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Abstract

Eukaryotic DNA replication is elaborately orchestrated to duplicate the genome timely and

faithfully. Replication initiates at multiple origins from which replication forks emanate and

travel bi-directionally. The complex spatio-temporal regulation of DNA replication remains

incompletely understood. To study it, computational models of DNA replication have been

developed in S. cerevisiae. However, in spite of the experimental evidence of forks’ speed

stochasticity, all models assumed that forks’ speeds are the same. Here, we present the

first model of DNA replication assuming that speeds vary stochastically between forks. Uti-

lizing data from both wild-type and hydroxyurea-treated yeast cells, we show that our model

is more accurate than models assuming constant forks’ speed and reconstructs dynamics

of DNA replication faithfully starting both from population-wide data and data reflecting fork

movement in individual cells. Completion of replication in a timely manner is a challenge

due to its stochasticity; we propose an empirically derived modification to replication speed

based on the distance to the approaching fork, which promotes timely completion of replica-

tion. In summary, our work discovers a key role that stochasticity of the forks’ speed plays

in the dynamics of DNA replication. We show that without including stochasticity of forks’

speed it is not possible to accurately reconstruct movement of individual replication forks,

measured by DNA combing.

Author summary

DNA replication in eukaryotes starts from multiple sites termed replication origins. Repli-

cation timing at individual sites is stochastic, but reproducible population-wide. Complex

and not yet completely understood mechanisms ensure that genome is replicated exactly

once and that replication is finished in time. This complex spatio-temporal organization

of DNA replication makes computational modeling a useful tool to study replication

mechanisms. For simplicity, all previous models assumed constant replication forks’

speed. Here, we show that such models are incapable of accurately reconstructing dis-

tances travelled by individual replication forks. Therefore, we propose a model assuming

that replication speed varies stochastically between forks. We show that such model repro-

duces faithfully distances travelled by individual replication forks. Moreover, our model is
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simpler than previous model and thus avoids over-learning (fitting noise). We also dis-

cover how replication speed may be attuned to timely complete replication. We propose

that forks’ speed increases with diminishing distance to the approaching fork, which we

show promotes timely completion of replication. Such speed up can be e.g. explained by a

synergy effect of chromatin unwinding by both forks. Our model can be used to simulate

phenomena beyond replication, e.g. DNA double-strand breaks resulting from broken

replication forks.

Introduction

DNA replication in eukaryotic cells is highly regulated to ensure that the whole genome is

duplicated correctly and completely before cell division [1]. Replication initiates at specific

sites, termed origins of replication. Origins are prepared to be activated (i.e. fired) with the

assembly of a pre-replication complex, through a process termed licensing, during the G1

phase [2]. Replication origins are licensed in excess and during the subsequent S phase a subset

of origins initiate replication. Two forks emanate and elongate bi-directionally from each

active origin, the rest of the licensed origins are passively replicated by the forks emerging

from the neighbor origins [3, 4]. In the budding yeast Saccharomyces cerevisiae, DNA replica-

tion initiates from�400 origins with known genomic coordinates [5]. Origin activation is sto-

chastic in individual cells [6, 7], but chronological order of origin activation is reproducible

population-wide. This flexibility in origin activation is essential in response to DNA damage

and adaption of replication to gene expression [8, 9]. Upon origin activation, replication forks

are formed and progress along the chromosome until they meet another fork moving in the

opposite direction. High-throughput experimental data, which have been used to study the

dynamics of DNA replication, allow the measurement of average replication time and average

forks’ speed, but mask variations in these parameters between forks [10]. Distances travelled

by individual replication forks in vivo can be visualized and measured using DNA combing.

However, DNA combing does not provide the genomic coordinates, and complexity of spatio-

temporal regulation of replication makes interpretation of these data difficult. As a result,

computational models are necessary to analyze the mechanism of DNA replication and under-

stand how regulation of origin activation and fork elongation impact its dynamics.

Substantial stochasticity of replication forks’ speeds has been observed in in vitro biophysi-

cal studies of individual forks [11] and in DNA combing and 2D gel analysis in S. cerevisiae
[11–16]. Nevertheless, previous models assumed that forks’ speed was not stochastic (i.e. did

not vary between forks) [7, 17–30]. Moreover, previous models used only population-wide

data and typically employed origin-to-origin comparison for validation and parameter selec-

tion [22–24, 30]. Such an approach can elucidate information about origin average firing time

and efficiency (i.e. percentage of cells in which origin is fired), but it cannot distinguish

between variability in the forks’ speeds and the stochasticity of origin firing time.

