
RESEARCH ARTICLE

Partitioning stable and unstable expression

level variation in cell populations: A

theoretical framework and its application to

the T cell receptor

Thiago S. GuzellaID
1, Vasco M. BarretoID

2*, Jorge CarneiroID
1*

1 Instituto Gulbenkian de Ciência, Oeiras, Portugal, 2 CEDOC - Chronic Diseases Research Center, NOVA

Medical School, Universidade Nova de Lisboa, Lisboa, Portugal

* vasco.barreto@fcm.unl.pt (VMB); jcarneir@igc.gulbenkian.pt (JC)

Abstract

Phenotypic variation in the copy number of gene products expressed by cells or tissues has

been the focus of intense investigation. To what extent the observed differences in cellular

expression levels are persistent or transient is an intriguing question. Here, we develop a

quantitative framework that resolves the expression variation into stable and unstable com-

ponents. The difference between the expression means in two cohorts isolated from any cell

population is shown to converge to an asymptotic value, with a characteristic time, τT, that

measures the timescale of the unstable dynamics. The asymptotic difference in the means,

relative to the initial value, measures the stable proportion of the original population variance

R2
a
. Empowered by this insight, we analysed the T-cell receptor (TCR) expression variation

in CD4 T cells. About 70% of TCR expression variance is stable in a diverse polyclonal pop-

ulation, while over 80% of the variance in an isogenic TCR transgenic population is volatile.

In both populations the TCR levels fluctuate with a characteristic time of 32 hours. This sys-

tematic characterisation of the expression variation dynamics, relying on time series of

cohorts’ means, can be combined with technologies that measure gene or protein expres-

sion in single cells or in bulk.

Author summary

No two cells are identical. Even isogenic cells, living in the same environment and express-

ing the same set of genes display measurable differences or variation in the expression

level of any of these genes. How much of the differences in expression levels are perma-

nent and how much of these differences vanish in time has intrigued us for generations.

We develop a theoretical framework based on a stochastic model and put it to work in the

analysis of T cell receptor expression level in CD4 T cells. We show that T cell populations

with genetically diverse receptors display stable variation in receptor expression but, sur-

prisingly, we detect persistent differences in receptor levels among uniform transgenic T

cells. The analysis, being based on the mean cohort expression levels logarithm, can be
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applied to techniques that measure expression at single-cell level and also to the myriad of

genomics and proteomics techniques that measure expression in bulk populations.

Introduction

The phenotypic variation among organisms or cells is a theme of growing importance in biol-

ogy. Macroscopic phenotypes, such as body structures or physiologic responses, have been

studied for ages, but one phenotype particularly suitable for quantification that has received

attention in the last decades is the amount of specific mRNAs and proteins expressed by single

cells. Advances in genomics have allowed the analysis of genetic contributions to variation in

gene expression, in terms of so-called expression quantitative trait loci (eQTL) [1, 2]. In this

case, expression levels, typically assessed via mRNA levels, are treated as quantitative traits,

and one is interested in the specific loci underlying variation in expression levels among differ-

ent individuals. The increasing availability of single-cell resolution genomics, proteomics and

metabolomics technologies has enabled molecular biologists to analyse cell lineages and tissues

showing that what were previously perceived as homogeneous cell populations are in fact a

complex mixture of often transient and interchangeable cellular types and cellular states (see

discussion in [3]). In parallel to these studies linking phenotypes to genotype, the literature on

stochastic gene expression [4–8], reviewed in [9], has brought to light the variation in expres-

sion levels in isogenic cells, even when these are in the same cellular state and in the same envi-

ronment. The variation is typically attributed to the “noise” resulting from the small copy

number of molecules involved in the process.

Several studies addressed the fluctuation dynamics of gene expression levels [10, 11] reveal-

ing a complex picture of the variation in isogenic cell populations. The fluctuation timescales

range from hours [7, 12], to days [13–15] or weeks [16–18], depending on the cells and on the

degree of multimodality of the expression distribution under study. The distinct timescales

can be associated with the different mechanisms that may cause the variation in the expression

levels of a molecular component of interest in some cell population. However, most quantita-

tive approaches developed up to this date have focused on noise in gene expression as the pre-

dominant mechanism explaining the variation observed (for example, [6, 7, 19–24]). It

remains unclear to which degree less volatile dynamic processes or even persistent differences

contribute to the observed variation in a isogenic cell population. This is particularly relevant

in the case of cells from multicellular organisms, due to the robust epigenetic processes that

underlie differentiation stages, cell lineages or cell states, but also the intraclonal structure of

apparently homogenous populations [25, 26].

