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Multiple sclerosis (MS) is a chronic inflammatory, demyelinating, and

neurodegenerative disease in the central nervous system (CNS). Its

pathogenesis is quite complex: Accumulated evidence suggests that

biochemical signals as well as mechanical stimuli play important roles in MS.

In both patients and animal models of MS, brain viscoelasticity is reduced

during disease progression. Piezo mechanosensitive channels are recently

discovered, and their three-dimensional structure has been solved. Both the

membrane dome mechanism and the membrane footprint hypothesis have

been proposed to explain their mechanosensitivity. While membrane-

mediated forces alone appear to be sufficient to induce Piezo gating, tethers

attached to the membrane or to the channel itself also seem to play a role.

Current research indicates that Piezo1 channels play a key role in multiple

aspects of MS pathogenesis. Activation of Piezo1 channels in axon negatively

regulates CNS myelination. in addition, the inhibition of Piezo1 in CD4+ T cells

and/or T regulatory cells (Treg) attenuates experimental autoimmune

encephalitis (EAE) symptoms. Although more work has to be done to clarify

the roles of Piezo1 channels in MS, theymight be a promising future drug target

for MS treatment.

KEYWORDS
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The introduction of multiple sclerosis

Multiple sclerosis (MS) is a chronic inflammatory, demyelinating, and neurodegenerative

disease in the central nervous system (CNS) (1). In general, the disease begins when patients

are in their third decade of life with a relapsing and remitting clinical course (RRMS). It then

slowly converts to a serious and irreversible neurological impairment, which is called

secondary-progressive MS (SPMS) (1). Other patients show rapidly progressive
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.976522/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.976522/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.976522/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.976522&domain=pdf&date_stamp=2022-09-13
mailto:kyang43@whut.edu.cn
mailto:suntl@whut.edu.cn
https://doi.org/10.3389/fimmu.2022.976522
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.976522
https://www.frontiersin.org/journals/immunology


Yang et al. 10.3389/fimmu.2022.976522
neurological deficits, which belong to the primary-progressive form

of MS (PPMS) (2). MS is heterogeneous and influenced by both

genetic and environmental factors. The most well-established

environmental risk factors are Epstein–Barr virus (EBV) infection

and low vitamin D levels (3, 4). Several studies suggest that low

vitamin D levels are linked to increased risk ofMS (3). Although the

beneficial mechanisms of vitamin D on MS are not fully

understood, some studies suggest that the active form of vitamin

D modulates immune functions (5). EBV infection has also been

suggested to be associated with MS (4), but the mechanism by

which EBV infection increases the risk ofMS is not understood. It is

possible that molecular mimicry produced by EBV infection leads

to the generation of cross-reactive T cells, which increases the

occurrence of MS. Genome-wide association studies (GWAS) have

identified more than 200 genetic risk variants for MS, all linked to

immune functions (6). Although each variant alone only slightly

increases a patient’s genetic susceptibility to MS, combinations of

these variants significantly affect the risk of MS. Among these risk

variants, polymorphisms in human leukocyte antigen (HLA) class I

and class II genes contribute to the highest risk of MS (1).

The pathological hallmark of MS is focal plaques in white

matter (WM) and grey matter (GM) of the brain and spinal

cord. They are caused by the infiltration of immune cells across

the dysregulated blood–brain barrier (BBB), which leads to

inflammation and demyelination, reactive gliosis, and axonal

degeneration. However, the triggering event that initiates this

autoimmune response in MS is not understood. Two hypotheses

have been proposed to explain the etiopathology of MS (7, 8).

One is called the autoimmune (outside-in) hypothesis (9), which

claims that MS is caused by the activation of peripheral

autoreactive effector CD4 T cells, which migrate to the CNS

and initiate the disease process. Animal models of EAE have

been created successfully based on this hypothesis (10). In

addition, either immunodepleting agents (11) or lymphocyte

anti-trafficking agents (12) are widely used to treat MS; these

drugs all target peripheral immunological processes and

effectively shut down most of the focal inflammatory events.

The neurodegenerative (inside-out) hypothesis states that

inflammation begins in the CNS (13, 14). The autoreactive

effector CD4+ T cells are locally reactivated by antigen-

presenting cells (APCs) in the CNS, which recruit additional T

cells and macrophages to cause the inflammatory lesion.
The mechanobiology of the
brain in MS

The pathogenesis of MS is quite complex: Accumulated

evidence suggests that biochemical signals as well as

mechanical stimuli play important roles in the disease. Over

the past several decades, research on MS has been dominated by

electrophysiological, biochemical, molecular, genetic, and

imaging studies. The mechanical forces that influence MS
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pathogenesis remain largely unexplored. The brain is a

viscoelastic material and is one of the softest tissues in the

body. Usually, Young’s modulus, the elastic modulus (E), or

stiffness is used to describe the resistance (or tendency) of brain

to deform in response to mechanical force (15).