Here, we present Repli-Sim, a probabilistic numerical model for DNA replication, which

simulates DNA replication in S. cerevisiae genome-wide assuming stochastic replication forks’

speeds. Repli-Sim includes local parameters specific to each origin inferred from experimental

data and global parameters assigned to origins using a Monte Carlo method and optimized

through a genetic algorithm. We used both data on distances travelled by individual replica-

tion forks (DNA combing) and cell population-wide measurements (DNA copy number data)

to validate our model. We show that stochasticity in the forks’ speeds is key to reconstructing

dynamics of DNA replication in single cells, as measured by DNA combing. We also show that

Computer simulations reveal stochasticity of DNA replication
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constant forks’ speed models, such as previously used, are incapable of accurately reconstruct-

ing distribution of distances traveled by individual replication forks, as measured by DNA

combing. We also report the observation, based on three independent datasets, that an individ-

ual fork speed may depend on the distance to the approaching fork. We show that such modifi-

cation of the fork speed promotes timely completion of the replication, which is a challenge

due to its stochastic nature.

Results

We will use both a single origin of replication and the whole genome to show how the variance

of forks’ progression rate impacts the distribution of distances travelled by individual forks, i.e.

the so called DNA tracks. For single origin of replication analysis, we will illustrate a significant

increase in the difference between variable and constant forks’ speeds at later times during S

phase, representing a more dominant effect of forks’ progression rate variability at longer

times, while the average length of the DNA track remains comparable in all models. For

genome wide analyses, Repli-Sim is utilized to derive the DNA tracks for both untreated and

hydroxyurea-treated cells and it is shown how taking into account variability in replication

forks’ speeds impacts the dynamics of replication and distribution of DNA tracks.

Repli-Sim

Repli-Sim is a probabilistic numerical model designed to study the dynamics of DNA replica-

tion. Origins of replications are licensed (i.e. prepared) to be activated during G1 phase of cell

cycle, the frequency with which a given origin is licensed is called its competence, ci. During S-

phase, licensed origins of replication are either activated or they are passively replicated by

other forks. DNA tracks (continuous distances covered by replication forks, Fig 1) are formed

and elongated throughout the genome until the whole DNA is replicated. In Repli-Sim

(Methods), coordinates x of replication origins are derived from experimental data and filtered

using a database of replication origins, OriDB [5]. As shown in Fig 1, two forks are formed and

elongate bidirectionally across the genome to form DNA tracks (Δx). For each origin i in a cell

population, at time texp (measured from the beginning of DNA replication), we derive the

distribution of Δx based on two assumptions. First, the firing time of the origin, ti
0
, is derived

from a normal distribution with a mean firing time mi
t (specific to that origin and derived from

experimental data), and with global standard deviation σt:

ti
0
 Nðmi

t j s
2
t Þ: ð1Þ

Second, individual forks are assigned with different speeds, vi, derived from the same prob-

ability distribution with a mean speed, μv and standard deviation σv:

vi  Nðmv j s
2
vÞ: ð2Þ

A probability of origin licensing ci (competence, i.e. a priori probability of origin activation)

is assigned to each individual origin as a random number between the experimentally mea-

sured frequency of that origin activation and 1. This probability is used to determine which

origins are activated and a Monte-Carlo method is used to generate activation time ti
0

for an

origin i from a Gaussian probability distribution with an experimentally estimated mean acti-

vation time mi
t specific to that origin (Methods), and a global standard deviation σt, same for

each origin. Origins passively replicated (i.e. replicated by a fork emanating from another ori-

gin) are identified and removed from calculations. Individual forks progress with different
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speeds, constant for each fork, generated using a Monte-Carlo method from a Gaussian proba-

bility distribution with a global average speed μv and standard deviation σv. Forks stop when

they encounter a fork traveling from another direction.

Impact of stochasticity of forks’ speeds on the dynamics of DNA

replication

First we will illustrate the impact of variance in forks’ speeds on the distribution of the DNA

tracks by analyzing single origin of replication. In Fig 2 we show the distribution of DNA

tracks (Δx) for constant (σv = 0) and variable (σv 6¼ 0) forks’ speeds and for single origin. The

difference between variable and constant forks’ speeds are especially pronounced later in the

S phase, while the average length of DNA track remains similar for both models. We have

shown (Methods Eq 6) that s2
Dx can be approximated by

s2
Dx ¼ m

2
vs

2
t þ m

2
Dts

2
v ; ð3Þ

which implies that stochasticity of distribution of DNA tracks (σΔx) not only depends on the

average forks’ speed (μv) and average firing time (μΔt) but also on their degree of randomness

(σv and σt). On the other hand, considering Eq 3, assuming constant forks’ speed (σv = 0), the

Fig 1. A schematic of the mechanism of DNA replication encoded in Repli-Sim. Repli-Sim includes local origin parameters (position xi, competence ci, and mean

firing time mi
t) and global parameters (firing time variance σt, mean forks’ speed μv and its variance σv). When an origin of replication activates, two forks are formed and

elongate bidirectionally until they meet an approaching fork. The speed of an individual fork is constant, but vary between forks, even if they emanate from the same

origin. The continuous length of the replicated DNA (Δx, DNA tracks) are shown with the dashed lines.