A case study of particular interest is the expression of Sca1 in a hematopoietic cell line [16,

17] since it reveals the complexity of variation dynamics and also the difficulties in characteris-

ing it experimentally. Chang et al. [16] reported that that biased cohorts of cells tend to restore

the histogram of expression levels of Sca1 of the starting population, albeit with very slow

dynamics. In principle, complete restoration would be consistent with a lack of stable variants

in the population. However, Pina et al. [17] have shown that even after 2 weeks, the reconstitu-

tion is incomplete. More importantly, some cells in this population express markers of termi-

nal differentiation, and have limited proliferative capacity [17]. This points to an inherent

heterogeneity in the population that may persist in time. An important limitation of these

approaches was relying mainly on the juxtaposition of histograms of expression levels in order

to compare cell populations, without a rigorous quantification. It is not clear how to analyse

such data and because of this the degree to which the original distribution is restored remains
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uncertain. A quantitative approach that overcomes this impasse is necessary and also impor-

tant to provide formal concepts on which to ground subsequent studies on the expression lev-

els in cell populations.

Our work lumps the molecular mechanisms regulating expression levels in a cell population

into two components, one stable and another unstable. The stable component leads to perma-

nent differences between the expression levels of any two cohorts of cells. The unstable compo-

nent, on the other hand, represents transient differences in the expression levels of the cohorts

that eventually vanish in time. Starting from these definitions, a general model is derived to

describe protein expression levels in a population. The relative contribution of the stable com-

ponent to the expression variation is then defined as a single parameter termed R2
a
. We show

theoretically that this parameter can be estimated in an unbiased way by following over time

the mean expression in cohorts isolated from the population of interest. This dynamical char-

acterisation of the expression variation is completed by concomitantly estimating the charac-

teristic timescale τT.

This theoretical result is used to characterise the contributions to variation in the expression

levels of the T-cell receptor (TCR) in two biologically relevant CD4 T cell populations. The

first population, purified from wild type mice, is composed of clones emerging from the pro-

cess of V(D)J recombination, each carrying genetically distinct TCR loci. The second is a

genetically uniform population isolated from Marilyn TCR-transgenic mice, in which all T

cells express the same recombined receptor genes [27]. We find that the stable component is

the main contribution in the polyclonal population (R2
a
� 70%), while the unstable compo-

nent predominates in the Marilyn population (R2
a
� 20%). This suggests that genetic heteroge-

neity contributes to stable differences in TCR expression levels in T cells, but that there are

other mechanisms contributing to persistent expression variation in isogenic populations.

Results

A general model for protein expression levels in a cell population

Partitioning the contributions to variation in expression levels. We assume that any

cell population, hereafter referred to as full population, is a mixture of sub-populations. Each

cell belongs to and remains in one of these sub-populations all the time. Using a mixture

model formulation, each sub-population is indexed by i = 1, 2, . . ., N, and described by three

parameters (μi, vi, wi): the mean μi and variance vi of expression levels, and the relative fre-

quency wi of cells in the full population that belong to this sub-population. The latter is given

by:

wi ¼
ni

PN
j¼1

nj
ð1Þ

where ni is the number of cells in the i-th sub-population and
PN

j¼1
nj is the total number of

cells in the full population. A related approach has been used by Gianola et al. [28] to study

genetic parameters in the context of the quantitative genetics of mixture characters.

In the limit of large N, the parameters (μi, vi, wi) describing a sub-population are taken as

random variables (μ, v, w) (see Materials and methods for details of the notation used) follow-

ing a particular multivariate distribution. Then, one can relate the mean μF and variance vF of

expression levels of the full population to the properties of the sub-populations, as detailed in

S1 Text section A. Provided that there is no correlation between the frequencies (w) and either

the means (μ), the squared means (μ2) and the variances (v) of the sub-population, it follows
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that (S1 Text section A):

mF ¼ E½x� ¼ E½μ� ð2Þ

vF ¼ V½x� ¼ E½v�
|{z}

Within each
sub‐population

þ V½μ�
|ffl{zffl}

Among
sub‐populations

ð3Þ

where the subscript F is used to highlight that these are properties of the full population. There-

fore, under these conditions, the mean of the full population is simply the expected value of

the means of the sub-populations (E½μ�), while the variance of the full population is the sum of

the variance within each sub-population (E½v�) and the variance among the sub-populations

(variance in the means,V½μ�), thus taking the form of the general “law of total variance”.