Measurement of brain stiffness has been especially difficult

because it is quite small. Along with the advancement of

techniques, mechanical measurements of the brain and spinal

cord have been done using magnetic resonance elastography

(MRE) and atomic force microscopy (AFM). MRE measures

tissue stiffness by imaging their responses to sound (shear) waves

propagated through the tissues. This technique is non-invasive

and can be used to analyze the mechanical properties of brain in

vivo. However, it can only measure the mechanical properties of

large samples (16). AFM indentation, on the contrary, uses a

small radius tip to locally apply compressive stress to the samples

and then measures their mechanical responses. Therefore, it is

more suitable to measure the mechanical properties of the

different small regions of the brain (17).

It is well accepted that the brain exhibits heterogeneous

mechanical properties in different areas (18–26). In the rat

dentate gyrus, the subgranular zone (SGZ) and hilus (H) have

similar stiffness, while the granule cell layer (GCL) is at least

twofold stiffer (27). Furthermore, GM consists primarily of

neuronal cell bodies, dendrites, and unmyelinated axons, while

WM is made up of myelinated axons, oligodendrocytes,

astrocytes, and microglia. Although some studies have

observed that GM is significantly stiffer than WM (18, 28),

others have claimed that they have equal stiffness (29, 30), and

yet others have reported that WM is stiffer than GM (19, 20, 23).

These differences may arise from the different experimental

setups, sample preparation, post-mortem time and testing

conditions (18, 23).

In several human studies, researchers have reported that

brain viscoelasticity is reduced during normal aging (31),

Parkinson’s disease (32), and Alzheimer’s disease (33). Not

surprisingly, there is a positive correlation between reduced

brain stiffness and the clinical score in patients with MS. For

patients with mild relapsing-remitting MS, MRE revealed that

there is a significant 13% reduction in parenchymal stiffness

compared to healthy controls (34). Furthermore, patients with

primary and secondary chronic-progressive MS showed a

pronounced reduction in cerebral shear elasticity compared

with patients with early relapsing-remitting MS (35). In

addition, patients with clinically isolated syndrome (CIS),

which indicates the first clinical onset of potential MS, also

exhibited decreased brain viscoelasticity (36).

A further confirmation of these clinical results has come

from studies in MS animal models. In the myelin proteolipid

protein (PLP)–induced EAE animal model using SJL (“Swiss Jim

Lambert”) mice, which is characterized by a relapsing-remitting

course, viscoelasticity of the brain is reduced during the acute

phase of EAE. However, this reduction is reversible: Brain
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viscoelasticity returns to the baseline level during the recovery

phase of EAE (37). Brain viscoelasticity has also been

investigated in the adoptive transfer EAE model using SJL

mice. It was induced by the injection of pre-activated

lymphocytes, which are stimulated by PLP. This EAE model

demonstrates more severe symptoms with large cerebral

infiltrations. Brain stiffness in this EAE model is significantly

reduced in the areas of inflammation in the brain (38).

In another study, researchers produced a chronic EAE model

by immunizing both C57BL/6 mice and interferon g (IFNg)
knockout mice with myelin oligodendrocyte glycoprotein

peptide 35–55 (MOG35–55). They found no change in the brain

viscoelasticity of C57BL/6 mice, which is in contrast to the PLP-

induced EAE SJL mouse model (37). However, brain

viscoelasticity of the IFNg knockout mouse is altered during the

course of the disease (39). Researchers have also collected spinal

cords of chronic EAE mice during pre-onset, onset, peak, and

chronic disease phases, and measured their mechanical properties

using AFM. They found increased stiffness of WM during the

onset phase, maintenance of this increased stiffness during the

peak phase, and a decrease in the chronic phase, while GM shows

no changes (40). In this study, greater WM rigidity of EAE mice

than that of the control mice during the onset and peak phases of

the disease is reported, this result is not consistent with the MRE

studies, which have shown that brain tissue is softer in patients

with MS and EAE mice compared with healthy controls. The

reason for this discrepancy requires further investigation.