https://doi.org/10.1371/journal.pcbi.1007519.g001
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second term (m2
Dts

2
v) vanishes. Therefore, fitting σΔx using constant forks’ speed models will

lead to over estimation of σtμv. Since the average forks’ speed is relatively easy to determine

experimentally, fitting distribution of DNA tracks using constant forks’ speed models (σv = 0)

will result in artificially increased stochasticity of origin firing (σt), manifesting itself e.g. by

Fig 2. The impact of stochasticity of replication forks’ speeds on the distribution of DNA tracks. The distributions of DNA tracks for constant (σv =

0, blue) and variable (σv 6¼ 0, orange) replication forks’ speeds at three different time points within the S phase: 30, 45, and 60 minutes. The differences

in DNA track distributions between constant and variable forks’ speed models become most pronounced at at later times. The dashed red line denotes

the mean value.

https://doi.org/10.1371/journal.pcbi.1007519.g002

Fig 3. Model selection by Repli-Sim for models with constant and stochastic forks’ speeds. (a) Some models (parameter sets) considered.

Stochasticity of replication forks’ speeds (s2
v) is shown on the horizontal axis, residual sum of squares (RSS) with experimental data (the lower the

better) is shown on the vertical axis, the average forks’ speed (v) is color coded, as shown in the color-bar. Best models (smallest RSS value) are more

stochastic. The best selected constant speed model had parameters (s2
t ¼ 5:7min2, texp = 50min, v = 1.4kb/min, s2

v ¼ 0ðkb=minÞ2) and the best variable

speed model was (s2
t ¼ 9:7min2, texp = 42min, v = 1.5kb/min, s2

v ¼ 0:9ðkb=minÞ2). The texp and fork speed from experimental data are 40min and

v = 1.6(kb/min), which are more compatible with the variable fork progression model. (b, c) The distribution of DNA tracks for both best stochastic (b,

orange) and constant (c, blue) forks’ speeds models are shown along with the distribution of DNA tracks from experimental data (gray), which shows a

better fit for the stochastic forks’ speeds model. The average distance traveled in the stochastic forks’ speeds model is compatible with the experimental

data (�105kb).

https://doi.org/10.1371/journal.pcbi.1007519.g003
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known late origins to fire early in S phase, as if they were early origins, as in previous models

[23]. We discuss stochasticity of origin firing time in more detail elsewhere (Yousefi et al., in

preparation).

Examining forks’ speeds stochasticity in wild-type yeast cells

To investigate whether the forks’ speeds are stochastic or constant in wild-type (wt) yeast cells,

we used time course DNA copy number sequencing data [23]. This experimental data was

taken every 5 minutes between minute 15th to 40th during the S phase and included mean fir-

ing times and efficiencies of the origins, which we utilized in our analysis. Other parameters

including σt, σv, μv, and time of observation texp were selected by Repli-Sim through identifying

best-fitting model via simulations. For both constant and stochastic forks’ speeds models, the

simulations were performed for >5000 different sets of parameters selected by a genetic algo-

rithm; for each parameter set the distribution of DNA tracks, binned with bin size 1kb, were

derived and compared with the distribution of DNA tracks at 40min generated from experi-

mental data using residual sum of squares (RSS), as shown in Fig 3(a). Fig 3(b) and 3(c) present

the results for best fitting parameters for both constant and stochastic forks’ speeds and shows

that a model with the stochastic forks’ speeds fits the experimental data best. The best fitting

model exhibits considerable relative stochasticity of forks’ speeds (s2
v ¼ 0:4ðkb=minÞ2). Strik-

ingly, that same relative stochasticity of replication forks’ speeds that we derived from simula-

tions was observed in in vitro studies of individual replication forks in another organism [11].

Moreover, the average replicated distance is comparable in stochastic forks’ speed model with

that of the experimental data (105kb). In addition, the average replication forks’ speeds and

texp derived from simulations for the variable forks’ speeds model (1.5 (kb/min), 42 (min)) are

more consistent with experimental data (1.6(kb/min), 42(min)) than those obtained from best

constant speed model (1.4(kb/min), 50(min)).

Examining forks’ speeds stochasticity in hydroxyurea-treated wt yeast cells

Hydroxyurea (HU) is an inhibitor of the ribonucleotide reductase (RNR), an essential enzyme

for catalyzing the production of deoxyribonucleotide triphosphates (dNTPs), the building

blocks of DNA. As a result, HU treatment depletes dNTPs thus slowing replication fork pro-

gression and making HU-treated cells an interesting case to study. To examine the stochasti-

city of forks’ speeds and its impacts on replication in HU-treated cells, we used experimental

DNA tracks data from HU-treated wt yeast cells studied in [31]. Mean origin firing time for

each individual origin was derived as described in Methods. Similar to the previous analysis,

for both constant and stochastic forks’ speeds models, the simulation was run over 5000 sets of

different parameters selected randomly by a genetic algorithm, and for each parameter set the

distributions of DNA tracks were derived and compared with the experimental DNA track dis-

tribution by calculating the RSS between the distributions binned with 1kb bin size. We first

identified a group of best fitting models (RSS<0.65), and then as the final model we selected

the model with a total number of active origins consistent with that of the experimental data

