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Abstract: This study was conducted in northeastern Tunisia to estimate both the prevalence and the
risk factors of Salmonella in broiler flocks as well as to characterize the isolated multidrug-resistant
(MDR) Salmonella strains. In the present study, a total number of 124 farms were sampled; Salmonella
isolates were identified by the alternative technique VIDAS Easy Salmonella. The susceptibility of
Salmonella isolates was assessed against 21 antimicrobials using the disk diffusion method on Mueller–
Hinton agar using antimicrobial discs. Some antimicrobial resistance genes were identified using PCR.
The prevalence rate of Salmonella infection, in the sampled farms, was estimated at 19.9% (64/322).
Moreover, a total number of 13 different serotypes were identified. High rate of resistance was
identified against nalidixic acid (82.85%), amoxicillin (81.25%), streptomycin (75%), and ciprofloxacin
(75%). Alarming level of resistance to ertapenem (12.5%) was noticed. A total of 87.5% (56/64) of
isolated strains were recognized as MDR. Three MDR strains were extended-spectrum β-lactamases
(ESBL)-producers and three MDR strains were cephalosporinase-producers. The blaCTX-M gene was
amplified in all the three ESBL strains. The qnrB gene was not amplified in fluoroquinolones-resistant
strains. The tetA and tetB genes were amplified in 5% (2/40) and 2.5% (1/40) of tetracycline-resistant
strains, respectively. The dfrA1 gene was amplified in five of the 20 trimethoprim-resistant strains.
The mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 genes were not amplified in any of the phenotypically
colistin-resistant strains. In terms of integrase genes int1 and int2, only gene class 2 was amplified in
11% (7/64) of analyzed strains. Risk factors, such as the poor level of cleaning and disinfection, the
lack of antimicrobial treatment at the start of the breeding, and a crawl space duration lower than
15 days, were associated with high Salmonella infection in birds. These data should be considered
when preparing salmonellosis control programs in Tunisian broiler flocks.

Keywords: Salmonella; broiler flocks; risk factors; MDR strains; ESBL; Tunisia

1. Introduction

According to numerous surveys, undercooked poultry meat is often reported as re-
sponsible for non-typhoid Salmonella gastroenteritis outbreaks with Salmonella Typhimurium
and Salmonella Enteritidis being the most frequently isolated serotypes [1–3]. The Centers
for Disease Control and Prevention (CDC) estimated that Salmonella bacteria cause, yearly,
1.35 million infections, 26,500 hospitalizations, and 420 deaths in the United States [4].
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Poultry products are the source of most of these cases [5]. In Europe, since 2014, Salmonella
spp. has been the second-highest bacterial agent, after Campylobacter, causing gastroen-
teritis in humans [6]. In Sub-Saharan Africa, non-typhoid salmonellosis, mostly caused
by S. Typhimurium and S. Enteritidis, is a major public health problem [2]. In Tunisia,
Salmonella food-borne infections are an emerging public health problem [7], with S. Ken-
tucky and S. Anatum being the most identified serotypes in poultry meat [8].

The breeding period represents a critical stage for the development of Salmonella in
broiler flocks [9]. Identification of the risk factors associated with broilers’ infection with
these bacteria is therefore essential in order to prevent its occurrence [9]. In Tunisia, a
national program for the control of zoonotic Salmonella infections is performed for only
poultry reproductive herds. This program aims to reduce the prevalence of these infections
by setting up surveillance. To prevent the spread of the infection outside the poultry farm,
all poultry are euthanized when an infection is confirmed in any poultry reproductive farm.

Non-typhoid Salmonella gastroenteritis is expressed by digestive signs (diarrhea, vom-
iting, and abdominal pain) associated with fever and depression. The first symptom
appears approximately 12 to 24 h after ingestion of the contaminated food. The acute phase
lasts approximately 24 to 48 h. Symptoms resolve spontaneously, and symptomatic treat-
ment is generally sufficient [10]. In children, elderly, and immune-compromised persons,
digestive infections can progress to sepsis and meningitis, leading to death. Antimicrobial
therapy is therefore prescribed to particularly sensitive persons [11]. Uncontrolled use of
antimicrobials in poultry farming leads to the selection of multidrug-resistant Salmonella
strains [12]. The alarming increase of antimicrobial resistance is another aspect of the public
health concern of Salmonella infection [12]. It was shown that a proportion of multidrug-
resistant Salmonella found in humans are of animal origin and have acquired their resistance
genes in breeding before being transmitted to humans through food [13].

In Tunisia, data is still lacking, and only one study of Bichiou et al. (2010) [14] is
available regarding the infection of broiler chickens by non-typhoid Salmonella. The present
study was conducted in northeastern Tunisia to estimate both the prevalence and the risk
factors of Salmonella in broiler flocks as well as to characterize the isolated multidrug-
resistant (MDR) Salmonella strains.

2. Materials and Methods
2.1. Choice of Breeding Sites

The northeast region of Tunisia is one of the main economic regions that covers
seven governorates (Tunis, Ariana, Ben Arous, Manouba, Bizerte, Nabeul, and Zaghouan)
and represents the most populated region, with 37% of the Tunisian population and a
high demographic density (344 inhabitants/km2 compared to the mean Tunisian density:
69 inhabitants/km2). Northeast Tunisia is characterized by an intense commercial poultry
farming, in particular broilers, totaling 1830 broiler farms (41% of broiler Tunisian farms)
producing 49 million chickens/year (45% of national production in 2019) [15].

2.2. Sampling

The present study was conducted between September 2019 and August 2020 on broiler
chicken farms located in Northeast Tunisia (Figure 1).

