are

independent of species identity per se [52,53]. We found that based on functional groups and

floristic quality (i.e., C-values), the ecological condition of the greenway appears similar

between the two species pools. This comparable delineation of functional groups is especially

Fig 2. Species richness estimated using transect-based rarefaction (black line shown with 95% CI in red shading)

based on 45 sampled transects and extrapolated up to 68 transects (values after the vertical black line). An

asymptotic richness estimate was calculated using the Chao2 estimator (grey line with 95% CI in green shading).

https://doi.org/10.1371/journal.pone.0244982.g002
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Fig 3. A-C. Distribution of species captured by the floristic botany (collections) and ecological (transects) sampling

approaches in relationship to functional groups, floristic quality (based on Coefficients of Conservatism or C values),

and Wetland Indicator Status. The distribution of species among functional groups and C values did not significantly

differ, while the distribution among wetland indicator status differed. Functional groups: PF = perennial forb;

W = woody (and perennial); AF = annual forb; PG = perennial grass; VFG = variable forbs and grasses (annual to

short-lived perennials; includes only two species of grasses); AG = annual grass; BF = biennial forb. Wetland Indicator

Status: OBL = obligate wetland; FACW = facultative wetland; FAC = facultative; FACU = facultative upland;

UPL = upland. See text for statistics and definitions of C values and wetland indicators.

https://doi.org/10.1371/journal.pone.0244982.g003
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desirable given that functional group identity and diversity are routinely used to gauge com-

munity response to disturbances such as fire and biological invasions [54,55]. In our system,

functional traits such as longevity and woodiness (and attendant traits like rooting depth)

likely shape soil and hydrologic conditions along the Canal banks. In terms of floristic quality,

both sampling approaches captured the bell-shaped distribution of native species and similarly

indicate that few conservative (C-value of 7 or more) species remain along this highly modified

urban corridor. These findings corroborate previous work showing that floristic quality per-

forms well when using transects or plots, because mean C-values are less dependent on the

area sampled than is species richness [34].

While transects robustly captured patterns associated with functional groups and floristic

quality, differences between the sampling approaches arose for Wetland Indicator Status and

the presence of uncommon cultivated species. In particular, patchily distributed wetland areas

and the obligate wetland species they harbor went largely undetected by the transects. This is a

non-trivial miss in a Canal system where episodic drought and various management strategies

strongly affect the hydrologic regime and thus persistence of sensitive wetland areas. Transects

also failed to detect the nascent incursion of garden plants from adjacent private properties

onto the Canal banks, potentially hindering Early Detection and Rapid Response (EDRR)

management interventions [56,57]. These examples illustrate that without knowing the more

Fig 4. Species relative abundances (percent cover) estimated using the ecological transects showing that only three

species (the introduced grasses Bromus inermis L., Bromus tectorum L., and Agropyron cristatum (L.) Gaertn.)

made up nearly half of the greenway’s percent cover during the 2018 sampling window. Compare with the

conceptual diagram of the species-rank abundance curve in Fig 1.

https://doi.org/10.1371/journal.pone.0244982.g004
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complete species pool, the ability to thoroughly uncover sensitive ecological conditions along

the greenway would be hampered. Still, if only species richness from the floristic inventory

were used to assess the greenway, the high abundance of non-native grasses would go unre-

ported. Without these abundance data, it would be impossible to assess costs associated with

potential control or revegetation efforts, as well as to relate these dominant grasses to ecologi-

cal processes of interest. For example, we are currently asking how the implementation of

green stormwater infrastructure will affect vegetation along the Canal banks, and in turn, how

in situ vegetation will affect stormwater infiltration, retention, and removal of pollutants. We

are now positioned to take a two-pronged approach to this question by exploring how the

most abundant species might shape stormwater dynamics, while also integrating information

about the identity and location of uncommon species likely to be particularly responsive to

hydrologic changes (e.g., obligate wetland species) and disturbance from infrastructure instal-

lations (e.g., establishing individuals of ruderal non-natives).

