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Abstract: Concrete is an economical and efficient material for attenuating radiation. The potential of
concrete in attenuating radiation is attributed to its density, which in turn depends on the mix design
of concrete. This paper presents the findings of a study conducted to evaluate the radiation attenuation
with varying water-cement ratio (w/c), thickness, density, and compressive strength of concrete.
Three different types of concrete, i.e., normal concrete, barite, and magnetite containing concrete,
were prepared to investigate this study. The radiation attenuation was calculated by studying the
dose absorbed by the concrete and the linear attenuation coefficient. Additionally, artificial neural
network (ANN) and gene expression programming (GEP) models were developed for predicting the
radiation shielding capacity of concrete. A correlation coefficient (R), mean absolute error (MAE), and
root mean square error (RMSE) were calculated as 0.999, 1.474 mGy, 2.154 mGy and 0.994, 5.07 mGy,
5.772 mGy for the training and validation sets of the ANN model, respectively. Similarly, for the GEP
model, these values were recorded as 0.981, 13.17 mGy, and 20.20 mGy for the training set, whereas
the validation data yielded R = 0.985, MAE = 12.2 mGy, and RMSE = 14.96 mGy. The statistical
evaluation reflects that the developed models manifested close agreement between experimental and
predicted results. In comparison, the ANN model surpassed the accuracy of the GEP models, yielding
the highest R and the lowest MAE and RMSE. The parametric and sensitivity analysis revealed the
thickness and density of concrete as the most influential parameters in contributing towards radiation
shielding. The mathematical equation derived from the GEP models signifies its importance such that
the equation can be easily used for future prediction of radiation shielding of high-density concrete.

Keywords: concrete; water-cement ratio; radiation shielding; compressive strength; artificial neural
network; gene expression programming

1. Introduction

The harnessing of energy released during nuclear reactions can be rightly called an
important milestone in technological development. Over time, nuclear technology has
found its way into several fields; medical science is one of them. Nuclear technology
entails the emission of radionuclides such as gamma rays, X-rays, and neutrons. These
radionuclides pose a serious risk to all living things, particularly human beings. Nuclear
radiation has the potential to destroy living cells, the building blocks of human beings,
hence warranting shielding against their destructive action [1,2]. Protecting humans,

Materials 2022, 15, 4573. https://doi.org/10.3390/ma15134573 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15134573
https://doi.org/10.3390/ma15134573
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-6524-4389
https://orcid.org/0000-0002-4317-3978
https://orcid.org/0000-0003-0854-1381
https://orcid.org/0000-0001-7994-4642
https://orcid.org/0000-0002-0609-068X
https://orcid.org/0000-0002-4310-2571
https://doi.org/10.3390/ma15134573
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15134573?type=check_update&version=2


Materials 2022, 15, 4573 2 of 19

structures, and equipment from the harmful effects of radiation is an important concern
in nuclear engineering. Due to the increasing use of nuclear technology for a wide range
of applications such as treatment of cancer disease, thermal energy production, imaging
nuclear fuel, etc. [3–6] and the associated health hazards that this technology entails, the
evaluation of a construction material against nuclear radiation is vital [7].

The material selection for radiation shielding is mainly dependent on the emissions
source, type, and the material’s weight [8]. A number of materials has been explored for
shielding of nuclear radiation such as iron, lead, polyethylene, graphite, and concrete [9–17].
Concrete has been widely used in the construction of nuclear facilities primarily due to
its versatility, structural strength, and ability to shield nuclear radiation [18]. Concrete
is strong, having a reasonable shielding capacity, and, more importantly, economically
viable material for the construction of radiation shielding structures in nuclear power
plants, healthcare facilities involving radiology and particle accelerators, etc. The radia-
tion shielding performance of concrete is closely associated with its density, with a direct
proportionality between density and shielding potential [19,20]. Several studies have
concluded that heavyweight and dense concrete has the ability to significantly improve
radiation shielding performance and have several other inherent advantages over other
materials [7–9,19–22]. Heavyweight concrete is characterized by its density, which is greater
than 2600 kg/m3 [23] as compared to ordinary concrete composed of normal weight aggre-
gate having density ranges from 2200 kg/m3 to 2600 kg/m3 [24]. Density has a profound
impact on the structural elements, allowing an appreciable reduction in the thicknesses of
protective members while not compromising on shielding performance [25–32]. A high
density of concrete is usually attained by using high-density aggregates, such as barite,
goethite, magnetite, hematite, serpentine, lead, heavy metal oxide, steel slag, steel shot, and
colemanite [33–38].