The required number of farms (n) was estimated using the formula of Thrusfield [16]
for a 95% confidence interval (95% CI): n = 1.96 Pexp (1 − Pexp)/D2, where Pexp: expected
prevalence which was estimated to 17% [14] and D: the precision that was fixed to 5%.

A total number of 124 broiler chicken farms were included in the present study located
in Northeast Tunisia (Figure 1). Visited farms were selected according to the willingness
of the owners to participate in the current study. In each farm, at least 50% of the poultry
house-buildings were randomly included, totaling 322 breeding units. The number of
chickens per poultry house-building varied between 10,000 and 25,000. In order to estimate
the prevalence of Salmonella presence in the fecal samples of broiler chicken, ten pools
of five fresh droppings were collected in sterile flasks per building. Each poultry flock
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was sampled once during the production cycle when chickens were two to four weeks
old. A total number of 224 and 98 samples were collected in the hot season and the cold
season, respectively. The number of samples was lower during the cold season because the
number of house-buildings occupied by poultry is lower than during the hot season. In
fact, due to the high cost of house-building heating, the production cost is higher during
the cold season. Information about the main risk factors, including location, environment,
infrastructure, hygiene and biosecurity standards, animal welfare, and health control were
collected. The risk factors were typed by questionnaire. The risk factors were assessed
based on compliance with good practice and meeting the five animal needs, such as need
for a suitable environment, need for a suitable diet, need to be able to exhibit normal
behavior patterns, need to be housed with, or apart from, other animals, and need to be
protected from pain, suffering, injury, and disease [17].
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2.3. Salmonella spp. Screening

All samples of fresh droppings were screened for Salmonella by the alternative tech-
nique VIDAS Easy Salmonella (bioMérieux SA, Lyon, France). This technique is based on
the detection of specific Salmonella proteins by immune-fluorescence after primary and
secondary enrichment followed by lysis of the bacteria by heating at 100 ◦C. Primary
enrichment consists of incubating, at 37 ◦C for 22 h, a mixture of 25 g of fresh droppings
samples and 225 mL of Buffered Peptone Water (Biokar Diagnostics, Beauvais, France).
After incubation, 100 µL of the mixture was transferred into 10 mL of Salmonella Xpress
2 (SX2) broth (bioMérieux SA) and incubated at 41.5 ◦C for 24 h. One milliliter of the
mixture was boiled for 15 min, then cooled to room temperature. To detect Salmonella target
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proteins, a volume of 0.5 mL of the already-cooled mixture was transferred to an SLM chip
and deposited at VIDAS (bioMérieux SA). The unheated SX2 broth is used for the isolation
of Salmonella, from positive samples, on selective agar (XLD and SS) (Biokar Diagnostics,
Beauvais, France). Confirmation is performed by urease test followed by API 20E system
test (bioMérieux SA) according to the reference technique ISO 6579, 2017 [18].

2.4. Salmonella Strains Serotyping

The rapid agglutination on the slide with specific immune sera against the O, H, and
Vi antigens of Salmonella (BioRad, Paris, France) was the serotyping technique performed
in the present study at Pasteur Institute of Tunis (Tunis, Tunisia). The identification of
serotypes was based on the White–Kauffmann–Le Minor scheme [19].

2.5. Molecular Study

The extraction of Salmonella genomic DNA was carried out from the colonies present
in the unheated SX2 broth (bioMérieux SA) using the ONE-4-ALL GENOMIC DNA Mini
kit. Preps (Bio Basic, Markham, ON, Canada). After centrifugation of the SX2 broth for
1 min at 10,000 rpm, the pellet was mixed with washing solution and proteinase K (20
mg/mL). A second centrifugation of the mixture (already heated to 56 ◦C for one hour)
was performed at 12,000 rpm for 2 min. After washing the pellet, the DNA was eluted by
incubation at room temperature for 2 min, followed by centrifugation at 9000 rpm for 2
min, then stored at −20 ◦C until used.

Molecular screening for Salmonella was performed by PCR targeting a 1 kb DNA frag-
ment [20], using specific primers (F5′ACCACGCTCTTTCGTCTGG3′ and R-5GAACTGACT
ACGTAGACGCTC3′) [20]. In addition, 12 virulence genes (Table 1) [21–23] were screened
in Salmonella isolates. PCR was performed with an Esco Swift Max Pro thermal cycler
(Horsham, PA, USA) in a total volume of 25 µL containing 1 U Taq Polymerase (Bio Basic,
Markham, ON, Canada), 1 × PCR buffer (5 mM KCl Tris-HCl, pH 8.5), 1.5 mM MgCl2,
0.1 mM dNTP (Bio Basic, Markham, ON, Canada), 1 µM forward and reverse primer (Bio
Basic, Markham, ON, Canada) and 1 µL DNA. Denaturation was carried out first at 95
◦C for 10 min followed by 35 cycles (denaturation at 95 ◦C for 1 min, hybridization for
1 min at temperatures depending on the target gene and elongation at 72 ◦C for 1 min)
and a final extension at 72 ◦C for 10 min. A total number of 12 primers were used for the
detection of the target genes. The amplicons were visualized in an agarose gel. Negative
(sterile distilled water) and positive (Salmonella strains isolated in a previous published and
unpublished studies [24]) controls were added in each PCR cycle.

Table 1. Functions and primers of Salmonella for virulence genes targeted in the present study.

