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Spinal cord injury (SCI), with an incidence rate of 246 per million person-years among 
adults in Taiwan, remains a devastating disease in the modern day. Elderly men with lower 
socioeconomic status have an even higher risk for SCI. Despite advances made in medicine 
and technology to date, there are few effective treatments for SCI due to limitations in the 
regenerative capacity of the adult central nervous system. Experiments and clinical trials 
have explored neuro-regeneration in human SCI, encompassing cell- and molecule-based 
therapies. Furthermore, strategies have aimed at restoring connections, including autolo-
gous peripheral nerve grafts and biomaterial scaffolds that theoretically promote axonal 
growth. Most molecule-based therapies target the modulation of inhibitory molecules to 
promote axonal growth, degrade glial scarring obstacles, and stimulate intrinsic regenerative 
capacity. Among them, acidic fibroblast growth factor (aFGF) has been investigated for 
nerve repair; it is mitogenic and pluripotent in nature and could enhance axonal growth and 
mitigate glial scarring. For more than 2 decades, the authors have conducted multiple trials, 
including human and animal experiments, using aFGF to repair nerve injuries, including 
central and peripheral nerves. In these trials, aFGF has shown promise for neural regenera-
tion, and in the future, more trials and applications should investigate aFGF as a neuro-
trophic factor. Focusing on aFGF, the current review aimed to summarize the historical evo-
lution of the utilization of aFGF in SCI and nerve injuries, to present applications and trials, 
to summarize briefly its possible mechanisms, and to provide future perspectives.

Keywords: Acidic fibroblast growth factor, Spinal cord injury, Regeneration

INTRODUCTION

Spinal cord injury (SCI) is still a devastating disease in the current era. Due to the lack of 
effective treatment and limited regenerative capacity in the adult human spinal cord, life-
long disability and accompanying complications are not uncommon consequences of se-
vere SCI. The incidences of SCI are variable among regions and societies, and have been re-
ported worldwide through the years. In Taiwan, a country where legislation made helmets 
mandatory for motorcyclists, the incidence rate of adult SCI was estimated at 246 per mil-
lion-person-years.1 In accordance with that reported around the world, road traffic acci-
dents and falls from heights remain the leading causes of SCI.2-4 Prevention of SCI is cer-
tainly the best strategy, since many of the causes sometimes might be avoidable. On the other 
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hand, for those patients with chronic SCI, the most definite 
treatment currently available is still limited to neurorehabilita-
tion and passive management of complications and comorbidi-
ties. There are technologies of exo-skeleton, electrophysiologi-
cal stimulation, and brain-computer-interface-based prosthesis 
undergoing development and preclinical experiments.5-8 How-
ever, from the patients’ and families’ standpoint, regenerative 
medicine is still the place where they send their hopes.

The pathophysiology of SCI is a sequential combination of 
primary trauma and secondary injury (Fig. 1). There are already 
many basic studies regarding regenerative therapy for chronic 
SCI, as well as review articles to catalog the existing clinical tri-
als (Table 1).9-30 In general, these therapies fall into 2 categories: 
cell-based and molecule-based strategies. In the former, the in-
vestigators deliver specific types of cells into the damaged spinal 
cord. These transplanted cells mainly involve human embryon-
ic stem cells, adult neural stem cells from cell lines of fetal brains 
or fetal spinal cords, autologous or fetal olfactory ensheathing 
cells, umbilical cord blood mononuclear cells, autologous bone 
marrow adult mesenchymal stem cells, and autologous Schwann 
cells from peripheral nerves. Cellular transplantation to chronic 
lesions is delivered to fill and bridge the cyst or cavity inside the 

lesioned spinal cord, to replace dead cells with new neurons or 
myelinating cells, and to create a favorable environment for axon 
regeneration against the hostile surroundings in the central ner-
vous system (CNS). Broadly speaking, the utilization of autolo-
gous peripheral nerve graft (PNG) is also associated with this 
category. Autologous grafts act as immunogenically inert scaf-
folds, providing appropriate neurotrophic factors and viable 
Schwann cells for axonal regeneration.31 Thanks to its multiple 
functions, PNG has been widely used in experiments and clini-
cal trials. To sum up, there have been promising results of the 
cell-based repair strategies in animal experiments. Some related 
clinical trials are currently underway.