Numerous studies in the past have been conducted to investigate the performance of
heavyweight concrete (HWC) based on industry requirements and applications. Most of
these investigations, however, have focused on exploring the mechanical and shielding
performance of HWC based on the type of aggregate used [12,15,25,39,40]. Izaz et al. [8]
conducted a detailed study to evaluate both the mechanical and gamma radiation shielding
performance of concrete mixtures produced with barite aggregates. The authors noted that
an increase in barite quantity in the concrete mix resulted in an acceptable reduction in
strength, a decrease in shrinkage, and a substantial increase in linear attenuation coefficient.
Coskun et al. [41] also concluded that barite concrete mixtures successfully achieved the
target radiation shielding. Alwaeli and Nadziakiewicz [40] used water iron products such as
scale and steel chips as replacement of fine aggregate in proportions of 25, 50, 75, and 100%
to evaluate compressive strength and shielding against gamma radiation. They concluded
that concrete prepared with steel chips increased the compressive strength as compared to
conventional concrete. It was also reported that steel chips also improved the absorption
of gamma radiation. In their study, Gencel et al. [15] investigated the mechanical strength
and neutron & gamma radiation shielding performance of concrete containing hematite
as coarse aggregate. It was revealed that gamma radiation performance and compressive
strength of concrete increased with the addition of hematite; however, it did not affect
neutron radiation shielding performance. The radiation shielding performance of concrete
infused with silica fume and lead powder was explored in a study conducted by Ochbelagh
et al. [17] Study results showed that although the addition of silica fume improved the
concrete’s compressive strength, it reduced the gamma-ray radiation shielding performance.
Azeez et al. [31] conducted an experimental study to evaluate the radiation shielding
behavior of heavyweight concrete produced with high-density coarse aggregates such
as steel shots, steel slag, and iron ore. Study results showed that radiation performance
is affected by the unit weight of HWC mixtures, irrespective of the type of aggregates
used. Al-Humaiqani et al. [42] studied the ability of high strength concrete prepared
with different types of aggregates against radiation. Laboratory prepared samples were
subjected to Cs137 radiation having an energy of 0.663 MeV using NaI scintillation detector.
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It was observed that the relationship between linear attenuation coefficients and the density
of high-performance concrete is linear. Shams et al. [43] studied both hematite and barite
in separate and in mixed form. The results showed that both forms improved the linear
attenuation coefficient. Akkurt et al. [44] studied the radiation shielding performance of
concrete containing zeolite in different proportions, i.e., 0%, 10%, 30%, and 50%. It was
concluded that increasing zeolite concentration reduces the linear attenuation coefficient
and is not recommended as a first-choice alternative against radiation shielding. Despite
resulting in improvement in radiation shielding, most of the materials have an adverse
effect on the mechanical properties of concrete, such as a resulting reduction in compressive
and tensile strengths, accompanied by the reduced elastic modulus and higher weight loss
at elevated temperatures [8].

Water-cement (w/c) ratio is also an important factor contributing to the strength
and radiation shielding properties of heavy weight concrete. Lotfi et al. [45] found that
increasing the w/c ratio significantly reduces the compressive strength of heavy weight
concrete, while the mechanical and radiation shielding behavior of concrete has been
found to improve with decreasing w/c ratio. Yang et al. [46] reported that decreasing the
water/cement ratio results in improvement of density, compressive strength, and modulus
of elasticity in magnetite concrete.