(280 ± 10). It is important to note that stochasticity of firing time σt impacts origin usage. A

smaller σt is equivalent to more localized firing time, which leads to activation of fewer late

origins early in S phase as compared to a larger σt, as we discuss elsewhere (Yousefi et al., in

preparation). Indeed, the dysregulation of origin activation has been observed in various con-

ditions [31–34], which could be explained by increasing stochasticity of firing time of origins

of replication σt. Some parameter sets from simulations are presented in Fig 4(a), where mod-

els with a smaller RSS value (i.e. better fitting), exhibit more stochasticity in fork speed (higher

σv). The best models are selected using numbers of active replication origins, as described

Computer simulations reveal stochasticity of DNA replication
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above. In Fig 4(b) and 4(c) we compare experimental and best-fitting simulated distributions

of DNA tracks for constant speed and stochastic forks’ speeds models. For untreated wt yeast

cells stochastic forks’ speeds model fits the data much better.

Parameter selection. For parameter selection, a genetic algorithm is used for minimiza-

tion of the RSS between the distribution of DNA tracks from experimental data and simulation

results. We used a population of 5000 sets of parameters, run in parallel using the open source

implementation OpenMP over 32 threads. For each condition, a number of best sets of param-

eters is selected, as shown in Figs 3 and 4, among which the one with the total number of active

origins most similar to the experimental data is chosen.

Comparison with the previous work

To compare Repli-Sim fairly with the most current published model of DNA replication [23],

we obtained new DNA track data from untreated wild-type yeast cells for which the Hawkins

et al. model [23] was optimized. In the Hawkins et al. model, origins have not only individual

assigned firing time, mi
t , but unlike in our model, each origin has its individual firing speed sto-

chasticity, si
t , resulting in 814 model parameters. Since the Hawkins et al. model was developed

for wild-type yeast used in this comparison we retained their origin parameters. The fork

speed for Hawkins et al. model was optimized to maximize fit with the data. We calculated

Kolmogorov-Smirnov statistic (maximal distance between the cumulants) for each model and

experimental data and selected the model with minimal value of this statistics (Fig 3(b) and

3(c)). To stress the impact of stochasticity of replication forks’ speeds on the accuracy of recon-

struction of DNA replication dynamics, we prepared a simplified Repli-Sim model, where ori-

gin firing time will be stochastic (not empirically derived as previously). Such a simplified

Repli-Sim model only has 5 parameters, in addition to origin coordinates, considered known.

Again, Kolmogorov-Smirnov statistics was used to select the Repli-Sim model best fitting

experimental data. As Fig 5 shows, even such a simplified Repli-Sim model fits the DNA tracks

data much better than much more complex Hawkins et al. model [23]. This result highlights

Fig 4. Results of Repli-Sim for HU-treated cells for both constant and variable fork speed models. (a) Some models (parameter

sets) considered. Stochasticity of replication forks’ speeds (s2
v) is shown on the horizontal axis and residual sum of squares (RSS) with

the experimental data of [31] is shown on the vertical axis, the average forks’ speed (v) is color-coded (side bar). Best fitting models

(smallest RSS) are characterized by more stochastic forks’ speeds. Best fitting constant speed model is (s2
t ¼ 11ðmin2Þ, texp = 52

(min), v = 0.07(kb/min), s2
v ¼ 0ðkb=minÞ2,) the best selected variable speed model is (s2

t ¼ 7:7ðmin2Þ, texp = 52(min), v = 0.12(kb/

min), s2
v ¼ 0:07ðkb=minÞ2, pend = 2e − 6). (b, c) The distribution of DNA tracks for both best stochastic (b, orange) and constant (c,

blue) forks’ speeds models are shown along with the distribution of DNA tracks from experimental data (gray), which shows a better

fit for the stochastic forks’ speeds model.

https://doi.org/10.1371/journal.pcbi.1007519.g004
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the key role stochasticity of replication forks’ speeds plays in accurately reconstructing dynam-

ics of DNA replication and thus DNA tracks.

Context-dependent variability of fork speed and its impact on the

completion of replication

DNA replication dynamics is impacted not only by origin activation, but also by replication

forks’ speeds. The replication profile shows time at which 50% of the DNA was replicated in a

given genomic location (Fig 6). It has been proposed in [12, 13, 35] that the slope of the repli-

cation profile curve between successive minimums and maximums can be interpreted as the

average forks’ speed in that region. However, such assumption is not valid because of the com-

plexity of replication profile, which is affected by many parameters including temporal profile

of the origins activation and speeds of the forks emanating from them. This point is illustrated

in Fig 6, where we simulated such a curve based on stochastically variable forks’ speed and

experimentally derived intervals of origin firing. Even though the forks’ speed does not depend

on the genomic location, the slope of the curve, proposed to be proportional to the forks’

speed, changes substantially between genomic regions. Fig 6 shows that deriving the average

forks’ speed from the slope of the replication profile may lead to inaccurate estimation of

forks’ speed progression as in [12] and incorrect conclusion that the average forks’ speed must

be changing depending on the genomic regions [35][12].