Broadening out from our greenway example, when should floristic botanists and ecologists

develop on-the-ground collaborations to better describe contemporary biodiversity? We sug-

gest that any question about the maintenance of community-level species diversity would ben-

efit from a paired approach, as it is ultimately the interplay of local (competition, predation,

microenvironmental variation) and regional (immigration and extinction) processes that

shape biodiversity [58–60]. To better integrate across spatial scales, it would be powerful to

link quantitative data from bounded sampling to floristically based best estimates of the com-

munity species pool that functions as the backdrop for species immigration into embedded

transects or plots. (While many terrestrial plant studies sample hierarchically across plot sizes

to infer species pool sizes, they fall short of breaking free of plots to approach a comprehensive

site- or habitat-level survey; [23]). Moreover, pairing floristic and ecological approaches

addresses the call for increased metric complementarity in assessing biodiversity [61]. In par-

ticular, the historically heavy reliance upon species richness as a sole indicator of ecosystem

health or biodiversity change has proven insufficient, as it fails to capture changes in other key

phenomena such as species turnover and changes in species relative abundances [61,62]. Re-

imagining floristic surveys of species richness as integral components of hypothesis-driven

ecological work that uses other metrics can lead to new insights.

For example, to achieve metric complementarity in a restoration context, a floristic inven-

tory could be used to assess the feasibility of passive restoration (which depends on the com-

munity species pool; [63,64]), while paired ecological sampling could quantify the degree of

habitat degradation and monitor effectiveness of restoration efforts. Invasive species manage-

ment would also benefit from a combined sampling approach, where initial arrivals of rare

introduced species to an area are captured during unbounded floristic sampling bouts, while

the spread and population biology of already established populations are monitored using

transects or plots. Indeed, integrating researchers versed in alpha taxonomy is critical in inva-

sion biology, as the resolution of taxonomically challenging groups, including those that

hybridize, is critical to proper ecological interpretation [10]. A further boon of integrating flo-

ristic botany into settings where the species pool is of interest is excellent temporal sampling of

early- to late-season bloomers, which can be missed using the “peak biomass” approach typical

of ecological sampling [65]. Moreover, validation of transect- or plot-based data with vouch-

ered specimens is tantamount to institutional knowledge that can be readily accessed by all

researchers who carve out projects from a particular locale. The long-standing specimen and

data curation practices used in natural history collections have achieved a level of standardiza-

tion and data-sharing not yet realized in the ecological realm. However, improvements are

being made in this arena, such as the application of the event-based Darwin Core data stan-

dard when publishing ecological data, as we have done herein [26,45].
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To most informatively link plot- and site-scale diversity data, best practices would be to

pair the replicable plot data with equally replicable floristic sampling of the community species

pool [e.g., 22,62,63]. Collections-based floristic botany has not fully adopted standardized field

sampling practices across individual collectors [66], which can limit the use of collections data

for analyzing hypothesis-driven questions about community-level change in diversity [67].

The value of specimens and species lists generated using the opportunistic sampling approach

could be increased by reporting the spatial extent of the surveyed area [68], as well as the

intended goal of the collection event (e.g., an exhaustive inventory [implying species absence]

versus targeted sampling based on an investigator’s taxa of interest). Such reporting practices

can be achieved within the Ecological Metadata Language standard contained within a data

package [69] and would provide additional context for downstream uses of aggregated data

(e.g., species pool estimates derived from geo-referenced specimen databases) [70]. However,

it must be considered that standardizing collections data (or at least reporting accurate areal

coverage of survey sites) requires some degree of bounding that is both time-consuming and

at odds with maximizing the number of species encountered [68]. Thus, it may only be worth

bounding collections-based sampling when the specific question calls for it (e.g., quantifying

immigration into experimental plots from the surrounding species pool).

Our experience is that physical collections are not often considered by ecological principal

investigators as essential to their field protocols (despite substantial movement in this direction

by, e.g., the National Ecological Observatory Network). This is partly because it is no small

task to integrate the disparate training, project planning, data curation, and analyses imple-

mented in floristic botany and ecology [71–73]. Thus, cross-disciplinary partnerships across

non-profit, governmental, and academic institutions are key. We suggest that ecologists reach

out to their campus or regional herbaria, connect with curators and collections managers, and

dedicate a line item in their research budgets for vouchered floristic (or faunistic) surveys of

their study sites (see [74] for discussion of under-funding in collections-based research). We

similarly suggest that curators and collections managers build relationships with ecology prin-

cipal investigators and members of their labs, sharing their skills as integral assets to be

included a priori into the proper design of biodiversity-focused ecological fieldwork (i.e., it is

imperative to quash the “end-user mode” attitude that views botanists as simply providing

identification services to those who use their keys and field guides [75,76]). For example, gaps

in biodiversity data, including both species discovery and ecological monitoring, are high in

tropical relative to temperate ecosystems [77,78], and would thus be best addressed by teams

of floristic botanists and ecologists. As large-scale digitization of collections data has revealed,

there are myriad, previously unimaged ways that natural history collections can inform eco-

logical questions [79]. We believe our understanding of biodiversity 100 years from now can

only benefit from thoughtful co-exploration of today’s ecosystems by floristic botanists and

ecologists.