It is evident from the previous studies that the radiation shielding of concrete is a
very complex phenomenon which depends on different variables such as material type,
density, thickness of barrier, distance, intensity of radiation, and water cement ratio; it is
very difficult to identify the most influencing parameters. Moreover, there is no such model
available that co-relate all these variables with radiation shielding ability. To overcome the
limitation, the machine learning approach can be used to develop a prediction model that
co-relate radiation shielding with all the influencing variables using an experimental dataset.
In civil engineering, AI technique is one of the most effective tools in machine learning over
the past decades to develop predication models that deal with highly nonlinear problems.
Previous studies reveal that artificial neural network (ANN) is an effective tool for assessing
the concrete performance while considering the effect of multiple parameters such as
composition of ingredients, water cement ratio, and quantity of additives [47–51]. Recently,
studies have utilized artificial intelligence (AI) and machine learning (ML) methods for the
assessment and prediction of radiation shielding performance of concrete mixtures [52,53].
Yadollahi et al. [54] adopted an ANN to predict optimal mixture combinations such as
quantity of cement and different additives against radiation shielding. Juncai et al. [55]
adopted the least square support vector machine (LS-SVM) to predict the strength of
radiation shielding concrete.

In this study, the ANN method was used to develop a model by using our own
experimental data that evaluates the concrete mixes’ performance against radiation without
compromising the mechanical properties of concrete. High radiation shielding ability could
be achieved with the materials having relatively high density [56]. In the design of radiation
shielding, thickness of the barrier or wall is an important parameter to be determined that
attenuates the radiation to recommended values that depends on a material’s properties.
In the present study, high density materials such as magnetite, barite, and hematite were
used to increase the attenuation coefficient of concrete. The main objective of the study is to
investigate the radiation shielding parameters as well as the concrete materials’ properties
to predict a model to obtain optimum values. In the application of the ANN method,
w/c ratio, cement quantity, and slump value were selected as the control factors and
compressive strength and linear attenuation coefficient were considered as the quality
responses. At the end, optimal values of mixture with consideration of multiple quality
characteristics are obtained and verified.
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2. Experimental Program
2.1. Materials

Crushed stone, calcareous in nature (abundant in CaCO3), conforming to ASTM C-33,
was used as coarse aggregate in concrete, whose particle sizes ranged from 9.5 mm to
25 mm. The gradation curve of the coarse aggregate obtained from sieve analysis (ASTM
C136) is presented in Figure 1, which shows the well-graded nature of the coarse aggregates.
Naturally available sand, mainly consisting of quartz, was used as fine aggregate. The
gradation curve of the sand obtained from sieve analysis (ASTM C33) is presented in
Figure 1. The sand was cleaned of any organic impurities by washing it. The gradation
curve of sand used in this study was bound by the standard upper and lower limits, as
defined by the ASTM standard. Fine aggregate in barite concrete was completely replaced
with barite minerals, while it was replaced with magnetite aggregate in magnetite concrete
specimens. Ordinary Portland cement conforming to (ASTM C150) was used as a binder in
concrete. The characterization of the materials used in this study is presented in Table 1. X-
ray diffraction (XRD) test and X-ray fluorescence (XRF) were conducted on cement samples
to evaluate their chemical composition. The results of these two tests are presented in
Table 2 and Figure 2, respectively.
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Figure 1. Grading curves of aggregates used in the experimental program.

Table 1. Physical properties of cement, coarse aggregate, and fine aggregate.

Ingredient
Physical properties

Specific Gravity Bulk
Density

Absorption
Capacity

Max.
Aggregate Size

Fineness
Modulus

Cement 3.15 - - - -

Coarse Aggregates 2.65 1602 kg/m3 1.30% 25.44 mm -

Fine Aggregates 2.38 - 1.88% - 2.34

Barite 3.10 - 3.05% - 2.31

Magnetite 3.20 - 0.91% - 3.20
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Table 2. Chemical composition of Portland cement (XRD result).