Brain stiffness is positively correlated with the myelin

content (24). In the cuprizone model of MS, it showed that

the stiffness in the corpus callosum is increased initially, followed

by a decrease at the 12-week time point. The authors proposed

that the decrease in brain stiffness is caused by progressive

demyelination and global extracellular matrix (ECM)

degradation (41). In addition, acute and chronic demyelinated

CNS lesions show the opposite changes in stiffness. Acutely

demyelinated lesions in both the lysolecithin and cuprizone

models, which have the ability to remyelinate spontaneously,

display reduced stiffness compared with healthy tissue. On the

contrary, tissue from a chronic cuprizone model which failed to

remyelinate, is stiffer than healthy control (42).
The introduction of
piezo channels

The hypothesis that ion channels act as mechanical sensors has

been suggested for decades, but their identity inmammals remained

unknown until 2010. Using RNA interference (RNAi)-mediated

knockdown of selected genes in themouse Neuro2A neuroblastoma

cell line, Coste et al. identified a single gene, Piezo1, that is required

for mechanically activated cationic currents. Further sequence

homology analysis revealed its analog, Piezo2. Piezo1 channels are

highly expressed in the brain and non-sensory tissues including the
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lung, bladder, and skin. By contrast, Piezo2 channels are

predominantly located in sensory tissues, such as dorsal root

ganglia (DRG) sensory neurons and Merkel cells (43).
The structure of piezo channels

Piezo1 is one of the largest receptors for mechanical forces

that has been described. It consists of three identical subunits

that form one central pore and three long blades extending away

from the center (44, 45). The central pore of Piezo1 is

responsible for ion conductance while the extracellular blades

are responsible for its mechanosensitivity. The beam structure

positioned at a 30° angle relative to the membrane plane acts as a

lever-like apparatus. Coupling between the distal blades and

central pore through the beam structure converts mechanical

force into a force used for cation conduction.

The membrane dome mechanism has been proposed to

explain the mechanosensitivity of Piezo channels. It claims

that the extended blades of Piezo channels have the ability to

locally deform lipid membranes into a dome-like shape, which

provides energy for Piezo gating (46). Under force, lateral

membrane tension flattens the Piezo dome, which increases

the energy of the membrane channel system and opens Piezo

channels However, the membrane dome model of Piezo gating

only considers the shape of the membrane inside Piezo’s

perimeter and does not include the effect of the surrounding

membrane. To overcome this shortcoming, Haselwandter et al.

have proposed the “membrane footprint hypothesis,” which

suggests that Piezo1 also deforms the surrounding lipid

membrane outside the perimeter of the channel into a curved

membrane footprint. This membrane footprint amplifies the

tension sensitivity of Piezo1 (47).
The gating of piezo channels

Two models have been proposed to explain the gating of

Piezo channels: The “force through lipid” model claims that

bilayer tension directly gates the channel, and the “force through

filaments” model suggests that mechanical stimuli are

transduced through physical tethers to the cytoskeleton or the

ECM (48). These two models are not mutually exclusive:

Although some mechanosensitive channels are gated by only

one mechanism, both models may contribute to activate

Piezo channels.

Piezo1 can be activated by membrane tension alone.

Membrane blebs free of cytoskeleton can be generated from

Piezo1-transfected HEK293 cells subjected to a hypoosmotic

solution. Piezo1 currents evoked by mechanical stimulation can

be recorded on these patched blebs. Even when blebbed

membranes are pretreated with drugs that disrupt microtubule

assembly and the actin cytoskeleton, Piezo1 currents still exist
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(49). Furthermore, when Piezo1 channels are reconstituted in

asymmetric bilayers, their activation can be induced by

membrane asymmetry, osmotic stress, and solvent injection

(50). These studies provide strong evidence that Piezo1 is

inherently mechanosensitive, and mechanical force can be

transmitted directly from the membrane to the channel.

The roles of the cytoskeleton and associated scaffolding proteins

in the activation of Piezo1 by mechanical force have also been

examined. Piezo1 currents are inhibited by the disruption of actin in

a heterologous expression system (51). In addition, in Neuro2A

cells, the scaffolding protein stomatin-like protein 3 (STOML3)

sensitizes Piezo1 channels via cholesterol binding and modulation

of plasma membrane (PM) stiffness (52, 53).