Although Eqs 2 and 3 are general and independent of the precise definition of a sub-popula-

tion, the two terms in Eq 3 suggest a specific definition, in which only the unstable component

is present in each sub-population. In this way, the term of variation within any sub-population

E½v� becomes the contribution of the unstable component to the variance of the full popula-

tion, while the variation among the means of the sub-populations V½μ� is the contribution of

the stable component. In the next section, expression levels within each sub-population will be

described by a stochastic model, while the different sub-populations will have different means

controlled by one of the parameters of this stochastic model.

An explicit model of protein expression in a cell population. Variation within a sub-

population. The stochastic model of protein expression considered here is based on the work

of Shahrezaei et al. [29], which has been followed by more recent studies (e.g. [30]). The model

is defined by the following two equations:

dxt ¼ a exp yt �
1

2
s2

� �

�
1

b
xt

� �

dt ð4Þ

dyt ¼ �
1

t
yt dt þ

s
ffiffiffiffiffiffiffi
t=2

p dWt ð5Þ

where xt is the amount of protein expressed at time t, and yt is a stochastic variable following

the Ornstein-Uhlenbeck process. In Eq 5, Wt is the Wiener process [31]. The parameters for

the model are presented in Table 1, along with their respective dimensions.

The equation governing dxt has two terms. The first term, a exp yt �
1

2
s2

� �
, is the rate of

production which depends on the stochastic process yt, and the second term, xt/β, is the degra-

dation rate following first-order kinetics with mean β protein lifetime. A model with a similar

overall structure was reported before [32], in which mRNA transcription and degradation

Table 1. Description of the parameters of the stochastic model of protein expression defined by Eqs 4 and 5.

Parameter Description Dimensions

α Mean protein production rate Molecules/Time

β Mean lifetime of the protein Time

σ Normalised dispersion of protein production rate Non-dimensional

τ Characteristic time of the fluctuations in protein production rate Time

https://doi.org/10.1371/journal.pcbi.1007910.t001
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have also been explicitly incorporated. Eq 4 can be re-written as:

dxt

dt
¼ a zt �

1

b
xt ð6Þ

where zt, defined as:

zt ¼ exp yt �
1

2
s2

� �

ð7Þ

denotes the instantaneous rate of protein production. This rate is normalised, to have unit

expected value. All processes governing protein production (promoter transitions, transcrip-

tion and translation, among others) are lumped together into the average rate α and the instan-

taneous rate given by zt. The representation in Eq 6, which highlights the contribution of

lumped upstream factors, has been applied before in the analysis of models of stochastic gene

expression (for example, [6, 7]). Eq 6 denotes that, in a single cell, the instantaneous rate of

protein production is proportional to the instantaneous levels of these lumped upstream fac-

tors, and fluctuates as a function of time, with auto-correlation time approximately equal to τ
[29]. These fluctuations are then propagated downstream, resulting in fluctuations in protein

levels, with dynamics dictated by τ (through zt) and β. For simplicity, protein degradation is

assumed to be deterministic, with the same rate 1/β for all cells. The temporal evolution of

the protein expression levels xt in two cells with distinct characteristic times τ is illustrated in

Fig 1A.

It follows from Eq 7 that:

zt � LN �
1

2
s2; s

� �

; t !1 ð8Þ

and therefore the stationary rate of protein production follows a lognormal distribution in

cells of a sub-population, consistent with a report of lognormal rates of protein expression

[33]. Eqs 4 and 5 are a simple model that generates, for a wide range of parameter values, a log-

normal-like distribution of protein levels (Fig 1B), compatible with the widespread observation

of the lognormal distribution in cell populations. In this scenario, in terms of the log-trans-

formed protein levels (S1 Text section B), the mean and variance of a stationary sub-popula-

tion are given by Eqs 9 and 10, respectively:

mlog ¼ E log xtð Þ½ � ¼ log a bð Þ �
1

2
s2

W ð9Þ

vlog ¼ V½ log ðxtÞ� ¼ gðs2; t=bÞ ¼ s2
W ð10Þ

where the subscript W will be used hereafter to denote that the variation is due to the stochastic

process influencing the instantaneous rate of protein production. In Eq 10, g(�, �) is an arbitrary

function that can be estimated via simulation.