Constituents Mass Percentage (%)

CaO 77.2
SiO2 15.8

Al2O3 5.82
Fe2O3 1.06
ZnO 0.07

MnO + TiO2 + K2O 0.05
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Figure 2. XRF test result of ordinary Portland cement (OPC).

2.2. Mix Proportioning

Based on the material characteristics, a mix design was carried out for four different
w/c ratios varying between 0.30 and 0.45, with increments of 0.05. For designing the
concrete mixes, the required properties of the materials were determined using laboratory
tests. The details of mix design are given in Tables 3 and 4. Ultra-superplasticizer 470
was used as a chemical admixture to increase the workability of concrete. The chemical
admixture was added by the weight of the binder. According to ASTM specification,
concrete was produced in the laboratory and then cast in cylinders confirming ASTM C470
as shown in Figure 3. Fresh concrete properties are listed in Table 5. Mix design was carried
out for normal weight concrete and then the fine aggregate was replaced with barite and
magnetite by volume in barite and magnetite added to concrete. The admixture dose was
adjusted accordingly to get the targeted slump value.

Table 3. Mix properties.

S. No. Properties Value

1 Slump range 25–50 mm
2 Maximum size of coarse aggregate 25 mm down
3 Bulk density of coarse aggregate 591.1 kg/m3

4 Specific gravity of coarse aggregate 2.65
5 Absorption capacity of coarse aggregate 1.3%
6 Specific gravity of sand 2.38
7 Fineness modulus of sand 2.34
8 Absorption capacity of sand 2%
9 Specific gravity of cement 3.15
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Table 4. Mix proportioning of concrete.

Water/Cement
(w/c)

Weight of Concrete Ingredients (Kg/m3)
Chemical

Admixture (%)Water Cement
Fine Aggregates Coarse

AggregatesSand Barite Magnatite

0.30 178 593 491 639.5 660.2 1117 1.5

0.35 208 593 462 601.8 621 1117 1

0.40 237 593 432 562.7 580.8 1117 0.8

0.45 267 593 402 523.6 540.5 1117 0.5
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Table 5. Concrete workability test results.

w/c Slump Type Slump Values (mm)

0.30 True 36
0.35 True 63
0.40 True 74
0.45 True 89

2.3. Testing Program

ASTM C-39 test method was used to determine the compressive strength of concrete.
Concrete cylinders of standard dimensions, i.e., 150 mm in diameter and 300 mm in length,
were cast using different w/c ratios. These samples were subjected to a compression test in
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a universal testing machine. A total of thirty-six concrete cylinders were cast, with three
samples representing each w/c ratio. In this test, concrete cylinders were subjected to axial
compressive force until concrete failure. The experimental setup used for compression
testing is presented in Figure 4a.

The linear attenuation coefficient was measured to compute the shielding potential of
concrete samples. The Phoenix machine, used in cancer treatment for dosimetry, was used
to conduct the test. Samples of different thicknesses varying from 2 cm to 10 cm were made
with the four w/c ratios, shown in Figure 4b. Samples were placed in the machine, and
the intensity of gamma rays was measured both in the presence and absence of concrete
samples. The experimental setup is shown in Figure 4b(i–iv). Then, the correlation given in
Equation (1) was used to determine the linear attenuation coefficient:

µ =
1
x

ln
No

N
(1)

where µ = linear attenuation coefficient, x = material thickness in cm, No = intensity of
gamma rays received by the detector in the absence of concrete samples, and N = intensity
of gamma rays received by the detector in the presence of concrete samples.
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Figure 4. (a) test setup for compressive strength, (b) Gamma rays’ dosimetry, (i) concrete samples for
gamma rays’ dosimetry, (ii) phoenix machine used as gamma rays’ ejector, (iii) zoom in of sample
holder and detector, (iv) digital data collection.
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2.4. Artificial Neural Network Modelling