In conclusion, force from both membrane tension and

physical tethers can modulate Piezo1 activity, but which

mechanism is dominant depends on the cell type and/or

mechanical stimulus (54). Although membrane-mediated

forces alone have ability to open Piezo1 channels, tethers

attached to the membrane or to the channel itself also play a

role in the gating of Piezo1 channels.
The role of piezo channels in animal
models of MS

Demyelination and
axon degeneration

Both demyelination and axon degeneration are pathological

hallmarks of MS, and Demyelination occurs in both GM and

WM. As myelin is responsible for fast axonal conduction, its loss

usually disrupts the communication between neurons. Myelin
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also provides a conduit for energy transfer by oligodendrocytes

to neurons. In the CNS, oligodendrocyte and axon are closely

connected, which facilitating the crosstalk between neuron and

oligodendrocyte (55). Both neuronal and oligodendroglial

homeostasis are related. Axonal injury leads to demyelination

while demyelination could trigger neurodegeneration (56).

It has showed that activation of Piezo1 channels in axon

negatively regulates CNS myelination (57). Piezo1 is highly

expressed in neurons but not in mature oligodendrocytes. The

application of Yoda-1, which is a positive modulator of Piezo1

channel opening, induces demyelination (Figure 1A).

In contrast, the Piezo1 antagonist GsMTx4 attenuates

demyelination induced by psychosine, a cytotoxic lipid, in

an ex vivo murine-derived organotypic cerebellar slice

culture model and lysophosphatidylcholine (LPC)-induced

demyelination animal model (57).

In addition, Piezo1 activation inhibits axon regeneration.

Upon axon injury, Piezo1 is recruited to the growth cone and

activated, which induces Ca2+ transient and Ca2+/calmodulin-

dependent protein kinase II (CaMKII) activation, leading to

activation of nitric oxide synthase (NOS) and the downstream

cGMP kinase Foraging or PKG to restrict axon regrowth

(Figure 1B) (58). But whether this signaling pathway occurs in

MS remains unknown.
Microglia and macrophages

Macrophages and microglia are innate immune cells that

perform diverse functions including homeostasis, pathogen

defense, and response to injury. These cells play important

roles in inflammation and/or wound healing. They have the
BA

FIGURE 1

The roles of Piezo1 in demyelination and axon degeneration. (A) The activation of Piezo1 channels in axon negatively regulates CNS
myelination. The activation of Piezo1 channels in axon by Yoda1 promotes the influx of extracellular Ca2+ into the neuron which, in turn, triggers
Ca2+-induced Ca2+ release (CICR) from ER. This contributes to the demyelination of CNS axons. GsMTx4 blocks Piezo1 activity and prevents the
demyelination (57). (B) Piezo1 activation inhibits axon regeneration. Upon axon injury, Piezo1 is recruited to the growth cones and inhibits axon
regeneration via the CaMKII-Nos-PKG pathway (58).
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ability to produce reactive oxygen species (ROS), reactive

nitrogen species (RNS), and pro-inflammatory cytokines

and chemokines during the progression of MS. In EAE,

NADPH oxidase (NOX) activity remains high in microglia

even after the peak of the disease (59). In addition, these

cells adopt multiple states, including pro-inflammatory

and anti-inflammatory phenotypes. Among them, the anti-

inflammatory phenotype favors oligodendrocyte differentiation

and enhances remyelination in LPC induced demyelination

mouse model (60). While the effects of biochemical cues,

including cytokines and chemokines, on macrophage/

microglial functions have been widely studied, the roles of

physical cues, including mechanical stimuli, in regulating their

function have only started to emerge. For example, macrophages

cultured on soft substrates have reduced inflammation

compared with cells adhered to stiff substrates (61).

Several recent studies have investigated the roles of Piezo1 in

the functions of macrophages. Piezo1 activation in macrophages

by mechanical force promotes inflammation. Upon exposure to

cyclical hydrostatic pressure (CHP), bone-marrow derived
Frontiers in Immunology 05
macrophages (BMDMs) upregulated the expression of pro-

inflammatory genes, most of which were targets of hypoxia-

inducible factor-1-alpha (HIF1a), which requires the activation

of Piezo1. The authors proposed that the activation of Piezo1 by

CHP enhances the activity of activating protein-1 (AP-1) and

transcription of endothelin-1 (Edn1), which is Ca2+ dependent.

EDN1 signalling in turn stabilizes HIF1a, favoring the

proinflammatory expression profile in BMDMs (Figure 2A) (62).

Piezo1 is also involved in macrophage polarization

and detection of microenvironmental stiffness. In BMDMs,

Piezo1 enhances IFNg- and lipopolysaccharide (LPS)-

induced inflammation and reduces interleukin-4 (IL-4)- and

IL-13-induced healing responses (Figure 2B). In addition,

Piezo1 also modulates macrophage functions depending on

microenvironmental stiffness in vitro and affects the immune

responses to subcutaneous implantation of biomaterials in vivo.