The mechanisms of molecular therapies for nerve regenera-
tion after chronic SCI in part involve the modulation of the in-
hibitory molecule in the CNS. Given the fact that axonal growth 
after injury can be inhibited by myelin and chondroitin sulfate 
proteoglycans (CSPG), which are in part controlled by Rho-
GTPase, pharmacological molecules aiming at suppression of 
Rho-GTPase activity have been tested in vitro. The CSPG-de-
pendent inhibition of neurite extension could be overcome, and 
enhancement of axonal regeneration was discovered.32,33 In ad-
dition to CSPG, the Nogo-A is another notorious growth in-

Fig. 1. Brief pathophysiology of SCI. The sequential damage of SCI is a combination of the primary trauma and secondary inju-
ry. The primary mechanical injury directly injures the axons and breaks down the blood-spinal cord barrier (BScB) within the 
initial hours. In the following days, secondary injury flare-up occurs with the infiltration of the immune cells (macrophages, 
neutrophils, and microglia) into the injured site. Also, within days to weeks, the astrocytes are activated and form a glial scar to 
envelop the injured area and to limit the range of the inflammatory response. In the following weeks to months, the glial scar re-
constructs a firm shell surrounding the injured area, and eventually forms a cyst or cavity consisting of necrotic cells inside. 
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hibitory molecule. A variety of anti-Nogo therapies were sug-
gested, including human antibodies against Nogo-A, molecules 
targeting Nogo receptors, and genetic deletion of Nogo-A or 
Nogo receptors.34-36 With regard to the established obstacle formed 
by glial scarring in the injured spinal cord, degradation of in-
hibitory CSPG by delivery of the bacterial enzyme chondroitin-
ase ABC might give rise to promising results in the treatment 
of subchronic and chronic SCI.37,38

In contrast to the growth inhibitory molecules, a lack of growth-
permissive molecules also contributes to the diminished intrin-
sic ability of regeneration in the CNS. There is plenty of growth-
permissive neurotrophic factors allowing axons to lengthen 
during the phase of development. However, the expression of 
these factors slumps in the adult CNS. Studies focused on the 
administration of the neurotrophin family, such as nerve growth 
factor, brain-derived neurotrophic factor, and neurotrophin-3, 
have suggested favorable outcomes in experiments.39 Apart from 
the neurotrophins, the family of fibroblast growth factors (FGF) 
is also essentially crucial in normal development. Both the neu-
rotrophins and the FGFs, as well as their respective receptors, 
have been shown to be upregulated after experimental CNS in-
jury.40 It is evident that acidic FGF (aFGF) and basic FGF (bFGF) 
are potent trophic factors for many populations of CNS neurons 
and could potentially play a significant role in nervous system 
development.41 Likewise, the FGFs are expected to become an-
other clue to repair the injured spinal cord. For over 2 decades 
the authors’ laboratory, hosted by Professor Cheng, has con-
ducted a series of investigations focusing on the application of 
aFGF in the injured nerve tissue to promote neural regenera-
tion. This review article aims to inspect the historical evolution 
of the utilization of aFGF, and to present the application in cur-
rent experiments and trials and its possible mechanisms, and to 
provide future perspectives.

HISTORY OF FGF

The FGFs are a family of endogenous polypeptides initially 
found in the pituitary and brain. They were first described in 
1973 by Armelin42 in bovine pituitary extracts as a peptide dis-
tinct from the classical pituitary hormones. The purification 
and research soon thrived in the 1970s and 1980s. Unlike gen-
eral pituitary hormones, FGFs were found to be able to stimu-
late the growth and proliferation of mouse fibroblast. As a re-
sult, it was named FGF.43,44 Using the laboratory method, such 
as isoelectric focusing, these pituitary extracts could be further 
fractionated into acidic and basic FGF (i.e., FGF1 and FGF2).45

Later on, a pair of heparin-binding growth factors (HBGF-1 
and HBGF-2) and a pair of endothelium cell growth factors 
(ECGF1 and ECGF 2) were discovered. The investigators even-
tually realized that the separate polypeptides were actually the 
same group of molecules. That is to say, aFGF is the same with 
FGF1, HBGF-1, and ECGF-1, while bFGF is also referred to as 
FGF2, HBGF-2, and ECGF-2. There are 23 members (22 in the 
vertebrates) in the FGF family. Both the gene structure and ami-
no acid sequence are highly conserved between vertebrate spe-
cies.46 Given the fact that the FGFs were historically isolated 
from different approaches, the investigators eventually revealed 
their pluripotent feature. The FGFs have diverse roles in regu-
lating cell proliferation, migration and differentiation during 
embryonic development, and some of the FGF family in adult 
tissue are important for neuronal signal transduction in the cen-
tral and peripheral nervous system.46 Nowadays, it is well docu-
mented that the FGFs are a large family of heparin-binding pro-
teins. They interact with membrane-associated proteoglycans 
and bind to 4 FGF receptor subtypes.47