Artificial neural networks (ANNs) are mathematical based models working on the
analogy of the human brain. ANN was started with the concept of the brain which solves
computational problems in different ways as compared to conventional computers. A
neural network encompasses three layers of immensely equivalent distributed processors
such as input, hidden, and output layer. There are multiple factors that impact the neuron
quantity in each layer. The number of neurons in the output and input layer is determined
through modeling the relevant parameters in the layers. The number of neurons present in
the hidden layer is a variable that must be chosen to achieve a suitable output response [57].
In order to train the model, the input and output parametric data are provided to the
artificial neuron network. The differences between the predicated and target outputs
are adjusted by changing the preferences and weights of the network in order to attain
least error [58]. The optimized ANN was obtained by varying the number of neurons
in the hidden layer. The Lavenberg–Marquardt function was used for optimizing the
weights and preferences of the network, because it is recommended as the top priority
function in the case of training supervised algorithms that provide fastest back propagation
process [59]. In the output and hidden layers of the network, Purelin and tan-sigmoid
were used as activation functions, respectively. In the case of the hidden layer, tan-sigmoid
and log-sigmoid functions were used to obtain the best activation function. The tan-
sigmoid function provided the optimum outcomes. Based on the previous literature [60–64],
correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE)
was used for statistical evaluation of the ANN model.

For the development of ANN models, the data presented in Tables 6 and 7, obtained
from the experimental data, was employed. It can be seen that three types of concrete, Type 1
(Normal concrete), Type 2 (Barite containing concrete), and Type 3 (magnetite containing
concrete), were used. Barite and magnetite were used as replacement of fine aggregate in
order to increase the density which can increase the radiation shielding capacity of concrete.

Table 6. Training dataset for model development.

Input Variables Output Variable

Concrete
Type w/c Thickness

(cm)
Density
(g/cm3)

Compressive
Strength (MPa)

Gamma Rays
Absorption (mGy)

1 0.30 2 2.39 35.99 109.47
1 0.30 4 2.39 35.99 194.77
1 0.30 6 2.39 35.99 258.37
1 0.30 8 2.39 35.99 304.57
1 0.30 10 2.39 35.99 344.27
2 0.30 4 2.68 31.76 224.67
2 0.30 8 2.68 31.76 338.47
3 0.30 2 2.79 39.60 103.24
3 0.30 6 2.79 39.60 362.78
3 0.30 8 2.79 39.60 403.99
1 0.35 2 2.42 28.50 124.77
1 0.35 4 2.42 28.50 209.97
1 0.35 6 2.42 28.50 273.67
1 0.35 8 2.42 28.50 324.077
2 0.35 2 2.72 25.65 135.77
2 0.35 8 2.72 25.65 345.77
2 0.35 10 2.72 25.65 379.77
3 0.35 2 2.89 32.00 166.46
3 0.35 6 2.89 32.00 373.82
3 0.35 8 2.89 32.00 412.79
3 0.35 10 2.89 32.00 436.400
1 0.40 2 2.43 24.06 121.77
1 0.40 6 2.43 24.06 279.97
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Table 6. Cont.

Input Variables Output Variable

Concrete
Type w/c Thickness

(cm)
Density
(g/cm3)

Compressive
Strength (MPa)

Gamma Rays
Absorption (mGy)