Supporting information

S1 Fig. Map of High Line Canal greenway in relationship to US EPA level IV Ecoregions.

The “Character Zones” overlaid on the Ecoregions represent large-scale variation from the

southwest to the northeast of the greenway, characterized by a transition from foothills to

plains habitat, which is in turn overlaid by different degrees of land use intensity. These habitat

and land use factors shape the “character” of the greenway, as the viewshed changes in rela-

tionship to topography, type and density of vegetation, and the type and density of surround-

ing development.

(TIF)
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S2 Fig. Map of greenway extent covered during the opportunistic floristic sampling as

measured by daily starting and stopping waypoints logged with a GPS unit. The “Character

Zones” overlaid on the satellite imagery represent large-scale variation from the southwest to

the northeast of the greenway, characterized by a transition from foothills to plains habitat,

which is in turn overlaid by different degrees of land use intensity. These habitat and land use

factors shape the “character” of the greenway, as the viewshed changes in relationship to

topography, type and density of vegetation, and the type and density of surrounding develop-

ment.

(TIF)

S3 Fig. Schematic of ecological transect orientation in relationship to High Line Canal

greenway.

(TIF)

S4 Fig. Species distributions among the most common families observed along the High

Line Canal greenway in Colorado, USA, using floristic botany (opportunistic) and ecologi-

cal (transect-based) sampling approaches.

(TIF)

S1 Table. List of species found using the floristic collections-based versus ecological tran-

sect-based sampling approaches.

(XLSX)
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38. Pérez-Harguindeguy N, Dı́az S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, et al. New handbook

for standardised measurement of plant functional traits worldwide. Aust J Bot. 2013; 61: 167–234.

https://doi.org/10.1071/BT12225

39. Rocchio J, Anderson D, Buckner D, Carsey K, Clark D, Coles J, et al. Floristic quality assessment indi-

ces for Colorado plant communities. Color Nat Herit Program, Color State Univ. 2007; 1: 1–245.

40. Lichvar R, Banks D, Kirchner W, Melvin N. The National Wetland Plant List: 2016 wetland ratings. Phy-

toneuron. 2016; 30: 1–17.

41. Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, et al. Models and estimators linking indi-

vidual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant

Ecol. 2012; 5: 3–21. https://doi.org/10.1093/jpe/rtr044

42. Colwell R. EstimateS: Statistical estimation of species richness and shared species from samples.

2016;Version 9. http://viceroy.eeb.uconn.edu/estimates/index.html

43. Mchugh ML. The Chi-square test of independence. Biochem Medica. 2013; 23: 143–9. https://doi.org/

10.11613/bm.2013.018 PMID: 23894860

44. Sharpe D. Chi-square test is statistically significant: Now what? Pract Assessment, Res Eval. 2015; 20:

1–10.

45. GBIF Occurrrence at GBIF.org. 2020.

46. Chao A, Colwell RK, Lin C, Gotelli NJ. Sufficient sampling for asymptotic minimum species richness

estimators. Ecology. 2009; 90: 1125–1133. https://doi.org/10.1890/07-2147.1 PMID: 19449706

47. Ulrich W, Kusumoto B, Fattorini S, Kubota Y. Factors influencing the precision of species richness esti-

mation in Japanese vascular plants. Divers Distrib. 2020; 26: 769–778. https://doi.org/10.1111/ddi.

13049

48. Chiarucci A, Enright NJ, Perry GLW, Miller BP, Lamont BB. Performance of nonparametric species rich-

ness estimators in a high diversity plant community. Divers Distrib. 2003; 9: 283–295. https://doi.org/10.

1046/j.1472-4642.2003.00027.x

49. Heilmann-Clausen J, Læssøe T. On species richness estimates, climate change and host shifts in

wood-inhabiting fungi. Fungal Ecol. 2012; 5: 641–646. https://doi.org/10.1016/j.funeco.2011.10.003

50. Palmer M. The estimation of species richness by extrapolation. Ecology. 1990; 71: 1195–1198.

51. Chao A, Chiu C-H. Nonparametric estimation and comparison of species richness. eLS. Chichester:

John Wiley & Sons, Ltd; 2016. pp. 1–11.