On the other hand, it is true that local change in forks’ speed would impact the slope of the

replication profile curve. Therefore, we analyzed local slopes of the replication profile curve

and observed an interesting dependence between the slope of the replication profile curve and

the average distance of forks starting from a given origin to the approaching forks (Fig 7(a)).

We observed this high correlation (Fig 7(b)) in three independent data sets ([23], [13] and

[12]). Moreover, this correlation is not fully explained by our current model, where forks’

speed is stochastic between forks, but does not depend on a genomic region (Fig 7(c)). Moti-

vated by this observation, we implemented an increase in the forks’ speed based on its distance

Fig 5. Comparison of DNA track distributions predicted by different models with experimental data. (a) Our model (random origin activation

times, but stochastic forks’ speeds), (b) Hawkins et al. model. Our simplified model (a, orange) reproduces distribution of distances travelled by

replication forks measured by DNA combing (gray) much better than previous model (b, blue).

https://doi.org/10.1371/journal.pcbi.1007519.g005
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to an approaching fork, while mean forks’ speed remains constant and is consistent with

experimental data. To keep model realistic, maximal such an increase in speed is capped at 1.9

average fork speed.

To examine the impact of the observed increase in the fork speed on the completion of the

replication, we compared the experimental data for replication timing profile (the time at

which 50% of the DNA at specific coordinates is replicated) of chromosome I [23] with repli-

cation timing profile of both thus modified and non-modified stochastic forks’ speeds models.

As shown in Fig 8(a), the modified stochastic forks’ speeds model fits the experimental data

the best. The mechanistic explanation for this increase in forks’ speed can be a synergy effect

for unfolding of DNA in front of a replication fork, resulting in faster fork progression. This

plasticity of the forks’ speed could be the reason for the higher stochasticity of DNA track dis-

tribution observed for later firing origins [24].

The stochastic nature of replication leads to the “random replication gap problem” [36–

40]. Namely, random origin firing will occasionally lead to large gaps between replication

Fig 6. Replication profile derived from our best model: Stochastic forks’ speed not depending on genomic location and stochastic origin firing (σt
6¼ 0). Note that the replication profile slope is highly variable (as indicated by the red arrow) even though the fork speed is constant. Here, the variation

in slope is due to the origin firing with different probabilities at different times, although such variation can be also caused by local variability of forks’

speeds.

https://doi.org/10.1371/journal.pcbi.1007519.g006
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bubbles that would take a very long time to replicate. Such gaps challenge the completion of

DNA replication in a timely manner. All the proposed solutions to address this problem has

been focusing on the regulation of origin activation [37, 38], while regulation of replication

fork progression, which impacts the dynamics of replication as well, has not been taken into

account. Specifically, it has been proposed [37] that probability of activation of replication ori-

gins increases as S phase progresses and therefore origins located in yet-unreplicated gaps have

the higher chances to be replicated the longer the gap persists thus promoting timely comple-

tion of the replication. In contrast, based on our data analysis, we propose that the forks

approaching each other accelerate their speed, perhaps due to cooperative chromatin unwind-

ing, and thus promote completion of the replication. Our solution is more general since it is

also addressing a situation when no origins are present in the potential gap regions. As shown

in Fig 8(b) on the example of DNA copy number profiles for chromosome I for three different

time points (20, 30, and 40 minutes), the gaps in replicated DNA are larger in the model with

non-modified speed. Indeed, as shown in Fig 8(c), our modified fork speed model promotes

the completion of replication, e.g. in the modified stochastic forks’ speeds model 98% of the

Fig 7. Replication fork speed adjustment based on the distance to the approaching fork. (a) Schematic

representation of D, the distance from an emerging fork to an approaching fork. (b) The strong correlation between D
and emerging fork speed is observed in three independent data sets [12, 13, 23] (c) dependence of the slope on the

inter-origin distance observed in the experimental data (red) cannot be reproduced by our model where forks’ speed

varies stochastically but does not depend on the genomic location (blue).

https://doi.org/10.1371/journal.pcbi.1007519.g007
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genome is replicated after 55 mins, consistent with experimental observations, while in non-

modified stochastic forks’ speeds model it takes much longer, 79 minutes. Thus the fork speed

modification we proposed addresses the random gap problem by promoting timely comple-

tion of replication.

Experimental data

Throughout the analysis, three different experimental data sets ([12, 13, 23]) are utilized with

the list of origins of replication detected in each individual experiment. The origins used are

consistent with the OriDB database [5]. The DNA fiber data for wt cells collected during S

phase, kindly provided by Philippe Pasero, were used for model selection.