1 0.40 10 2.43 24.06 362.47
2 0.40 2 2.78 22.15 143.67
2 0.40 4 2.78 22.15 241.37
2 0.40 8 2.78 22.15 355.87
2 0.40 10 2.78 22.15 390.77
3 0.40 2 2.93 28.80 220.83
3 0.40 4 2.93 28.80 327.57
3 0.40 6 2.93 28.80 399.34
3 0.40 10 2.93 28.80 445.35
1 0.45 4 2.40 21.98 196.87
1 0.45 8 2.40 21.98 312.77
1 0.45 10 2.40 21.98 347.47
2 0.45 2 2.81 20.34 164.97
2 0.45 4 2.81 20.34 244.77
2 0.45 8 2.81 20.34 358.77
2 0.45 10 2.81 20.34 395.77
3 0.45 2 2.76 26.00 83.04
3 0.45 4 2.76 26.00 223.24
3 0.45 8 2.76 26.00 352.41
3 0.45 10 2.76 26.00 397.88
2 0.30 2 2.68 31.76 129.67
2 0.30 6 2.68 31.76 289.77
2 0.30 10 2.68 31.76 374.67

Table 7. Validation dataset used in artificial neural network (ANN) modelling.

Concrete
type w/c Thickness

(cm)
Density
(g/cm3)

Compressive
Strength (MPa)

Gamma Rays
Absorption (mGy)

3 0.30 4 2.79 39.60 256.89
3 0.30 10 2.79 39.60 430.69
1 0.35 10 2.42 28.50 355.57
2 0.35 4 2.72 25.65 229.27
2 0.35 6 2.72 25.65 295.87
3 0.35 4 2.89 32.00 290.61
1 0.40 4 2.43 24.06 214.67
1 0.40 8 2.43 24.06 326.87
2 0.40 6 2.78 22.15 308.97
3 0.40 8 2.93 28.80 428.79
1 0.45 2 2.40 21.98 113.87
1 0.45 6 2.40 21.98 263.40
2 0.45 6 2.81 20.34 309.77
3 0.45 6 2.76 26.00 317.10

2.5. Gene Expression Programming Modelling

The input data shown in Tables 6 and 7 was subjected to GeneXprotools for training
and validation of the models. The purpose of using the gene expression programming
(GEP) model was to develop a mathematical relationship for the target variable in terms
of input attributes. The flowchart of GEP modelling is shown in Figure 5. The setting
parameters such as number of chromosomes, genes, and head size were varied to find the
optimized hyperparameters. Finally, 30 chromosomes, 3 genes, and 10 head sizes resulted
in the best model.
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3. Results and Discussions
3.1. Experimental Results

The results of compressive strength for the three types of concrete investigated in this
study are shown in Figure 6a. Overall, the addition of barite has reduced the compressive
strength, whereas the addition of magnetite has increased the compressive strength. The
variation with w/c ratio is evident, reflecting a linear reduction of compressive strength
with an increase in w/c ratio from 0.30 to 0.45. The variation in strength with change in
w/c ratio is consistent with a number of previous studies [65,66]. The variation with the
density is no more pronounced as depicted in Figure 6b for the three different types of
concrete. Figure 6c–e shows the variation of the dose absorbed by the sample. It is evident
that the thickness of concrete is a vital parameter in designing the shielding capacity of
concrete. Normally, the radiation shielding capacity is denoted by the linear attenuation
coefficient. The linear attenuation coefficient was computed for concrete specimens with
different w/c ratios and is presented in Figure 7. It is evident that a linear relation exists
between the thickness of the concrete sample and the linear attenuation coefficient. Linear
attenuation was observed to have increased with a rise in w/c ratio up to 0.40, followed
by a decrease. The maximum value of the attenuation coefficient is obtained at w/c equal
to 0.40. Figure 7 presents the relation between density and linear attenuation coefficient.
There is a linear relationship between the density of concrete and the linear attenuation
coefficient. The maximum value of the attenuation coefficient at a w/c ratio of 0.40 may
be attributed to higher concrete density. So, it can be inferred from the test results that
gamma rays can be attenuated either by using lighter materials with an increased thickness
or heavier materials with optimum thickness. Normal concrete can be used as a useful
material for gamma-ray shielding if it is used at a w/c ratio at which concrete has maximum
density. The results are in accordance to the literature related to different materials used
for shielding against radiation; specifically, studies that used high density constituent in
concrete, significantly increased the attenuation coefficient [25–28,32,33,37,38].
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Figure 6. Results obtained from experimental study: (a,b) compressive strength versus water to
cement ratio and density, (c) thickness versus gamma rays absorbed for normal concrete, (d) thickness
versus gamma rays absorbed for barite concrete, and (e) thickness versus gamma rays absorbed for
magnetite concrete.