The FGFs are potent angiogenic factors. They may indirectly 
control neovascularization in concert with other growth fac-
tors.48 As well as stimulating blood vessel growth, FGFs are im-
portant in wound healing. It is suggested that FGF2 has poten-
tial for cell proliferation, wound re-epithelialization, and colla-
gen deposition.49 The FGF7 and FGF10, also known as Kerati-
nocyte Growth Factors (KGF and KGF2, respectively), promote 
the repair of injured skin and mucosal tissues by stimulating 
the proliferation, migration and differentiation of epithelial cells.50 
In the CNS, aFGF and bFGF are involved in the regulation of 
synaptic plasticity and processes, and have been widely tested 
for their potential therapeutic effects.47,51 In a rat model, the ap-
plication of aFGF accelerates the crush-injured sciatic nerve to 
regenerate both motor and sensory axons. It is suggested that 
aFGF may be clinically useful in the treatment of peripheral 
neuropathy in humans.52 Recently, researchers found that aFGF 
improves functional recovery through inducing PRDX1 (per-
oxiredoxin 1) to regulate autophagy and anti-ROS (reactive ox-
ygen species) after SCI in rat model. Hence, it is expected that 
aFGF probably play some roles in the repair of nerve injury, 
both in peripheral and in CNSs.53

ACIDIC FGF USED FOR NEURAL 
REGENERATION

The fact that FGFs express mitogenic and pluripotent activi-
ties, and are closely related to the development and maintenance 
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of neural structures, provides a clue to therapeutic application 
to repair the injured nerve.54 Cordeiro et al.55 demonstrated an 
increased number of myelinated axons and a greater number of 
primary sensory and motor neurons in animals treated with 
aFGF. They suggested aFGF to be a putative neurotrophic fac-
tor on peripheral nerve regeneration in vivo. With the evidence 
of rapid angiogenesis and neurogenesis induced by aFGF through 
a 15-mm surgical gap, Walter et al.56 demonstrated the function-
al motor recovery of transected peripheral nerves with the ap-
plication of aFGF. It has been gradually accepted that aFGF is 
beneficial for peripheral neural regeneration. Nowadays, not 
only in animal studies but also in clinical scenarios, the usage of 
aFGF has been proven to benefit the regeneration of the injured 
peripheral nerves. Tsai et al.57 first reported a clinical trial of the 
administration of aFGF to patients with common peroneal nerve 
lesions. The results revealed a significantly increased average 
muscle strength score in the group of surgical repair with fibrin 
glue added with aFGF, compared to the other 2 groups of surgi-
cal repair only and of no any surgical intervention at 6-month 
follow-up. The positive role of aFGF in nerve regeneration is in 
little doubt; however, the detailed mechanism is still unclear. 
Both clinical and laboratory studies are still in progress.

PERIPHERAL NERVE GRAFTING WITH 
ACIDIC FGF IN SCI

It is well known that there is an environmental difference be-
tween the central and the peripheral nervous systems. There-
fore, it was generally accepted that the neurological deficit fol-
lowing SCI was irreversible. The concept was unyielding until 
Cheng et al.58 reported their creative study in 1996. Using the 
complete transected thoracic spinal cord in adult rats, they de-
vised a novel strategy of PNGs bridging the spinal cord stumps, 
supplemented with fibrin glue mixed with aFGF. They found 
the corticospinal tract regenerated through the grafted area and 
several bulbospinal pathways as well. They demonstrated par-
tial restoration of the hind limb function in adult paraplegic 
rats. The data have suggested a possible repair strategy for SCI. 
This model was proven to be reproducible in independent labs.59-61 
Lee et al.59 demonstrated the ability of this repair strategy (PNGs 
with aFGF treatment) to facilitate the regeneration of spinal as-
cending and descending tracts and also the recovery of motor 
behavior following SCI. They also concluded that this strategy 
facilitates the regrowth of the spinal axons and improves hind-
limb function in the T-8 spinal cord-transected rat model.61 Us-
ing a similar model and treatment, Tsai et al.60 showed that re-

generation of the corticospinal tract into the lumbar gray mat-
ter is a mechanism of functional locomotor recovery after com-
plete cord transection and repair. To test the efficacy of this strat-
egy, in vivo and in vitro studies have been performed and have 
established firmer basic evidence.62-73 These studies verify the 
high potential of this strategy to repair the SCI and inspired the 
investigators to translate the treatment to subclinical and clini-
cal trial.