Variation within and among sub-populations. As formulated above, the stable compo-

nent arises due to variation in the means of the sub-populations. Therefore, we assume that

parameter α in Eq 4 is distributed in the full population, becoming a random variable, denoted

by α. Consequently, each sub-population is described by one value of α, resulting in different

average rates of production, and hence different mean expression levels.
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Fig 1. Dynamics of the protein expression levels xt according to the stochastic model. A- Time courses of the log-

transformed variable xt obtained for two cells which differ in the characteristic time of the fluctuations (τ = 10 a.u.

(grey) and τ = 100 a.u. (black)). The independent variable t is on the vertical axis and the log(xt) on the horizontal axis;

B- Histograms of the log-transformed protein levels xt in cell populations with slow and fast dynamics exemplified by

the time courses. Each histogram is normalised by its maximum intensity and corresponds to 10000 independent

realisations of the individual cell model sampled at time t = 200 a.u.; Remaining parameter values: α = 1., β = 1, and σ =

0.5.

https://doi.org/10.1371/journal.pcbi.1007910.g001
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For simplicity, we consider the case that α � LN ðma; saÞ. For the i-th sub-population, with

parameter αi, the mean and variance follow from Eqs 9 and 10:

mi;log ¼ log ai bð Þ �
1

2
s2

W ð11Þ

vi;log ¼ s2
W ð12Þ

where s2
W is assumed to be the same for all sub-populations. In terms of log-transformed val-

ues, plugging Eqs 9 and 10 into Eq 3, one obtains the variance of the full population:

vF;log ¼ s
2
T ¼ s

2
W þ s

2
a ð13Þ

An important property of Eq 13, which is based on log-transformed values, is that the

parameters that represent the variances due to the stable and unstable components (s2
a

and s2
W ,

respectively) remain separate. This is a key feature, greatly simplifying the process of analysis

and inference throughout this work. As detailed in the S1 Text section C, the equivalent of Eq

13 considering protein levels without any transformation has an additional term, dependent

on s2
a

and s2
W . This additional term arises since the variance of each sub-population in this

case depends on the value of α. Therefore, from this point on, we consider the analysis based

on log-transformed values only.

Isolating cells allows to quantify the contributions to the variation in a cell

population

Definition of the relative contribution of the stable component. The variance of log-

transformed expression levels of the full population is simply the sum of variances due to the

stable and unstable components (Eq 13). In this context, in analogy with the R2 quantification

of the variance explained by a linear regression model, we define R2
a

as:

R2
a
¼
s2
a

s2
T

; 0 � R2

a
� 1 ð14Þ

to denote the proportion of the observed variance that is explained by the stable component.

Hence, R2
a

formalizes and quantifies the relative contribution of the stable component to the

total variance of the full population, reducing the problem of quantifying the contributions to

the estimation of a single parameter. In the case of R2
a
¼ 0%, variation in expression levels

arises exclusively due to the unstable component; conversely, the stable component explains all

the observed variation if R2
a
¼ 100%. Finally, in the intermediate case 0% < R2

a
< 100%, a

combination of the two components is at play.

The dynamics of the expression distribution of isolated cell cohorts depends on the rela-

tive contribution of the stable component. After defining R2
a
, a setup for its estimation is

derived. Since the original population is assumed to be a mixture of sub-populations, a natural

approach for estimation is to isolate a cohort of cells and to follow the temporal evolution of

some property of this cohort. The isolation of cells according to the expression levels of some

protein has been described in previous experimental works [10, 14, 16–18], usually employing

fluorescence-activated cell sorting (FACS). To simplify the presentation, it is assumed that the

property is always quantified based on a sufficiently large number of cells, such that sampling

effects are negligible.

Hereafter, a time reference t is defined beginning from the instant of isolation in a hypo-

thetical experiment. Let an isolated cell cohort correspond to cells between percentiles p1 and
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p2 of expression levels of the original population. Without loss of generality, it is assumed here-

after that p1 < p2. Therefore, the two percentiles should satisfy 0%� p1 < p2 < 100% or 0%<

p1 < p2� 100%. This ensures that at least one of the isolated cohorts to be used for inference is

not identical to the original population at time t = 0. Hence, isolating cells corresponds, indi-

rectly, to selecting some of the sub-populations, if any compose the original population. Upon

isolation, the expression levels of cells in a given sub-population will relax to the stationary dis-

tribution of that sub-population. Therefore, at the level of the isolated cohorts being tracked,

changes in the property of expression levels are related to the dynamics of the unstable compo-

nent, as expression levels of the sub-populations that have been isolated relax to their station-

ary values. The time for this relaxation to take place will be hereafter referred to as the

characteristic time of the variation.