3.2. Performance of the Models

The developed ANN and GEP models were evaluated using statistical indices, i.e., the
values of R, MAE, and RMSE, provided in Figure 8, in accordance with [60–62,64,67–74].
The R values of 0.999 and 0.994 were observed for training and validation data, respectively,
for the ANN model (Figure 8a), whereas, for the GEP model, these values were noticed as
0.981 and 0.985 (Figure 8b). The MAE value of 1.474 mGy and 13.17 mGy were obtained
for the training data while MAE values of 2.154 mGy and 12.2 mGy were observed for
validation data of the ANN and GEP models, respectively. The results for RMSE values
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are also presented in Figure 8. It is evident that the values of R for the ANN and GEP
models are very close to each other; however, the error indices in the case of the ANN
model show a more robust performance of the model. The error indices obtained from the
GEP model are also acceptable; however, the error indices are less accurate as compared to
the ANN model.
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Figure 7. Variation of linear attenuation coefficient with density: (a) normal concrete, (b) barite
concrete, (c) magnetite concrete, and (d) linear attenuation versus water to cement ratio.

While investigating the performance in terms of regression slope, experimental values
of the radiation absorbed were plotted on the x-axis, and the predicted values were plotted
on the y-axis. Many researchers in previous studies used the slope of the regression line
as a statistical evaluation procedure for studying the performance of AI models [62,64,71].
Previously, the researchers argued that the values of regression slope of more than 0.80 rep-
resent the close agreement of experimental and predicted values [71,73,74]. It was found
that the ANN model interpreted slopes equaling 0.9975 and 0.9992 for the training and val-
idation sets. Similarly, the GEP model manifested slopes equaling 0.9493 and 0.936 for the
training and validation data. These observations also prove that the slopes are closer to the
ideal slope (equal to 1). Moreover, it also shows that the ANN model resulted in relatively
accurate prediction compared to the GEP model. Khan et al. [71] used the ANN model for
investigating the compressive strength of polyethylene terephthalate-incorporated cementi-
tious grouts and observed a slope value of 1.01 for training and 0.90 for testing data. This
result was noted while evaluating the ANN non-linear abilities for compressive strength.

The model statistical assessment was further enhanced through the error analysis and
the tracing of experimental results by the predictions made from the ANN and GEP models.
The results relating to this analysis are presented in Figure 9. Both the models traced the
experimental results very closely (Figure 9a,c); however, in the case of the ANN model, the
proximity is very close compared to the GEP model. This result is evident from the error
analysis shown in Figure 9b,d, which shows that the error ranged from 0 to 14.56 mGy
in the ANN model, whereas, for the GEP model, it ranged from 0 to 64.6 mGy. It can be
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derived from error analysis that most of the points converged around zero error, with a
maximum deviation of 14.5 mGy and 64.6 mGy in the ANN and GEP model, respectively.
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Figure 8. Comparison of experimental versus predicted results in the form of regression slopes and
statistical indices for the: (a) ANN model, and (b) GEP model.