Gene Function Primer Sequence
(5′ to 3′)

Product Size
(bp)

Annealing
Temperature

(◦C)
Reference

SEN1417 Intracellular survival
F: GATCGCTGGCTGGTC

670 58 [22]R: CTGACCGTAATGGCGA

sipA Host cell invasion
F: ATGGTTACAAGTGTAAG-

GACTCAG 2055 53 [23]
R: ACGCTGCATGTGCAAGC-

CATC

sipD Host cell invasion
F: ATGCTTAATATTCAAAAT-

TATTCCG 1029 53 [23]
R: TCCTTGCAGGAAGCTTTTG

sopD Host cell invasion
F: GAGCTCACGACCATTTGCG-

GCG 1291 59 [21]
R: GAGCTCCGAGA-

CACGCTTCTTCG

gipA Growth or survival
in a Peyer’s patch

F: ACGACTGAGCAGGCTGAG
518 58 [25]R: TTGGAAATGGTGACGGTA-

GAC
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Table 1. Cont.

Gene Function Primer Sequence
(5′ to 3′)

Product Size
(bp)

Annealing
Temperature

(◦C)
Reference

mgtC Intracellular survival
F: TGACTATCAATGCTCCAGT-

GAAT 677 58 [25]
R: ATTTACTGGCCGCTATGCT-

GTTG

trhH
Code for the

putative F pilus
assembly protein

F: AACTGGTGCCGTTGTCATTG
418 53 [25]R:

GATGGTCTGTGCTTGCTGAG

spvC Multiplication in
host cell

F: CTCCTTGCACAACCAAAT-
GCG 570 53 [25]

R: TGTCTCTGCATTTCACCAC-
CATC

sirA
Control

enteropathogenic
virulence functions

F:
TGCGCCTGGTGACAAAACTG 313 55 [25]

R: ACTGACTTCCCAGGC-
TACAGCA

pagK Biofilm formation
F: ACCATCTTCACTATATTCT-

GCTC 151 60 [25]
R: ACCTCTACACATTTTAAAC-

CAATC

invA Host cell invasion
F: GTGAAATTATCGC-
CACGTTCGGGCAA 284 64 [26]

R: TCATCGCACCGTCAAAG-
GAACC

Hli
Control of phase

change and motility
F: AGCCTCGGCTACTGGTCTTG

173 55 [27]R:
CCGCAGCAAGAGTCACCTCA

F: Forward primer; R: Reverse primer.

2.6. Antimicrobial Susceptibility Testing and Identification of Antimicrobial Resistance Genes

Diffusion method on Mueller–Hinton agar using antimicrobial discs (Bio-Rad, Marne-
La-Coquette, France) was performed to test the resistance of Salmonella strains to 21 an-
timicrobials. Results were interpreted as recommended by the Antibiogram Committee
of the French Society for Microbiology—Veterinary Antibiograms [28]. Colistin resistance
was detected by Colispot test [29]. The presence of an inhibition zone after an application
of a single drop of 8 mg/L colistin solution on a previously inoculated Mueller–Hinton
agar indicated that Salmonella isolates were susceptible to colistin [29]. A screening test
of resistance genes beta-lactams (blaTEM, blaNDM1 and blaCTX-M), fluoroquinolones (qnrB),
tetracycline (tet(A) and tet(B)), trimethoprim(dfrA1), colistin (mcr-1 to mcr-5), and class 1
and 2 integrons was performed by PCRs as described above (Table 2) [26,30–36].

Table 2. Primers of Salmonella for antimicrobial resistance genes targeted in the present study.

Gene Primer Sequence
(5′ to 3′) Product Size (bp)

Annealing
Temperature

(◦C)
Reference

blaTEM
F: ATCAGCAATAAACCAGC

516 54 [30]R: CCCCGAAGAACGTTTTC

blaCTX-M
F: ATGTGCAGYACCAGTAARGTKATGGC

592 58 [31]R: TGGGTRAARTARGTSACCAGAAYSAGCGG

blaNDM1
F: CTGAGCACCGCATTAGCC

621 52 [33]R: GGGCCGTATGAGTGATTGC

tetA
F: GGTTCACTCGAACGACGTCA

577 55 [34]R: CTGTCCGACAAGTTGCATGA

tetB
F: CCTCAGCTTCTCAACGCGTG

634 55 [34]R: GCACCTTGCTGATGACTCTT
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Table 2. Cont.

Gene Primer Sequence
(5′ to 3′) Product Size (bp)

Annealing
Temperature

(◦C)
Reference

dfrA1 F: GGAGTGCCAAAGGTGAACAGC
367 55 [35]R: GAGGCGAAGTCTTGGGTAAAAAC

qnrB F: GATCGTGAAAGCCAGAAAGG
469 53 [32]R: ACGATGCCTGGTAGTTGTCC

mcr-1
F: AGTCCGTTTGTTCTTGTGGC

320 58 [36]R: AGATCCTTGGTCTCGGCTTG

mcr-2
F: CAAGTGTGTTGGTCGCAGTT

715 58 [36]R: TCTAGCCCGACAAGCATACC

mcr-3
F: AAATAAAAATTGTTCCGCTTATG

929 58 [36]R: AATGGAGATCCCCGTTTTT

mcr-4
F: TCACTTTCATCACTGCGTTG

1116 58 [36]R: TTGGTCCATGACTACCAATG

mcr-5
F: ATGCGGTTGTCTGCATTTATC

1644 58 [36]R: TCATTGTGGTTGTCCTTTTCTG

int1
F: GGGTCAAGGATCTGGATTTCG

483 62 [37]R: ACATGGGTGTAAATCATCGTC

int2
F: CACGGATATGCGACAAAAAGGT

233 62 [37]R: GTAGCAAACGAGTGACGAAATG

F: Forward primer; R: Reverse primer.