Code availability

All software used in this project is available from https://github.com/rowickalab/RepliSim.

Fig 8. Replication timing profile and DNA copy number of chromosome I and percentage of genome replicated as

a function of time. (a) Schematic representation of replication timing profile for experimental data ([23]) (black),

along with modified (red) and non-modified (blue) fork speed models, which shows a better fit of the experimental

data with modified fork speed model. (b) DNA copy number at different time points for both modified and non-

modified speed models. (c) The impact of the fork speed modifications on the dynamics and completion of replication.

The percent of replicated genome is presented as a function of time for stochastic forks’ speeds models with regular

(black) speed and speed modified based on the distance to approaching fork (red). The modified forks’ speeds model

promotes timely completion of the replication.

https://doi.org/10.1371/journal.pcbi.1007519.g008
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Discussion

Key role of stochasticity of replication forks’ speeds

Even though the experimental data, both from single-cell biophysical studies of replication

fork and from visualizing DNA track in vivo (DNA combing) indicate that replication forks’

speeds are highly stochastic, all published DNA replication models assumed constant replica-

tion forks’ speeds. Here, we presented Repli-Sim, the first model of DNA replication including

stochastic replication forks’ speeds. We have shown that Repli-Sim matches DNA tracks

travelled by individual forks much better than models employing constant forks’ speed. To

illustrate how important stochastic forks’ speeds are for accurate DNA track matching, we sim-

plified our model to only 5 parameters and nevertheless obtained better fit with DNA track

data than the much more complex constant forks’ speed model [23], utilizing 814 parameters.

We have shown that standard deviation of the length of DNA tracks (i.e. distances travelled

by individual forks), σΔx, for each origin can be approximated by the formula:

s2

Dx ¼ m
2

vs
2

t þ m
2

Dts
2

v ;

where μΔt is the average time elapsed since the origin was activated. This formula shows why

the previous modeling attempts, assuming a constant replication forks’ speed (σv = 0), were

not successful: σv is an important contributor to σΔx, so assuming empirically incorrect σv = 0

may force compensation with too large σt, resulting in incorrectly derived timing of the origin

firing. Specifically, too large stochasticity of firing time σt leads to activation of many origins in

early S phase, including origins typically firing only in late S phase, as in [23]. Alternatively, if

stochasticity of firing time σt has correct value, and σv is assumed zero, it leads to substantially

distorted DNA tracks distribution σΔx. On the other hand, μΔx is not affected by stochasticity

of forks’ speeds, which is why the stochasticity of forks’ speeds is most apparent in data on

distances travelled by individual replication forks, such as DNA tracks, where σΔx becomes

visible.

Model selection

During model development, a better fit can normally be achieved with an increased number of

parameters, which may lead to overly complicated models and over-fitting (learning noise).

To avoid over-fitting, we assume the same σt for all origins and do not attempt to match the

data to individual origins. Nevertheless, our modeling results also in a good fit near origins, as

we show in (Yousefi et al., in preparation). Moreover, using single σt instead of>400 individ-

ual σt(i) as in [23], gives clearer insights into changes in replication program in HU-treated

cells, as we discuss elsewhere (Yousefi et al., in preparation). For the same reasons, we do not

consider potential changes in replication forks’ speeds depending on genomic regions.

Model modification promoting timely completion of replication

Our basic model assumes that forks’ speeds are stochastic but that the speed of each individual

fork is constant. We also proposed a modification where the speed of forks activated later in

replication can be increased up to 1.9 average speed depending on its distance to the approach-

ing fork. Such modification promotes the timely completion of replication by addressing the

“random replication gap problem”, discussed above. We hypothesize that observed apparent

speed up of a replication fork when approaching fork is present nearby is caused by the depen-

dence of fork speed on topology of the DNA molecule. If such dependence indeed exists it

should manifest itself also in other situations. Dependence of the fork speed on topology of the

DNA molecule can be added to our model, if desired. We did not currently implement it both
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to avoid complicating the model (our current model accurately reproduces the test data) and

due to lack of appropriate training and input data. Other modifications, e.g. largely increasing

average speed of replication, may have a similar effect on facilitating completion of replication,

but our modification has the advantage of utilizing the average replication speed consistent

with observations (1.6 kb/min).

Model limitations

It is known that replication forks stall on natural Replication Fork Barriers and non B-DNA

structures [41]. Not including variability of fork speed potentially related to these impediments

is a limitation of our current model, which can however be addressed within the framework

we proposed. We chose to currently not to implement locally variable fork speed for several

reasons. First, there is lack of experimental evidence that local variance in fork speed is sub-

stantial. As we discussed (Fig 6) a naive interpretation of replication profile curves may lead to

impression that local variability of replication fork speed is prevalent and high. However, our

simulations show that observed replication profile curves are highly consistent with fork speed

not depending on genomic coordinates (Fig 8(a)). Second, implementing locally variable fork

speed will add hundreds, if not thousands, parameters. These parameters will be difficult to fit

correctly. Therefore, we are convinced that either our simpler, but accurate, model should be

used or fork speed modification depending only on distance to the approaching fork (single

parameter) should be implemented.