It is obvious from the above analysis that ANN performs better in terms of accuracy;
however, the GEP model has interpreted acceptable results. The beauty of the GEP model
is lying in the fact that it furnishes a simple mathematical equation, which can be used for
predicting a new data set, without using a computer program. The disadvantage of the
ANN model is its black-box nature. You must retrain the model with the data used origi-
nally in order to predict the new data. Equations are given as follows (Equations (2)–(5)),
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obtained from the GEP model which can be used for predicting the radiation dose absorbed
for a given sample of concrete whose input parameters are known.

y = a + b + c (2)

a = (( f́c + 5.94 + D)2 +
((

w/c)2 × (D − T)− 12.94
))

(3)

b = ((1.492 × ´fc)
2
+ ((−11.02 × (w/c)) + 8.75D − w/c)) (4)

c = ((( f́c
2 − D)× (D − 1.52)× (w/c)× 2.044)− 8.56) (5)
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Figure 9. Error analysis of the developed models: (a) tracing of experimental by predictions for the
ANN model, (b) absolute error from the ANN model, (c) tracing of experimental by predictions for
the GEP model, and (d) absolute error from the GEP model.

3.3. Sensitivity and Parametric Analysis

Sensitivity and parametric analysis of the developed model is the evaluation of the
trained model on the entire new dataset. The sensitivity analysis shows which input
variable is more important in furnishing the magnitude of the target variable, and the
parametric analysis depicts the trend in contributing towards the output variable. For
this purpose, a simulated dataset was created such that one input variable was varied
between its extreme values, whereas the other variables were kept constant at their average
values. The simulated dataset was created for the three types of concrete investigated
in this study. The simulated dataset was tested on the trained ANN model owing to the
superior performance of the model. The results are shown in Figure 10 for normal concrete
(type-1), barite concrete (type-II), and magnetite concrete (type-III), respectively.

The parametric study revealed that maximum radiation is absorbed at w/c ratio of
0.40–0.42 for normal and barite containing concrete, and 0.45 for magnetite-containing
concrete. The increase in thickness and density also improved the radiation shielding
depicting polynomial variation. Maximum radiation shielding was observed for the maxi-
mum compressive strength investigated in this study. It is highly recommended to consider



Materials 2022, 15, 4573 15 of 19

these input parameters and their effect on radiation shielding structures intended to resist
radiation especially atomic power plants.
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Figure 10. Parametric analysis of ANN model for predicting radiation shielding capacity with:
(a) water-cement ratio, (b) thickness, (c) density of concrete, and (d) compressive strength of concrete.

The sensitivity analysis (Figure 11) showed that the thickness of concrete is the most
influential variable in estimating the radiation shielding capacity of concrete in the case of
normal and barite containing concrete, followed by the density of the concrete. In the case
of magnetite concrete, density played significant role in contributing radiation shielding of
concrete. The compressive strength and w/c ratio were observed showing least contribution
in radiation shielding.
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4. Conclusions

This study examined the shielding capability and mechanical properties of concrete
at variable water-to-cement ratio, thickness, density, and compressive strength. For this
purpose, three different types of concrete, i.e., normal concrete, barite, and magnetite-
containing concrete, were cast and tested for compressive strength and radiation shielding.
Moreover, ANN and GEP models were developed to predict radiation shielding of concrete.
The following results were drawn from this study:

• The density of material and the thickness of concrete samples are the two important
factors that attenuate the quantity of gamma radiation. Increasing the thickness and
density of concrete improves its radiation shielding ability. Normal concrete is the most
commonly used material in construction. Therefore, it is recommended to use such a
w/c ratio in order to achieve a higher density without affecting strength properties.
For normal and barite-containing concrete, the optimum water/cement ratio was
observed as 0.40–0.42. Using an optimal w/c ratio would decrease the wall thickness
required for radiation shielding in therapy bunkers and atomic reactors, indirectly
saving cost. Increasing the w/c ratio was found to reduce the compressive strength.

• The AI models developed in this study showed close agreement between experi-
mental and predicted results; however, the ANN model developed for predicting
radiation shielding manifests outperformed the GEP model. The simple mathematical
relationship produced from the GEP model signifies its importance because it can
be used in the future to predict radiation shielding of new data without using any
computer program.

• The results obtained from the parametric analysis showed agreement with the ex-
perimental results. The thickness and density of concrete were found to be the most
influential parameters in determining the shielding ability of concrete.
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