In a given experiment, three outcomes are possible (Fig 2). If only the unstable component

is present (R2
a
¼ 0), after waiting a sufficiently long amount of time, the distribution of protein

expression in the isolated cohort will converge to that of the original population (Fig 2, top). In

contrast, if the observed variation is explained by the stable component only (R2
a
¼ 100), the

distribution of the isolated cohort will not change as a function of time, remaining identical to

that just after being isolated; it will always differ from that of the original population (Fig 2,

Fig 2. Simulation of the possible results obtained when a cohort of high expressor cells is isolated from a full population and followed in time. The

graphs are histograms of the values of the expression levels variable x at the indicated times in 10000 independent realisations of the model for three values

of R2
a

(0.0 (top), 1.0 (middle) and 0.25 (bottom)) simulating an isolated cohort of higher expressors (blue) or the full population from which the cohort was

isolated (gray).

https://doi.org/10.1371/journal.pcbi.1007910.g002
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middle). Finally, if both the stable and unstable components are present in the original popula-

tion (0 < R2
a
< 100), the isolated cohort will evolve in time, but without ever restoring the dis-

tribution of the original population (Fig 2, bottom).

The key question now is what properties of the isolated cohort can be used to infer R2
a
. The

next section shows that R2
a

can be accurately inferred from the dynamics of the means of the

cohorts and examines the choice of a specific approach for isolation in term of the percentiles

p1 and p2. The additional features that can be extracted from the variance of the isolated cohort

are addressed in S1 Text section G.

Estimating the relative contribution of the stable component

This section uses simulation to identify which property of the isolated cohorts can lead to a

good estimate of R2
a
, when followed in time. In the simulations, protein expression levels are

described by the model derived above, neglecting cell division for simplicity. Since all deriva-

tions are based on Eq 13, the analysis herein relies on log-transformed values of protein levels.

The isolated cohort considered at first for inference here is composed of the 10% of cells

with the highest (respectively lowest) expression levels in the original population hereafter

referred to as “high expressors” (respectively “low expressors”). Following the notation intro-

duced in the previous section, we have p1 = 90% and p2 = 100% (respectively, p1 = 0% and p2 =

10%). The choice of 10% is arbitrary, and is deemed to represent, at least in principle, a good

compromise between resolution and number of cells obtained. Moreover, a random sample of

the original population will serve as reference.

We first address how the dynamics of the mean of log-transformed protein levels in isolated

cohorts, shown in Fig 3A for the high expressors. Briefly, the mean of an isolated cohort will

evolve smoothly until it reaches an asymptotic limit.

It turns out that the asymptotic mean of log protein levels of an isolated cohort is a linear

function of the R2
a

of the original population from which it was obtained, as illustrated in Fig

3B in the cases of the isolation of the 10% high and low expressors in populations with different

R2
a
. This linear relationship allows one to define a straightforward approach for estimating R2

a
.

Defining ΔA,B(t) as the difference between the means of log-transformed values of two isolated

cohort A and B, respectively μA(t) and μB(t), at time instant t:

DA;BðtÞ ¼ mAðtÞ � mBðtÞ ð15Þ

then, R2
a

can be estimated via:

R2
a
¼

lim t!1DA;BðtÞ
DA;Bð0Þ

; DA;Bð0Þ 6¼ 0 ð16Þ

as demonstrated analytically in S1 Text section D.

The condition ΔA,B(0) 6¼ 0 for using Eq 16 implies that the two isolated cohorts being com-

pared must have different means just after isolation (t = 0). From the inequality in Eq 14, an

additional relationship for ΔA,B(t) holds:

lim
t!1
ðDA;BðtÞÞ � DA;Bð0Þ ð17Þ

Therefore, the stationary difference between the means of log-transformed expression levels

of the isolated cohorts A and B is expected to be, under the present formulation, lower than or

equal to the difference immediately after isolation. Therefore, a key result is that, to estimate

R2
a
, one may simply calculate the ratio between the asymptotic value of difference between the
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means of log-transformed protein levels in two isolated cohorts relative to its initial value after

isolation.