2.7. Statistical Analysis

Eight factors were selected according to known Salmonella infection risk factors in poul-
try farms. In addition, 21 variables that represent used antimicrobials were included in the
statistical analysis. Data were analyzed with XLSTAT® (Addinsoft, New York, NY, USA)
and SPSS (Version 23.0, IBM Corp; New York, NY, USA). The Pearson chi-square test aims
to assess relation between the data collected on poultry farms and the infection of the
broiler flock with Salmonella at a threshold value of 5%. Logistic regression was used to
assess the effect of the parameters studied on Salmonella infection prevalence; both odds
ratios and 95% confidence intervals were estimated. The retrospective likelihood ratio
selection method was used, and a p-value cut-off of 0.1 was considered for selecting the
risk factors to be included in the model. The goodness of fit was assessed using Hosmer
and Lemeshow χ2 test [38]. The area under curve (AUC) of the receiver operating charac-
teristic (ROC) was plotted as an estimation of the predictive ability of the model. Principal
component analysis (PCA) was performed to investigate correlations between the isolated
strains and the antimicrobial resistance profiles.

3. Results
3.1. Prevalence of Salmonella spp. in Broiler

The prevalence of Salmonella presence in the fecal samples of broiler chicken was
estimated at 19.9% (64/322). The 64 isolates were positive to PCR using Salmonella specific
primers. Prevalence of Salmonella broiler infection was significantly higher in hot season
(24.6%; 55/224) compared to cold season (9.2%; 9/98) (p < 0.05) (Table 3, Figure 2). A total
number of 13 serotypes were identified, namely, S. Kentucky (20.3%;13/64), S. Mbandaka
(18.7%; 12/64), S. Anatum (17.1%; 11/64), S. Zanzibar (15.6%; 10/64), S. Enteritidis (12.5%;
8/64), S. Infantis (3.1%; 2/64), S. Indiana (3.1%; 2/64), S. Corvallis (1.6%; 1/64), S. Agona
(1.6%; 1/64), S. Hadar (1.6%; 1/64), S. Montevideo (1.6%; 1/64), S. Cerro (1.6%; 1/64), and
S. Virginia (1.6%; 1/64) (Figure 2).
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Table 3. Univariate and multivariate analysis of Salmonella prevalence in broiler according to the
studied risk factors.

Risk Factor Category Prevalence in %
(Positive/Tested) OR [95% CI] p-Value

Multivariate Logistic
Regression OR

[95% CI]

No cleaning and
disinfection around the

breeding unit
Yes 29.4 (40/136) 2.810 [1.600–4.950] <0.001 8.642 [1.770–42.196]

No 12.9 (24/186)
Absence of treatment

with an antimicrobial at
the start

Yes 33.3 (52/156) 6.420 [3.270–12.610] <0.001 4.675 [1.720–12.703]

No 7.2 (12/166)
Duration of crawl space

< 15 days Yes 32.7 (53/162) 6.590 [3.290–13.200] <0.001 3.562 [1.436–8.835]

No 6.9 (11/160)
Wet litter Yes 27.8 (50/180) 3.520 [1.850–6.680] <0.001

No 9.9 (14/142)
Hot season (T ≥ 20 ◦C) * Yes 24.6 (55/224) 3.218 [1.520–6.813] 0.001

No 9.2 (9/98)
Number of chicks at

setting in place > 25/m2
Yes 26.6 (47/177) 2.720 [1.480–4.990] 0.009
No 11.7 (17/145)

Absence of rodent
control in the building Yes 17.6 (42/238) 0.604 [0.335–1.089] 0.092

No 26.2 (22/84)
Poor state of cleanliness

of poultry
Yes 18.7 (45/241) 0.749 [0.408–1.375] 0.351
No 23.5 (19/81)

OR: odds ratio, CI: confidence interval, p < 0.05: variable significantly associated with infection with Salmonella spp.
In bolded characters: significant p value and multivariate logistic regression OR. (*): Hot season (May–October)
characterized by an average ambient temperature ≥ 20 ◦C.

Vet. Sci. 2021, 8, x FOR PEER REVIEW 7 of 19 
 

 

Table 3. Univariate and multivariate analysis of Salmonella prevalence in broiler according to the 
studied risk factors. 

Risk Factor Category 
Prevalence in % 
(Positive/Tested) 

OR [95% CI] p-Value 
Multivariate Logistic 

Regression OR  
[95% CI] 

No cleaning and disinfection 
around the breeding unit Yes 29.4 (40/136) 2.810 [1.600–4.950] <0.001 8.642 [1.770–42.196] 

 No 12.9 (24/186)    
Absence of treatment with an 

antimicrobial at the start 
Yes 33.3 (52/156) 6.420 [3.270–12.610] <0.001 4.675 [1.720–12.703] 

 No 7.2 (12/166)    
Duration of crawl space < 15 

days 
Yes 32.7 (53/162) 6.590 [3.290–13.200] <0.001 3.562 [1.436–8.835] 

 No 6.9 (11/160)    
Wet litter Yes 27.8 (50/180) 3.520 [1.850–6.680] <0.001  

 No 9.9 (14/142)    
Hot season (T ≥ 20 °C) * Yes 24.6 (55/224) 3.218 [1.520–6.813] 0.001  

 No 9.2 (9/98)    
Number of chicks at setting in 

place > 25/m2 
Yes 26.6 (47/177) 2.720 [1.480–4.990] 0.009  
No 11.7 (17/145)    

Absence of rodent control in 
the building 

Yes 17.6 (42/238) 0.604 [0.335–1.089] 0.092  

 No 26.2 (22/84)    
Poor state of cleanliness of 

poultry 
Yes 18.7 (45/241) 0.749 [0.408–1.375] 0.351  
No 23.5 (19/81)    

OR: odds ratio, CI: confidence interval, p < 0.05: variable significantly associated with infection 
with Salmonella spp. In bolded characters: significant p value and multivariate logistic regression 
OR. (*): Hot season (May–October) characterized by an average ambient temperature ≥ 20 °C. 