Cheng et al.74 applied this therapy to a chronic paraplegic adult 
patient with a thoracic spinal cord transection due to a stab in-
jury 4 years previously. With this repair, the patient obtained 
significant motor recovery, and his functional status improved 
from being wheelchair-bound to being able to ambulate inde-
pendently with a walker two-and-a-half years after the treat-
ment. Wu et al.75 presented a series of 18 patients with pregan-
glionic brachial plexus injuries. Significant clinical improve-
ment in muscle strength was noted at 12 and 24 months after 
being treated with the repair strategy.

ACIDIC FGF ALONE IN CLINICAL SCI

The adoption of the complete spinal cord transection in ro-
dent models in the early research by Cheng et al.58 was in order 
to avoid ambiguity and to model the most severe scenarios. Fol-
lowing investigators consequently continued to use transection 
or hemisection as a SCI model. However, in the majority of 
clinical circumstances, in accordance with the epidemiology 
and etiology, the damaged spinal cords usually retain their con-
tinuity in their gross appearance. Given that no macroscopical-
ly structural defect exists, there is no gap to be bridged by the 
PNGs. As a result, the modification of the repair strategy in the 
treatment of the clinical patients of SCI became imperative. The 
amended therapy for clinical patients omits the PNG and mere-
ly utilizes aFGF in fibrin glue. Wu et al.24 reported a preliminary 
phase I clinical study of 9 patients with cervical SCI. The patients 
were treated with aFGF and fibrin glue during the neurolysis 
surgery. Six months after the treatment, modest nerve regener-
ation occurred in all 9 patients, and no adverse effect was ob-
served. Subsequently, in order to further verify the safety and 
feasibility of this modified repair strategy for nonacute SCI, a 
phase II clinical trial was conducted.25 It was an open-label, pro-
spective, uncontrolled human clinical trial recruiting 60 patients 
with SCI (30 cervical and 30 thoracolumbar). The published 
data demonstrated significant improvements in American Spi-
nal Injury Association (ASIA) motor and sensory scale scores, 
ASIA impairment scales, neurological levels, and functional in-
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dependence measure at 24 months after treatment. There also 
were no related adverse events in this trial. Despite the comple-
tion of the trial in 24 months, the majority of the participants 
were constantly traced in the clinics. In the clinic visits, no fur-
ther intervention was administered. The data from the follow-
up at 48 months after the primary treatment were collected and 
analyzed to verify the longstanding efficacy and safety. Ko et 
al.26 have recently published these data and concluded that the 
initial therapeutic effect was able to last for a long period, and 
there were no related adverse events or unexpected results re-
ported throughout the 4-year follow-up. With respect to a novel 
therapy, safety is always the first consideration. These clinical 
trials probably eliminate the query of the oncogenicity from the 
mitogenic potential of aFGF. In addition, they also provide a 
feasible way of practical application in compliance with the real 
scenarios.

Considering translating the therapy of neural regeneration 
from bench to bedside, these clinical data are certainly of keen 
value. Yet, more questions arose as more attention focused on 
the strategy. One leading issue is the lack of a control group. The 
question is not easy to resolve because of ethical problems. To 
arrive at a compromise, the patients enrolled were all in a chron-
ic phase, in which the neurological status was by all odds the 
most stable and the patients owned the least probability to im-
prove spontaneously. Thus, patients with chronic phase SCI are 
good targets to determinate whether a therapy is effective or 
not.9

PROPOSED MECHANISMS OF ACIDIC 
FGF FOR REGENERATION OF SCI

AFGF is thought to exert protective and regenerative effects 
on neurons following SCI, but the mechanism of these effects 
remains unclear. Few studies exploring the possible pathway of 
signal transduction have been reported. In a rodent model of 
contusive SCI, Tsai et al.67 uncovered the performance of aFGF 
in the process of nerve repair after injury. By the proteomics 
approach, it is evident that aFGF down-regulates the expression 
of the proteins involved in the process of secondary injury, such 
as astrocyte activation, inflammation and scar formation, which 
lead to the blocking of injured spinal cord regeneration. They 
proposed that aFGF might initiate a series of biological process-
es to prevent or attenuate secondary injury.