An important consequence for experimental design is that one can improve the resolution

in the estimation of R2
a

by maximising the value of ΔA,B(0). For any given percentage of cells to

be isolated (chosen as p2 − p1), the maximal initial difference is obtained by isolating the

extreme high and low expressors. Consequently, the remainder of this work focuses on this

case, by always relying on the function ΔH,L(t) for estimation, where H and L denoted respec-

tively the high and low expressors.

Eq 16 has an important advantage from an experimental point of view: the fact that it

depends only on the differences between the means of the sorted and reference populations.

This is particularly important given that there are typically day-to-day systematic variations in

the absolute values read by a flow cytometer, to which Eq 16 is robust. On a similar vain, by

relying on means the analysis is robust to the random measurement errors of the flow cyt-

ometers. However, it is essential that measurements used to calculate and analyse the cohorts

means are independent of the measurements used for sorting such that the respective mea-

surement errors are uncorrelated; otherwise, the value of ΔH,L(0) will be offset to higher values

by sampling the tails of sorting measurement errors, leading to underestimates of R2
a

due to the

statistical effect of regression to the mean.

The asymptotic analysis just presented does not allow to consider the dynamics of the

expression levels. To address these dynamics we introduce the time-dependent function

Fig 3. Simulation of transient dynamics and asymptotic limits of the mean protein expression in isolated cohorts. A- Dynamics of mean log protein

expression levels of “high expressors” after isolation as 10% of original populations with different values of R2
a
, but constant s2

T ; B- Asymptotic mean of 10%

low expressors, 10% high expressors and reference population as a function of R2
a

in the simulations. The symbols represent simulation results, while the

lines represent the best-fit of a straight line. Error bars are not represented for simplicity. Remaining parameter values: τ = 500, β = 5 and σT = 0.3.

https://doi.org/10.1371/journal.pcbi.1007910.g003
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OH,L(t) given by:

OH;LðtÞ ¼
DH;LðtÞ
DH;Lð0Þ

; DH;Lð0Þ 6¼ 0 ð18Þ

Being based on the means of log-transformed values of two populations that have been iso-

lated, ΔH,L(t) follows an approximately exponential decay (Fig 4; see section F in S1 Text for a

rationale). Using the approximation of exponential decay, and defining the effective character-

istic time as τT,OH,L(t) takes the following form:

OH;LðtÞ ¼
DH;LðtÞ
DH;Lð0Þ

¼ R2

a|{z}

Relative
contribution
of the stable
component

in the original
population

þ ð1 � R2

a
Þ

|fflfflfflfflffl{zfflfflfflfflffl}

Relative
contribution

of the unstable
component

in the original
population

expð� t=tTÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Relaxation
of the unstable
component
ðtimescale
termÞ

ð19Þ

It follows that the effective characteristic time τT is undefined in the case of R2
a
¼ 100%,

since ΔH,L(t) does not change as a function of time after isolation. Since τT is a measure of the

time needed for the initial difference ΔH,L(0) to reach the asymptotic value limt!1 {ΔH,L(t)}, it

provides a formal characterisation of the timescale of the variation.

An exhaustive simulation study (Fig 4B) led to the conclusion that τT can be approximated,

with a typical bias of at most 5–10% of the true value, as:

tT � bþ t ð20Þ

Therefore, the auto-correlation time of the stochastic rate of protein production (τ) and the

mean lifetime of the protein (β) determine the timescale of the variation in expression levels

(τT).

The relative contribution of the stable component (R2
a
) and the effective characteristic of the

variation (τT) can be visualized in a single plot, derived from Eq 19. As shown in Fig 5, R2
a

cor-

responds to the asymptotic value of OH,L(t), while τT corresponds to the instant of time that

satisfies:

1 � OH;LðtTÞ ¼ ð1 � exp ð� 1ÞÞ ð1 � R2
a
Þ � 0:63 ð1 � R2

a
Þ ð21Þ

Since Eq 19 features an exponential decay, it follows that the plateau is reached in practice

after an amount of time approximately equal to 5τT. Furthermore, the inequality in Eq 17

becomes:

DH;LðtÞ � DH;Lð0Þ 8t ð22Þ

since function ΔH,L(t) is monotonically decreasing with time.