 
Figure 2. Seasonal distribution of Salmonella spp. serotypes in the studied Tunisian broiler breeding farms. 

3.2. Risk Factors Associated with the Presence of Salmonella in the Fecal Samples of Broiler 
Chicken 

The logistic regression based on univariate analysis used to evaluate the impact of 
eight factors selected according to known Salmonella infection in poultry farms revealed 
that broiler infection with Salmonella spp. was significantly related to at least six risk fac-
tors, namely, hot season (T ≥ 20 °C), duration of crawl space lower than 15 days, absence 

Figure 2. Seasonal distribution of Salmonella spp. serotypes in the studied Tunisian broiler
breeding farms.

3.2. Risk Factors Associated with the Presence of Salmonella in the Fecal Samples of
Broiler Chicken

The logistic regression based on univariate analysis used to evaluate the impact of
eight factors selected according to known Salmonella infection in poultry farms revealed
that broiler infection with Salmonella spp. was significantly related to at least six risk factors,
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namely, hot season (T ≥ 20 ◦C), duration of crawl space lower than 15 days, absence of
treatment with an antimicrobial at the start, wet litter, no cleaning and disinfection around
the breeding units, and number of chicks higher than 25/m2 (p < 0.05) (Table 3).

Seasonal fluctuation of broiler contamination by Salmonella showed a significant
difference between cold and hot season that was characterized in Northeast Tunisia by an
average ambient temperature of≥20 ◦C (OR = 3.218; 95% CI = 1.520–6.813) (Table 3). Unlike
other serotypes, S. Kentucky, S. Mbandaka, S. Anatum, S. Zanzibar, and S. Enteritidis were
present during the whole hot season. They showed a prevalence peak during hot season
(78.1%; 50/64) (p < 0.05) (Figure 2).

Besides the effect of the season, the presence of Salmonella spp. in broiler farm buildings
is significantly influenced by a lack of zootechnical and biosecurity standards, as well as the
lack of compliance with animal welfare rules: duration of crawl space lower than 15 days
(OR = 6.590; 95% CI = 3.290–13.200), absence of treatment with an antimicrobial at the
start (OR = 6.420; 95% CI = 3.270–12.610), wet litter (OR = 3.520; 95% CI = 1.850–6.680), no
cleaning and disinfection around the breeding units (OR = 2.810; 95% CI = 1.600–4.950),
and number of chicks higher than 25/m2 (OR = 2.720; 95% CI = 1.480–4.990) (Table 3).

The eight factors selected according to recognized Salmonella infection risk factors in
poultry farms were included in multivariate logistic regression analysis. Using backward
likelihood ratio selection method, three factors were left in the final model, namely, no
cleaning and disinfection around the breeding units, no treatment with an antimicrobial at
the start, and duration of crawl space lower than 15 days (Table 3).

Salmonella broiler flock contamination risk was significantly higher in breeding units
where no cleaning and disinfection around the breeding units were performed (OR = 8.642;
95% CI = 1.770–42.196), no treatment with an antimicrobial at the start was performed
(OR = 4.675; 95% CI = 1.720–12.703), and duration of crawl space was lower than 15 days
(OR = 3.562; 95% CI = 1.436–8.835). The goodness of fit of the model was assessed using
Hosmer and Lemeshow χ2 test. The area under the ROC curve (AUC) was estimated to
0.825 (Figure 3), allowing qualifying the model as good. This means that the obtained
results regarding risk factors are reliable.
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3.3. Prevalence of Virulence Genes

Four different virulotypes were found in the 64 analyzed strains of Salmonella (Table 4).
These virulotypes were invA-gipA-pagK-mgtC-sirA (51.60%; 33/64), invA-gipA-pagK-mgtC-
sirA-Hli (29.70%; 19/64), invA-pagK-mgtC-sirA (14%; 9/64), and invA-pagK-mgtC-sirA-Hli
(4.70%; 3/64). All Salmonella (64strains) were positive for the genes invA (host cell invasion),
pagK (biofilm formation), mgtC (intracellular survival), and sirA (control enteropathogenic
virulence functions) and negative for the virulence genes spvC, trhH, SEN1417, sipA, sipD,
and sopD (Figure 4, Table 4).

Table 4. Salmonella serotypes and virulence genes isolated in the present study (n = 64).

Serotypes
Prevalence in %
(Positive/Tested)

Strains
Virulence Genes (a)

invA spvC hli gipA mgtC trhH sirA pagK sipA sipD sopD SEN

S. Kentucky
20.3% (13/64)

E2 + − − − + − + + − − − −
E8 + − + + + − + + − − − −

E11 + − − + + − + + − − − −
E17 + − − − + − + + − − − −
E22 + − + + + − + + − − − −
E24 + − + + + − + + − − − −
E25 + − − − + − + + − − − −
E31 + − + + + − + + − − − −
E36 + − − + + − + + − − − −
E38 + − − + + − + + − − − −
E40 + − + − + − + + − − − −
F1 + − + + + − + + − − − −
F4 + − + − + − + + − − − −

S. Mbandaka
18.7% (12/64)

E12 + − − + + − + + − − − −
E16 + − − + + − + + − − − −
E18 + − + + + − + + − − − −
E20 + − + + + − + + − − − −
E23 + − − + + − + + − − − −
E32 + − − + + − + + − − − −
E39 + − − + + − + + − − − −
M23 + − − − + − + + − − − −
M25 + − − + + − + + − − − −
M29 + − + − + − + + − − − −
M34 + − + + + − + + − − − −
F6 + − − + + − + + − − − −

S. Anatum
17.1% (11/64)

M17 + − − + + − + + − − − −
M19 + − − + + − + + − − − −
M21 + − − + + − + + − − − −
M22 + − + + + − + + − − − −
M24 + − + + + − + + − − − −
M26 + − − − + − + + − − − −
M28 + − + + + − + + − − − −
M30 + − + + + − + + − − − −
M31 + − − + + − + + − − − −
M32 + − − − + − + + − − − −
M33 + − − − + − + + − − − −

S. Zanzibar
15.6% (10/64)

E3 + − − + + − + + − − − −
E5 + − − + + − + + − − − −
E6 + − + + + − + + − − − −
E7 + − − + + − + + − − − −

E26 + − − + + − + + − − − −
E28 + − − + + − + + − − − −
E29 + − − + + − + + − − − −
E34 + − + + + − + + − − − −
E35 + − − + + − + + − − − −
F3 + − − + + − + + − − − −
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Table 4. Cont.