There are positive feedback regulations between Piezo1 and actin

that favor macrophage inflammatory activation. Piezo1

enhances actin polymerization, and the actin cytoskeleton

promotes Piezo1-mediated Ca2+ activity (Figure 2B) (63).
B

C D

A

FIGURE 2

The roles of Piezo1 in the inflammation. (A) The activation of Piezo1 in BMDMs by mechanical force favors inflammation. Mechanical stimulation
of BMDM triggers the expression of proinflammatory factors via Piezo1. Piezo1 activation increases the concentration of Ca2+ in the cytosol,
which increases the activity of AP-1 and Edn1 production. Edn1 signalling in turn stabilizes HIF1a by activating calcineurin, which
dephosphorylates RACK1. The stabilization of HIF1a favors the productions of the proinflammatory factors (62). (B) Stiffness-dependent
modulation of Piezo1 activity regulates polarization responses of BMDMs. Activation of Piezo1 promotes actin polymerization, which enhances
channel mediated Ca2+ influx. It promotes IFNg/LPS-induced inflammation via NFkB and suppresses IL4/IL13-induced healing responses by
STAT6 in BMDMs (63). (C) Piezo1 works with integrins to modulate macrophage inflammatory and healing responses. Both static and cyclic
stretch suppresses IFNg/LPS induced inflammation. In contrast, IL4/IL13 mediated healing responses are enhanced with static stretch conditions.
Knock down of either CD11b or Piezo1 abrogates these stretch-mediated changes in inflammatory responses. In addition, there is crosstalk
between CD11b and Piezo1, knock down of CD11b enhances the expression of Piezo1, and conversely knock down of Piezo1 enhances CD11b
expression (64). (D) TLR4 signalling augments macrophage bactericidal activity through Piezo1. Bacterial infection or LPS induces the assembly
of Piezo1 and TLR4, these changes increase the ability of macrophages to destroy bacterial via producing more ROS and remodelling
cytoskeleton. It is possible that LPS stimulates TLR4 to induce Piezo1-mediated Ca2+ influx and consequently activates CaMKII- Mst1/2-Rac axis
to remove pathogen (65).
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Furthermore, Piezo1 together with integrins modulate

macrophage inflammatory and healing responses. Stretch as

well as biochemical stimuli alter the expression of inflammatory

or healing responses in macrophages. During stretch, CD11b (a

highly expressed integrin in macrophages) expression is enhanced

while Piezo1 expression is reduced. Knocking down either CD11b

or Piezo1 through small interfering RNA (siRNA) abrogates

stretch-mediated changes in inflammatory responses. Moreover,

CD11b knockdown enhances the expression of Piezo1 and

inflammation, while Piezo1 knockdown enhances CD11b

expression and suppress inflammation (Figure 2C) (64).

Furthermore, Toll like receptor 4 (TLR4) signalling augments

macrophage bactericidal activity through Piezo1. Bacterial infection

or LPS induces the assembly of Piezo1 and TLR4 and remodels F-

actin; these changes increase the ability of macrophages to destroy

bacterial and to produce more ROS. Genetic deficiency of Piezo1

abrogates these responses. It is possible that LPS stimulates TLR4 to

induce Piezo1-mediated Ca2+ influx and consequently activates

CaMKII–macrophage stimulating 1/2 (Mst1/2)–Rac axis to

remove pathogens (Figure 2D) (65).

The role of Piezo1 in microglia has also been studied. Piezo1

activation modulates microglial activity in an acute

hyperglycemia model. A high glucose concentration increases

the expression of Piezo1 in microglia, which increases cytosolic

Ca2+ signaling and reduces the phosphorylation of mTOR and

JNK1, triggering cell dysfunction (Figure 3) (66). Although these

studies have shown that Piezo1 channels in macrophages/

microglia are involved in inflammation, the exact roles of

Piezo1 in EAE inflammation remains unknown.
Frontiers in Immunology 06
T cells

In both MS and EAE, the immunopathological processes are

initiated by the activation of T helper type 1 (Th1) and T helper

type 17 (Th17) cells in the periphery. Upon crossing the BBB,

these T cells are restimulated by APCs in the brain. They then

migrate into the parenchyma and produce proinflammatory

cytokines— IFN? and IL-17—to destroy myelin.