Although this section has focused on the case in which high and low expressors are used, all

the properties derived also hold for any two isolated cohorts A and B. The only requirement is

that the condition ΔA,B(0) 6¼ 0 is satisfied.
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Fig 4. The function ΔH,L(t) decays with approximately exponential dynamics. A- Simulations of the isolation of cells

were done, for various values of τ and β, with R2
a
¼ 25%. Shown are simulation results (symbols), along with the results

of fitting the model of exponential decay Δ(t) = a + b exp(−t/τT) to the simulation data (dashed lines), where a and b
are constants. Time is normalized in each case by the instant t� such that ΔH,L(t�) has decayed by 90%. The light to dark

gray tones correspond to the values of the ratio τ/β = 0.1, 1.0, 10.0 respectively, with β = 50; B- Comparison between

τ + β and the value estimated for τT. Simulated data (ΔH,L(t)) were fitted under the same setup as in (A) and the

resulting values of τT plotted as a function of the value of τ + β. Each graph corresponds to simulations using the

indicated value of σt with different values of R2
a

(0.0, 0.25, 0.50 and 0.75) depicted in different gray tones (the darker the

tone the higher the value of R2
a
).

https://doi.org/10.1371/journal.pcbi.1007910.g004
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Quantification of the components shaping the variation in T-cell receptor

expression levels

The theoretical framework developed in the previous sections is used here in the analysis of

the variation in the expression of the TCR in mouse CD4+ T lymphocytes. The TCR is a het-

erodimeric membrane receptor that elicits signal transduction upon interaction with MHC-

peptide complexes on the membrane of antigen-presenting cells [34]. In wild-type animals,

the T cell populations are genetically heterogeneous at the TCR level, due to the somatic

recombination at the loci encoding the receptor chains in thymocytes (reviewed in [35]). In

contrast, genetically manipulated mouse strains are available in which all the T cells express

the same TCR (for example, [27]). In these mouse strains, the somatic recombination is ablated

(Rag2−/− background) and a single functional TCR is expressed in all cells driven by transgenes

encoding the two chains of the TCR.

To quantify the origin and timescale of the variation in the context of the TCR, we used a

polyclonal population from a wild-type inbred strain and a surrogate monoclonal population

from the Marilyn TCR-transgenic strain [27]. In this setup, we are interested in comparing the

values of R2
a

and τT estimated for the polyclonal and the Marilyn monoclonal populations.

These two populations show comparable mean expression values (see Fig 6, top) but the

expression is more variable in the polyclonal population than in the monoclonal one [36], pre-

sumably reflecting the genetic diversity [37].

Fig 5. Illustration of functionOH,L(t). Shown are simulation results (symbols), with R2
a
¼ 25%, τ = 50 and β = 5, which were fitted to the

expression forOH,L(t) in Eq 19 (continuous line). The horizontal and vertical dashed lines indicate respectively the true value of R2
a

and the value

of τT, as given by Eq 21.

https://doi.org/10.1371/journal.pcbi.1007910.g005
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Fig 6. Dynamics of TCR expression in high and low expressor cohorts sorted from monoclonal (Marilyn; left) and polyclonal (wildtype; right)

populations. The graphs are the histograms of frequency of log-transformed TCR fluorescence in the high (blue) and low (red) expressors measured by

flow cytometry at the indicated times after sorting. Unstained population is also shown in gray.

https://doi.org/10.1371/journal.pcbi.1007910.g006
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In theoretical framework, the stable component arises from different mean protein produc-

tion rates. In polyclonal populations, the stable variation in average TCR production may be

caused by the differential regulation of expression of the receptor sub-units, depending on the

specificity of the particular TCR, or by the differential ability of the specific sub-units to pair

and be expressed [38]. In any case, genetic heterogeneity would ultimately explain some of the

variation observed at the level of a polyclonal population. If so, this would imply that R2
a
> 0

for a polyclonal population. By analysing a TCR-transgenic population, we addressed whether

genetic variation is the only factor explaining the stable component. In the affirmative case,

one would obtain R2
a
¼ 0 for a TCR-transgenic population. If one obtains R2

a
> 0, non-genetic

mechanisms must be evoked.

We adopted an experimental design in which high and low expressors, defined to contain

10% of the mass of the starting population distribution, were sorted (Fig 6, top) and then

maintained in vitro without any stimulation. As described before [39], there was no cell divi-

sion under these conditions, and cells slowly died off, such that after 3 to 4 days no live cells

were left (the increased jaggedness of the histograms in Fig 6 reflects the decreased number of

viable cells with time). Since in the Marilyn transgenic strain, all T cells have a naive phenotype

[27], we restricted the analysis of the wildtype polyclonal populations to those cells that express

high levels of the CD45RB marker, indicative of a naive phenotype [40]. By restricting the anal-

ysis to naive cells, the distribution of cell size as measured by Forward Scatter was similar in

the high and low expressor cohorts when sorted from the monoclonal Marilyn population as

well as from polyclonal population (S1 Text section H).