52. Cadotte MW, Carscadden K, Mirotchnick N. Beyond species: Functional diversity and the maintenance

of ecological processes and services. J Appl Ecol. 2011; 48: 1079–1087. https://doi.org/10.1111/j.1365-

2664.2011.02048.x

PLOS ONE Combining botanical collections and ecological data to describe plant diversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0244982 January 7, 2021 15 / 17

https://doi.org/10.17504/protocols.io.4jmguk6
https://doi.org/10.5061/dryad.15dv41nw6
https://doi.org/10.2307/1479085
https://doi.org/10.1002/ecs2.2825
http://wetland-plants.usace.army.mil/nwpl_static/v34/species/species.html?DET=001100
http://wetland-plants.usace.army.mil/nwpl_static/v34/species/species.html?DET=001100
https://doi.org/10.1111/nph.13623
http://www.ncbi.nlm.nih.gov/pubmed/26352461
https://doi.org/10.1071/BT02124
https://doi.org/10.1071/BT12225
https://doi.org/10.1093/jpe/rtr044
http://viceroy.eeb.uconn.edu/estimates/index.html
https://doi.org/10.11613/bm.2013.018
https://doi.org/10.11613/bm.2013.018
http://www.ncbi.nlm.nih.gov/pubmed/23894860
https://doi.org/10.1890/07-2147.1
http://www.ncbi.nlm.nih.gov/pubmed/19449706
https://doi.org/10.1111/ddi.13049
https://doi.org/10.1111/ddi.13049
https://doi.org/10.1046/j.1472-4642.2003.00027.x
https://doi.org/10.1046/j.1472-4642.2003.00027.x
https://doi.org/10.1016/j.funeco.2011.10.003
https://doi.org/10.1111/j.1365-2664.2011.02048.x
https://doi.org/10.1111/j.1365-2664.2011.02048.x
https://doi.org/10.1371/journal.pone.0244982


53. Hooper D, Solan M, Symstad S, Diaz S, Gessner M, Buchmann N, et al. Species diversity, functional

diversity and ecosystem functioning. Biodivers Ecosyst Funct Synth Perspect. 2002; 17: 195–208.

https://doi.org/10.1126/science.312.5775.846a PMID: 16690842

54. Symstad A. A test of the effects of functional group richness and composition on grassland invasibility.

Ecology. 2000; 81: 99–109.

55. Enright NJ, Fontaine JB, Lamont BB, Miller BP, Westcott VC. Resistance and resilience to changing cli-

mate and fire regime depend on plant functional traits. J Ecol. 2014; 102: 1572–1581. https://doi.org/10.

1111/1365-2745.12306

56. Westbrooks R. New approaches for early detection and rapid response to invasive plants in the United

States. Weed Te. 2004; 18: 1468–1471.

57. Reaser JK, Burgiel SW, Kirkey J, Brantley KA, Veatch SD, Burgos-Rodrı́guez J. The early detection of

and rapid response (EDRR) to invasive species: a conceptual framework and federal capacities assess-

ment. Biol Invasions. 2020; 22: 1–19. https://doi.org/10.1007/s10530-019-02156-w

58. Loreau M, Mouquet N. Immigration and the maintenance of local species diversity. Am Nat. 1999; 154:

427–440. https://doi.org/10.1086/303252 PMID: 10523489

59. Collins SL, Glenn SM, Briggs JM. Effect of local and regional processes on plant species richness in tall-

grass prairie. Oikos. 2002; 99: 571–579.

60. Caley MJ, Schluter D. The relationship between local and regional diversity. Ecology. 1997; 78: 70–80.

61. Hillebrand H, Blasius B, Borer ET, Chase JM, Downing JA, Eriksson BK, et al. Biodiversity change is

uncoupled from species richness trends: Consequences for conservation and monitoring. J Appl Ecol.

2018; 55: 169–184. https://doi.org/10.1111/1365-2664.12959

62. Hill SLL, Harfoot M, Purvis A, Purves DW, Collen B, Newbold T, et al. Reconciling biodiversity indicators

to guide understanding and action. Conserv Lett. 2016; 9: 405–412. https://doi.org/10.1111/conl.12291

63. Holl KD, Aide TM. When and where to actively restore ecosystems? For Ecol Manage. 2011; 261:

1558–1563. https://doi.org/10.1016/j.foreco.2010.07.004

64. Sundermann A, Stoll S, Haase P. River restoration success depends on the species pool of the immedi-

ate surroundings. Ecol Appl. 2011; 21: 1962–1971. https://doi.org/10.1890/10-0607.1 PMID: 21939037
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