Usually, the interaction between T cell receptors (TCRs) and

peptides on MHC molecules triggers T cell activation. The

strength of the interaction determines the extent of T cell

activation. Recent studies have shown that mechanical forces

also contribute to optimal T cell activation. For example,

antibodies (Abs) immobilized on beads induce TCR activation

more efficiently than soluble Abs (67). Not surprisingly, Piezo1 is

involved in human T cell activation. Immobilized cross-linked

Abs cannot induce maximal TCR activation in CD4+ and CD8+

T cells without Piezo1, but chemical activation of Piezo1 by

Yoda1 can rescue this dysfunction. In addition, the inhibition of

calpain prevents optimal TCR activation. In T cells, Ca2+ influx

is quickly induced by TCR cross-linking by bead-bound CD3/

CD28 Abs, which depends on Piezo1. It is proposed that

mechanical stretch during immune synapse formation triggers

Piezo1 activation and Ca2+ influx, inducing calpain activation,

which contributes to optimal TCR signaling (Figure 4A) (68).

Additionally, in Jurkat and primary human T cells, fluid shear

stress (FSS) in combination with soluble and/or bead-bound

CD3/CD28 Abs enhances the activation of T cells, which relies

on Ca2+ and Piezo1 activation (Figure 4B) (69).
FIGURE 3

Piezo1 activation modulates microglial activity. High concentration of glucose (HCG) increases the expression of Piezo1 in microglia, which
increases cytosolic Ca2+ signalling and reduces the phosphorylation of mTOR and JNK1, triggering cell dysfunction (66).
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The role of Piezo1 in CD4+ T cells in EAE mice has been

studied. Piezo1 deletion in CD4+ T cells reduces disease

severity in EAE mice. However, it does not affect thymic

development, lymph node homing, TCR priming, T cell

proliferation and differentiation. These results are different

from the conclusions reported by Liu et al, 2018 (68), which

might be caused by the specific methods they used (siRNA

versus genetic knockout) or T cells from different species

(human versus mouse). In addition, Piezo1 deletion in CD4+

T cells expands the pool of Tregs, indicating Piezo1 inhibits

Treg activity. Moreover, when Piezo1 is specifically deleted in

Tregs cells, it significantly attenuates EAE symptoms (70). It is

possible that when T cells navigate through stiff environments

in MS/EAE, membrane tension of T cells activates Piezo1

channels. After Piezo1 are activated, they inhibit TGFb/
SMAD signaling pathway in CD4+ T cells and restrain Treg

activity (70), which impairs the ability of Treg cells to suppress

autoreactive effector T cells in MS/EAE (71).
5. Conclusion

Current research indicates that Piezo1 channels have key

roles in multiple aspects of MS pathogenesis. Activation of

Piezo1 channels in axon negatively regulates CNS myelination.

In addition, Piezo1 inhibition in CD4+ T cells and/or Tregs

attenuates EAE symptoms. However, the effects of Piezo1 on

inflammation are complex: While Piezo1 activation is

protective against bacteria infection, deletion of Piezo1 is also

protective in a mouse model of pulmonary fibrosis (62).

Furthermore, although MS is an inflammatory disease, the

role of Piezo1 in MS inflammation has yet to be clarified. The
Frontiers in Immunology 07
analog of Piezo1, Piezo2, is also expressed in the nervous

system. It showed that both Piezo1 and Piezo2 are highly

expressed in Schwann cells, but they have different roles in

myelination. Piezo1 inhibits radial and longitudinal

myelination while Piezo2 is required for myelin formation in

the peripheral nervous system (PNS) (72). But whether Piezo2

is involved in MS remains unstudied.

In addition, both activators and blockers of Piezo1 have low

affinity for Piezo1; these drugs have poor solubility and stability,

so their usage in vivo has been limited. Hence, more work is

required to identify additional Piezo1 modulators.
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FIGURE 4

Piezo1 is required for the optimal T cell activation. (A) During immune synapse formation, membrane stretch triggers Piezo1 opening and Ca2+

influx, which results in the activation of calpain. Activated calpain then reorganizes cortical actin scaffold, thereby favoring the optimal human T
cell activation (68). (B) Fluid shear stress (FSS) in combination with soluble and/or bead-bound CD3/CD28 Abs significantly enhanced the
activation of T cells and ZAP70 phosphorylation, which requires the activation of Piezo1 channels and Ca2+ influx. FSS also activates three major
transcription factor NFAT, NF-kB and AP-1, increasing the expression of cytokines such as IL-2 (69). .
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