Serotypes
Prevalence in %
(Positive/Tested)

Strains
Virulence Genes (a)

invA spvC hli gipA mgtC trhH sirA pagK sipA sipD sopD SEN

S. Enteritidis
12.5% (8/64)

E1 + − − + + − + + − − − −
E13 + − − + + − + + − − − −
E14 + − − + + − + + − − − −
E15 + − + + + − + + − − − −
E21 + − + + + − + + − − − −
E27 + − − − + − + + − − − −
E30 + − − + + − + + − − − −
E33 + − − + + − + + − − − −

S. Infantis
3.1% (2/64)

M27 + − − + + − + + − − − −
F2 + − − + + − + + − − − −

S. Indiana
3.1% (2/64)

E10 + − − + + − + + − − − −
M20 + − + + + − + + − − − −

S. Corvallis
1.6% (1/64) E9 + − − + + − + + − − − −

S. Agona
1.6% (1/64) E4 + − − + + − + + − − − −

S. Hadar
1.6% (1/64) E19 + − + + + − + + − − − −

S. Montevideo
1.6% (1/64) M18 + − − − + − + + − − − −

S. Cerro
1.6% (1/64) F5 + − + + + − + + − − − −

S. Virginia
1.6% (1/64) E37 + − − + + − + + − − − −

(a) +: Present; −: Absent.

Vet. Sci. 2021, 8, x FOR PEER REVIEW 11 of 19 
 

 

12.5% (8/64) E13 + − − + + − + + − − − − 
E14 + − − + + − + + − − − − 
E15 + − + + + − + + − − − − 
E21 + − + + + − + + − − − − 
E27 + − − − + − + + − − − − 
E30 + − − + + − + + − − − − 
E33 + − − + + − + + − − − − 

S. Infantis 
3.1% (2/64) 

M27 + − − + + − + + − − − − 
F2 + − − + + − + + − − − − 

S. Indiana 
3.1% (2/64) 

E10 + − − + + − + + − − − − 
M20 + − + + + − + + − − − − 

S. Corvallis 
1.6% (1/64) E9 + − − + + − + + − − − − 

S. Agona 
1.6% (1/64) E4 + − − + + − + + − − − − 

S. Hadar 
1.6% (1/64) 

E19 + − + + + − + + − − − − 

S. Montevideo 
1.6% (1/64) M18 + − − − + − + + − − − − 

S. Cerro 
1.6% (1/64) F5 + − + + + − + + − − − − 

S. Virginia 
1.6% (1/64) 

E37 + − − + + − + + − − − − 

(a) +: Present; −: Absent. 

 

Figure 4. Agarose gel electrophoresis of invA, gipA, pagK, mgtC, sirA, and Hli genes amplicons. L:
100 bp ladder; C-: Negative control; 7: Positive control; Lanes 1 to 6: positive samples. (A): invA-
positive samples; (B): gipA-positive samples; (C): pagK-positive samples; (D): mgtC-positive samples;
(E): sirA-positive samples; (F): Hli-positive samples.
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3.4. Antimicrobial Susceptibility Testing

High resistance rates were detected for nalidixic acid (82.85%; 53/64), amoxicillin
(81.25%; 52/64), streptomycin (75%; 48/64), and ciprofloxacin (75%; 48/64). Alarming
level of resistance to ertapenem (12.5%; 8/64) was noticed. However, resistances to colistin
(7.85%; 5/64), ceftriaxon (11%; 7/64), aztreonam (14%; 9/64), gentamicin (15.6%; 10/64),
and trimethoprim-sulfamethoxazole (31.25%; 20/64) were significantly lower than the
other antimicrobials (p < 0.05) (Figure 5, Table 5).
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Figure 5. Percentage of antimicrobial-resistant Salmonella spp. isolated strains in Tunisian broiler
breeding farms.AMX: amoxicillin, AUC: amoxicillin + clavulanic acid, SF: cefalotin, FOX: cefox-
itin, CAZ: ceftazidim, CTX: cefotaxim, CRO: ceftriaxon, CPM: cefepim, ATM: aztreonam, ETP:
ertapenem, GME: gentamicin, S: streptomycin, CS50: colistin, NA: nalidixic acid, ENF: enrofloxacin,
CIP: ciprofloxacin, FFC: florfenicol, C: chloramphenicol, TE: tetracycline, SUL: sulfamides, SXT:
trimethoprim-sulfamethoxazole.

All of the strains were resistant to at least two antimicrobials, and 87.5% (56/64) of
strains were multidrug-resistant (MDR). The MDR strains were selected based on resistance
to over three classes of antimicrobials.