In another study of a cerebral ischemic rat model the investi-
gators applied aFGF mixed in fibrin glue (as a slow-release car-
rier) topically over the peri-ischemic cortex, and demonstrated 

neurite extension from cortical neurons which was significantly 
enhanced by aFGF, mediated through activation of Akt and 
Erk, and improved functional restoration in ischemic stroke 
rats. The results suggest that aFGF mixed in fibrin glue could 
prolong the protective/regenerative efficacy of aFGF to the 
damaged brain tissue and thus improve the functional restor-
ative effect of aFGF.76 An in vitro and in vivo investigation in 
rodent models of Parkinson disease revealed that the adminis-
tration of aFGF activated downstream signals PI3K/Akt and 
ERK1/2. The authors suggested that aFGF attenuates neurotox-
icity by down regulating the level of apoptosis via activation of 
the PI3K/Akt and ERK1/2 signal pathways.77 A study of the ad-
ministration of aFGF and bFGF to protect blood-brain barrier 
(BBB) integrity after intracerebral hemorrhage (ICH) in mice 
was carried out. The investigators suggested that FGF treatment 
reduced Ras homolog gene family member A (RhoA) activity 
via FGF receptor-induced activation of the PI3K-Akt-Rac1 sig-
naling pathway, thus preserving BBB integrity, and therefore at-
tenuating secondary brain injury after experimental ICH in 
mice.78 Similarly, it was reported that aFGF administration pre-
served BBB integrity by activating the PI3K-Akt-Rac1 pathway 
and inhibiting RhoA following traumatic brain injury.79 There 
is also an experiment demonstrating that inhibition of phos-
phatidylinositol 3-kinase (PI3K) blocks translocation of aFGF 
to the cytosol and nucleus.80 These data suggest that PI3K is es-
sential to initiate the signal transduction of aFGF.

Although the documentation of the signal pathway of aFGF 
specific to the repair of SCI is short, one can still find some in-
teresting correlation between aFGF and other CNS lesions. In 
the limited evidence, the activation of the PI3K-Akt pathway 
seems to be a common feature. The finding is not surprising 
given the fact that PI3K/Akt signaling integrates extracellular 
signaling information to promote cellular proliferation in adult 
neural progenitors.81

CONCLUSIONS AND FUTURE 
PERSPECTIVES

There has been a long list of review articles summarizing the 
repair strategies of cellular transplantation and molecular ther-
apy after SCI. The current review aimed not to just extend the 
length of the list. Instead, the authors focused more on the aFGF 
which has been long applied in nerve repair-associated studies, 
but seldom sorted as a neurotrophic factor. A series of investi-
gations by the authors’ team, in accordance with others, have 
demonstrated the promising results of aFGF in the treatment of 
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nerve injury. Together with the utilization of autologous PNGs, 
aFGF enhances the axonal regrowth and promotes clinical mo-
tor function improvement in animal studies. By single use of 
aFGF without PNG bridging in clinical scenarios, patients ob-
tained functional improvement and became less dependent on 
helpers in phases I and II in clinical trials. Most important, the 
oncogenic adverse effect was not observed throughout the 4-year 
follow-up. The positive effects of aFGF on neuroprotection and 
regeneration of injured neurons of the spinal cord make it a prom-
ising candidate for inclusion in treatment strategies.39 Longer 
period of follow-up after the use of aFGF is also necessary in 
order to find out any possible adverse effects.

It seems that the aFGF is beneficial in the neural regeneration 
after SCI. However, the authors do not claim that the single phar-
macological agent could cure the neurological deficit and im-
mediately make the patients walk again. Rather, we emphasize 
that rehabilitation programs remain the gold standard to en-
hance possible neural plasticity, promote occupational recovery, 
and treat complicated neuropathic pain in chronic cases. Phar-
macologically, the glial scar formed in the chronically injured 
spinal cord is an obstacle and inhibits neural growth. The ad-
ministration of lysing molecules, such as chondroitinase, helps 
to lyse the fibrosis/gliosis in the injury zone and allows the axo-
nal growth cone progress distally. Besides, biomaterial scaffolds 
serve as a drug release system and also promote axonal growth 
within the scaffolds. Combining PNGs with scaffolds has gained 
more acceptance. Commonly used scaffolds, including natural 
polymers (in vivo extracellular matrix polymers, polymers de-
rived from blood, and polymers from marine life) and synthetic 
polymers (poly-hydroxy acid polymers and synthetic hydrogels), 
are crucial in the process of neural growth.82

Individual therapies are unlikely to emerge as a cure for SCI. 
The authors, in agreement with other groups of investigators, 
predict that tailored combinations of strategies will lead to cu-
mulative improvements in outcome after SCI.13,39 An isolated 
therapy can be the focus of research; however, the merged strat-
egies should be the future effort.
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