Applications and future directions

DNA replication is a complex process, with elaborate spatio-temporal regulation, which

remains incompletely understood. Due to this complex regulation of replication, it is difficult

to infer the role individual proteins play in regulation of DNA replication from genomic DNA

copy number variation or DNA track data, since it is difficult to distinguish between changes

in replication forks’ speeds and origin activation in such data. Here, we presented Repli-Sim, a

probabilistic model of DNA replication including stochastic replication speed. We have shown

that Repli-Sim accurately reproduces experimental data. Moreover, Repli-Sim allows the user

to classify experiments in terms of fundamental parameters of replication, such as average rep-

lication forks’ speed, stochasticity of forks’ speeds, and stochasticity of origin firing. Such pre-

sentation allows us to better understand the impact that individual treatments and proteins

have on DNA replication, as well as compare conditions in this space of fundamental replica-

tion parameters (Yousefi et al., in preparation). Another application of our simulations can be

studying replication stress and DNA double-strand breaks (DSBs) originating from broken

replication forks. Currently, the numbers of DSBs per cell can be precisely measured genome-

wide using qDSB-Seq [42]. However, since replication stress typically substantially changes

the replication program, increased numbers of breaks per cell do not have to mean that forks

break more often. Therefore, combination of DNA replication simulation by Repli-Sim with

the landscapes of DSBs measured by qDSB-Seq, allows deeper insight into how stalled replica-

tion forks break and form DSBs as a result of replication stress [43]. Besides numerous applica-

tions of this approach to the general studies of the fundamentals of replication process,

analyzing impact of replication forks’ speeds stochasticity could provide better understanding

of replication delay induced by ionizing radiations. The distinction between the number of

direct DSB and the number of enzymatic DSB resulting from replication fork breakage on

other DNA lesions is an important problem in the radiation biology.

Repli-Sim is designed to be general and usable with different input data types, in contrast

with [23], which is designed to use with microarray data only. Here, we have shown how
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Repli-Sim can be used with DNA combing data as an input. Alternatively, Repli-Sim can also

use DNA copy number data from sequencing or microarrays as an input, after pre-processing

the data to derive DNA track distribution. Such pre-processing has an additional advantage

that it acts as a smoothing procedure and reduces the noise. Last but not least, Repli-Sim is

very fast, simulations of DNA replication in a given condition require testing of 10,000 sets of

parameters, which takes only 7 hours to perform on a 16-core, 32-thread 3.1GHz workstation.

Therefore, Repli-Sim can be used to infer spatio-temporal organization of replication in variety

of conditions, as long as appropriate data is available. Once Repli-Sim derives parameters of a

given state, also spatio-temporal organization of replication and later and earlier time-points

can be reconstructed. Therefore, Repli-Sim can play a role similar to the role of high-through-

put screening in drug discovery: allowing very fast testing of a research hypothesis using much

less data for validation.

Repli-Sim is the first model of DNA replication which allows for stochastic replication

forks’ speeds. We have shown that including stochastic replication forks’ speeds is a key inno-

vation allowing correct reconstruction of distances travelled by individual replication forks

both in wild-type cells and in a condition when replication stress is induced. We also proposed

an empirical modification to the replication fork speed, promoting completion of replication

in a timely manner.

Materials and methods

DNA replication simulations (Repli-Sim)

Repli-Sim is a probabilistic numerical model designed to study the dynamics of DNA replica-

tion. It takes into account two groups of parameters: local and global. Local parameters are

individual to each specific origin, while global parameters are those assumed to be approxi-

mately similar all across the genome.

During S-phase, origins of replication are activated and DNA tracks (continuous dis-

tances covered by replication forks, Fig 1) are formed and elongated throughout the genome

until the whole DNA is replicated. In Repli-Sim, coordinates x of replication origins are

derived from experimental data and filtered using a database of replication origins, OriDB

[5]. As shown in Fig 1, two forks are formed and elongate bidirectionally across the genome

to form DNA tracks (Δx). For each origin i in a cell population, at time texp (measured from

the beginning of DNA replication), we derive the distribution of Δx based on two assump-

tions. First, the firing time of the origin, ti
0
, is derived from a normal distribution with a

mean firing time mi
t (specific to that origin and derived from experimental data), and with

global standard deviation σt:

ti
0
� Nðmi

t j s
2

t Þ:

Second, individual forks are assigned with different speeds, vi, derived from the same prob-

ability distribution with a mean speed, μv and standard deviation σv:

vi � Nðmv j s
2

vÞ:

A probability of origin licensing ci (a priori probability of origin activation) is assigned to

each individual origin as a random number between the experimentally measured frequency

of that origin activation and 1. Then, a Monte-Carlo method is used to generate activation

time ti
0

for an origin i from a Gaussian probability distribution with an experimentally esti-

mated mean activation time mi
t specific to that origin (below), and a global standard deviation

σt, same for each origin. Individual forks progress with different speeds, constant for each fork,
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generated using a Monte-Carlo method from a Gaussian probability distribution with a global

average speed μv and standard deviation σv.