The principal component analysis (PCA) used to investigate correlations between
the isolated strains and the antimicrobial resistance profiles revealed that six MDR strains
(M17, M19, M21, M22, M26, and E9) had distinct profiles from the others (Figure 6). Three
MDR strains (S. Anatum (M17, M22, and M26)) were extended-spectrum β-lactamase
(ESBL)-producers, and three MDR strains (S. Anatum (M19, M21) and S. Corvallis (E9))
were cephalosporinase-producers (Table 5). The ESBL strains were selected based on resis-
tance to amoxicillin, cephalosporines 1, 2, 3, 4 generations (except cefoxitin)and aztreonam,
and sensitivity to the association (amoxicillin+ clavulanic acid) and ertapenem [28,39,40] In
addition, ESBL strains can be characterized by the observation of a “champagne cork” syn-
ergy between the amoxicillin + clavulanic acid disc and a C3G/C4G disc or an aztreonam
disc [28]. The AmpC strains were selected based on resistance to amoxicillin, the association
(amoxicillin+ clavulanic acid), cephalosporines 1, 2, 3, 4 generations, and aztreonam [41].
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Table 5. Salmonella serotypes and antimicrobial resistance profiles isolated in the present study
(n = 64).

Serotypes
Prevalence in %
(Positive/Tested)

Strains
Antimicrobial Resistance Profiles (b)

A
M

X

A
U

C

SF FO
X

C
A

Z

C
T

X

C
R

O

C
PM

A
T

M

ET
P

G
M

E

S

C
S5

0

N
A

EN
F

C
IP

FF
C

C T
E

SU
L

SX
T

S. Kentucky
20.3% (13/64)

E2 (c)

E8 (c)

E11 (c)

E17 (c)

E22 (c)

E24 (c)

E25 (c)

E31 (c)

E36 (c)

E38 (c)

E40 (c)

F1 (c)

F4 (c)

S. Mbandaka
18.7% (12/64)

E12 (c)

E16 (c)

E18 (c)

E20 (c)

E23 (c)

E32 (c)

E39 (c)

M23 (c)

M25 (c)

M29 (c)

M34 (c)

F6 (f)

S. Anatum
17.1% (11/64)

M17 (d)

M19 (e)

M21 (e)

M22 (d)

M24 (f)

M26 (d)

M28 (f)

M30 (c)

M31 (c)

M32 (c)

M33 (c)

S. Zanzibar
15.6% (10/64)

E3 (c)

E5 (c)

E6 (c)

E7 (c)

E26 (c)

E28 (c)

E29 (c)

E34 (c)

E35 (c)

F3 (c)

S. Enteritidis
12.5% (8/64)

E1 (c)

E13 (c)

E14 (f)

E15 (c)

E21 (c)

E27 (c)

E30 (c)

E33 (c)
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Table 5. Cont.

Serotypes
Prevalence in %
(Positive/Tested)

Strains
Antimicrobial Resistance Profiles (b)

A
M

X

A
U

C

SF FO
X

C
A

Z

C
T

X

C
R

O

C
PM

A
T

M

ET
P

G
M

E

S

C
S5

0

N
A

EN
F

C
IP

FF
C

C T
E

SU
L

SX
T

S. Infantis
3.1% (2/64)

M27 (c)

F2 (c)

S. Indiana
3.1% (2/64)

E10 (c)

M20 (c)

S. Corvallis
1.6% (1/64) E9 (e)

S. Agona
1.6% (1/64) E4 (f)

S. Hadar
1.6% (1/64) E19 (c)

S. Montevideo
1.6% (1/64) M18 (f)

S. Cerro
1.6% (1/64) F5 (f)

S. Virginia
1.6% (1/64) E37 (f)
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3.5. Prevalence of Antimicrobial Resistance Genes

The blaCTX-M gene was identified in all the three ESBL strains. The qnrB gene was not
identified in fluoroquinolone (enrofloxacine and ciprofloxacine)-resistant strains. The tetA
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and tetB genes were identified in 5% (2/40) and 2.5% (1/40), respectively, of tetracycline-
resistant strains. The dfrA1 gene was identified in five of the 20 trimethoprim-resistant
strains. The genes mcr-1 to mcr-5 were not identified in any of the five colistin-resistant
strains. Integrase gene (int2) was identified in only 11% (7/64) of the Salmonella spp. strains.

4. Discussion

The results of our study showed that broiler infection prevalence with Salmonella spp.
was 19.9% (64/322). These results of the current study corroborate those of Chaiba et al.
(2016) [9], who reported that 24% (18/75) of chicken farms were infected with Salmonella in
Morocco. Moreover, our result was significantly higher than Salmonella chicken infection
rate in China (11.38%; 33/290) (p < 0.05) indicated by Cui et al. (2016) [42]. In addition,
our study revealed that the prevalence of Salmonella broiler infection was significantly
higher during the hot season compared to the cold season (p < 0.05). High prevalence of
infection during the hot season could be due to the high temperature and hygrometry, both
favorable for Salmonella growth.

On the other hand, a total of 13 serotypes were identified in the current study. Five
serotypes were predominant (S. Kentucky, S. Mbandaka, S. Anatum, S. Zanzibar, and
S. Enteritidis) (p < 0.05) (Table 4). Our results show slight similarities with studies from
other countries, such as Canada, the USA, Spain, and China, where S. Enteritidis and
S. Typhimurium were the most prevalent [43]. In South Korea, Vietnam, and Cambodia,
S. Hadar, S. Infantis, and S. Anatum were the most prevalent [44–46]. This suggests that
there are geographical differences in the occurrence and dominance of Salmonella serotypes.
In addition, the presence of S. Kentucky (20.3%; 13/64) revealed by our study represents a
real threat to human health as it is often associated with multidrug resistance to several
antimicrobial families, as indicated by Turki et al. (2012) [7].

Our study revealed that the presence of Salmonella spp. in broiler farm buildings is
significantly favored by a lack of biosecurity standards, as well as a lack of compliance with
animal welfare rules. Our results are in agreement with those of Chaiba et al. (2016) [9] and
El Allaoui et al. (2017) [47], who found that the specific risk factors for Salmonella infection
of broiler farms are linked to inadequate hygienic measures. Similarly, Heyndrickx et al.
(2002) [48], Line et al. (2002) [49], and Cardinale et al. (2004) [50] indicated that chicken
density greater than 25 subjects per square meter in broiler farm buildings, wet litter, and
crawl space < 15 days are important risks of Salmonella broiler infection, respectively.

All studied Salmonella strains (64) were positive for the genes invA, pagK, mgtC,
and sirA, and negative for the virulence genes spvC, trhH, SEN1417, sipA, sipD, and
sopD. We found four virulotypes, namely, invA-gipA-pagK-mgtC-sirA, invA-gipA-pagK-
mgtC-sirA-Hli, invA-pagK-mgtC-sirA, and invA-pagK-mgtC-sirA-Hli. The virulence genes
could lead to serious cases of Salmonella foodborne infections in children, elderly, and
immune-compromised persons.

The results of the present study are in agreement with those of Karraouan et al.
(2010) [20] who reported that Salmonella (39 isolates) were positive for the invA gene in
turkey meat in Morocco. In addition, most of the Salmonella serotypes isolated were
negative for the spvC and Hli genes, while four strains (S. Kentucky) were positive for
the Hli gene. The spvC gene was amplified only in a strain of S. Gallinarum. Moreover,
Abouzeed et al. (2000) [27] amplified the invA gene in 75 Salmonella isolates of food and
human origins. The results of the present study concerning the spvC gene differ from those
of Abouzeed et al. (2000) [27]. These authors reported that 28% of Salmonella isolates were
positive for the spvC gene (21/75). Our results agree with those of Turki et al. (2012) [7],
who indicated that all strains (57) of Salmonella Kentucky isolated from different sources
(animals, food, and human) were negative for the spvC gene.

As it was reported in several countries (France, Belgium, Slovak Republic, Morocco,
and Ethiopia) [51–53], we noticed high resistance rates to nalidixic acid, amoxicillin, strep-
tomycin, and ciprofloxacin, and a high multidrug-resistance (MDR) rate of 87.5% (56/64)
in Salmonella isolated in the current study. Three MDR strains were extended-spectrum
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β-lactamase (ESBL)-producers, and three MDR strains were cephalosporinase-producers.
Moreover, the antimicrobials often used in the visited poultry farms belong to the fam-
ilies of fluoroquinolones, beta-lactamines, second- and third-generation cephalosporin,
sulfamides, and tetracycline. The high rates of resistance revealed by our study correspond
to antimicrobials that belong to these families. Colistin is used very little in the visited
poultry farms. It is considered the treatment of last resort prescribed for severe infections
caused by bacteria resistant to commonly used antimicrobials. This therapeutic approach
could explain the relatively low resistance rate to colistin.

The blaCTX-M gene was amplified in all the three ESBL strains. The tetA, tetB, and
dfrA1 genes were identified in a few resistant strains, but qnrB and mrc genes were not
identified in any of the MDR Salmonella isolates. Genes of integrase class 2 were identified
in 11% (7/64) of resistant Salmonella strains. Our results are comparable to those from the
study of Lapierre et al. (2020) [54], who studied antimicrobial resistance of 87 S. Infantis
isolates from chicken meat for sale in supermarkets in Santiago, Chile. In this study, high
levels of multidrug-resistant and ESBL strains were indicated at the rate of 94 and 63%,
respectively. The blaCTX-M-65 gene was identified in 15% (13/87) of isolates. In addition,
three isolates were resistant to fluoroquinolones, with the presence of the qnrB gene in two
strains. The rate of resistance to colistin was high (29%), but the mcr genes were absent in
the 87 studied strains. In addition, class 1 integrons were amplified in 7% (6/87) of the
isolates [54].In the present study, some resistance genes were not detected in disc diffusion
test positive isolates because resistance to an antimicrobial can be linked to different genes,
but we cannot test all these genes.

An interesting result was reported in our study indicating high resistance rate to er-
tapenem. Carbapenem resistance, mainly among Gram-negative pathogens, is an ongoing
public health problem of global dimensions. This type of antimicrobial resistance, espe-
cially when mediated by transferable carbapenemase-encoding genes, is spreading rapidly,
causing serious outbreaks and dramatically limiting treatment options [55].In addition,
the results of our study corroborate those of Ben Hassena et al. (2019) [56], who reported
the emergence of multidrug-resistant Salmonella strains isolated from food with decreased
susceptibility to fluoroquinolones and third-generation cephalosporin in Tunisia. Then, our
findings show the importance of embracing the “One Health” approach that was promul-
gated by the World Health Organization in its action plan against antimicrobial resistance,
which mobilizes various actors in three main sectors: animal husbandry, environment, and
human health. In fact, the World Health Organization has named antimicrobial resistance
as one of the three most important public health threats of the 21st century [57].

5. Conclusions

Twenty percent of the broiler flocks were infected with different serotypes of Salmonella.
High resistance rates to nalidixic acid, amoxicillin, streptomycin, and ciprofloxacin were
detected. An alarming level of resistance to ertapenem (12.5%) was noticed. Nearly
ninety percent of strains were identified as multidrug-resistant (MDR). Extended-spectrum
β-lactamases (ESBL)-producer and cephalosporinase-producer Salmonella strains were iden-
tified. The blaCTX-M gene was amplified in three ESBL strains. Therefore, vigorous control
measures are needed in the first step of the poultry chain. In addition, the association
of multidrug resistance and virulence genes in Salmonella isolates justifies the need for
surveillance systems for both human and animal health sectors.
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