Deriving the formula describing sDx

Upon origin activation, two forks are formed and elongate bidirectionally across the genome.

For each specific origin, two forks replicate a distance of DNA, called DNA tracks (Δx). For an

origin in a cell population, during S-phase at time texp measured from G1, the distribution of

Δx is derived considering the following assumptions:

1. The firing time of the origin, taken as the initial time (t0), is derived from a normal distribu-

tion with a mean firing time μt, specific to that origin reproducible from experimental data,

and standard deviation σt:

t0 � Nðmt j s
2

t Þ

2. Individual forks have different speeds, however the speed of each fork is derived from the

same probability distribution with a mean speed, μv, equivalent to the average fork speed

observed from experimental data, and standard deviation σv:

v � Nðmv j s
2

vÞ

Considering the relation Δx = v � Δt, using the distribution function of Δt and v, the distri-

bution function of Δx for each origin can be derived as follows:

Dt ¼ texp � t0 � texp � Nðmt j s
2
t Þ �

� Nðtexp � mt j s
2
t Þ � NðmDt j s2

t Þ;

where μΔt = texp − μt.
From the other side, assuming σtσv� μΔtμv ([44]),

v � Dt � Nðmv j s
2
vÞ � NðmDt j s

2
t Þ � NðmvmDt j m

2
vs

2
t þ m

2
Dts

2
vÞ ð4Þ

Considering Eq (4) and taking into account the assumption Dx � NðmDx j s2
xÞ, we have:

mDx ¼ mvmDt ¼ mvðtexp � mti
Þ ð5Þ

and

s2
Dx ¼ m

2
vs

2
t þ m

2
Dts

2
v ; ð6Þ

which shows that variance in DNA track distribution is dependent on variance in firing time

of the origins of replication as well as variance in the forks’ speeds.

Deriving mean firing time from experimental data

For hydroxyurea-treated wild-type yeast cells, the mean firing time of individual origins is

inferred from DNA copy number BrdU-labeled microarray experimental data available in

[31]. At each individual origin the distribution of DNA tracks (Δx) is determined and used to

derive the mean firing time as follows:
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1. To normalize the distribution of DNA tracks measured from BrdU experimental data, the

BrdU micro-array DNA copy number of ARS305 is used and normalized to give the same

efficiency as derived from its DNA copy number from quantitative PCR experiment.

2. The normalized distribution of DNA copy number is used to derive the probability distri-

bution function for each individual origin with a p_value for each DNA track length as

shown in Fig 9, from which μΔx is derived.

3. Mean firing time of each origin is assumed to be individual to that origin, however variation

of firing time from the mean (σt) is the same for all the origins and taken as a global parame-

ter. The firing time of ith origin, (t0), is derived from the following normal distribution:

t0 � Nðmi
t j s

2

t Þ

4. Individual forks have different speeds, however the speed of each fork is derived from the

same probability distribution with an average speed μv and standard deviation σv:

v � Nðmv j s
2

vÞ

Considering the relation Δx = v � Δt, and taking into account Eq 5, knowing the distribution

function of Δx, the mean firing time for each individual origin is derived as follows:

mti
¼ texp �

mDx
mv
; ð7Þ

which is used in our simulations to infer the mean firing time by implementing texp and μΔx
while μv is the parameter, which is adjusted in the simulation through parameter selection in

the genetic algorithm.

The Hill type function was used in the previous work [23] to derive origin firing time. Here,

we prefer to assume Gaussian distribution of DNA track lengths Δx because of the good fit

Fig 9. An illustration of the derivation of μΔx for each individual origin. (a) As an example we use the DNA copy

number of an early origin located at 147 kb from the beginning of the chromosome I. The distribution of DNA tracks

measured from BrdU data [31] is normalized based on the BrdU micro-array DNA copy number of origin ARS305,

which was verified by quantitative PCR in the same experimental condition. For smoothing the data, the Savitzky-

Golary filter (working through the convolution process) is utilized, because it minimally distorts the original data.

Maximum of the smoothed peak indicates the origin position. (b) The data are transformed into probability

distribution function of Δx and fitted with a Gaussian distribution which peak is assumed to be μΔx.

https://doi.org/10.1371/journal.pcbi.1007519.g009
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with the data, the fundamental nature of the Gaussian distribution and supporting evidence

from biophysical studies [11].

Supporting information

S1 File. DNA tracks used in Fig 5. Length of DNA tracks (kb) from HU-treated yeast wt sam-

ple collected after 60 min of HU treatment.

(TXT)
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