The dynamics of the frequency distribution of the TCR expression levels in cohorts of high

and low expressors sorted from polyclonal and monoclonal animals and subsequently cultured

in vitro for up to 72h is illustrated in Fig 6 for one of three independent experiments (repre-

sented in Fig 7). The distributions of the TCR expression levels in the high and low expressors

sorted from wildtype polyclonal population remain clearly different. In contrast, the high and

low expressors from the monoclonal Marilyn TCR-transgenic population become very similar

as a function of time after sorting. The values of OH,L(t) in the three experimental data sets are

shown in Fig 7. It is worth noticing that the Marilyn histogram data set exemplified (Fig 6)

happens to show the highest convergence of the high and low expressors distributions at the

last time sampled. Also, the normalisation (Eq 18) masks the fact that the value of ΔH,L(0) was

conspicuously greater for the polyclonal population in accordance with the observations that

the variance (s2
T) is larger in polyclonal populations than in TCR transgenic populations (Fig

8; and also [36]).

To estimate R2
a

and τT by fitting the model to the experimental data Eq 19 must be refined

as follows:

DH;LðtÞ ¼ d0ðR2
a
þ ð1 � R2

a
Þ exp ð� t=tTÞÞ ð23Þ

where δ0 represents an estimate, obtained via fitting, of the “true” initial value ΔH,L(0). Eq 23

has the important property of preserving the statistical independence between data points

used as input for the fitting, a key requirement for proper statistical analyses.

The analysis was based on fitting the three-parameter exponential model (Eq 23) to the

ensemble of the data, composed of the multiple experiments done for each biological popula-

tion. The different modelling scenarios being tested are defined by specifying each of the three

parameters, R2
a
, τT and δ0, for each biological population as being shared or not between the

polyclonal and monoclonal populations. Small variations in defining the percentages for sort-

ing high and low expressors in different experiments are expected to sporadically affect the

value of δ0 and therefore this parameter was always fitted separately for each experiment. The
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modelling scenarios are obtained by specifying how parameters R2
a

and τT are shared between

the biological populations. The complete description of the modelling scenarios considered is

presented in Table 2 (column 2). Modelling Scenario 1 represents the null model, according to

which the polyclonal and monoclonal populations are described by the same values of R2
a

and

Fig 7. Dynamics ofOH,L(t) in sorted cohorts. The symbols are the point estimates ofOH,L(t) = ΔH,L(t)/ΔH,L(0) at

different times after sorting for polyclonal (circles) and monoclonal (diamonds) cell population data sets. The curves

represent the best fit of the functionOH,L(t), as defined by Modelling Scenario 2, to the ensemble of the populations

data sets. The horizontal dashed lines indicate the estimates of the asymptotic R2
a
.

https://doi.org/10.1371/journal.pcbi.1007910.g007

Fig 8. Variance of the log-transformed TCR expression levels in monoclonal (Marilyn; diamonds) and polyclonal

(wildtype; circles) CD4+ T lymphocyte populations. The points are estimates of the variance in independent samples

and the lines are the average value of these variances.

https://doi.org/10.1371/journal.pcbi.1007910.g008
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τT. This is the scenario with the smallest number of parameters considered. Scenario 2 repre-

sents the plausible situation in which these two populations may be described by different val-

ues of R2
a
, but equal τT, while in Scenario 3 parameter τT is also allowed to be different in the

two populations. Finally, Scenario 4 represents a lower bound in terms of the error in the fit-

ting, where data from each experiment is fitted independently, and has the largest number of

parameters. The Akaike Information Criterion (AIC) [41] is used to compare the different

modelling scenarios in their capacity to fit to the ensemble of the data. The AIC has a solid

foundation on information theory [41], representing a compromise between the error in fit-

ting the data and the number of parameters in the model. The results are presented in terms of

the difference ΔAICc between the AIC for each Scenario and that of Scenario 1. In comparing

different modelling scenarios, the one with the smallest value of the AIC (and therefore, the

smallest value of ΔAICc) provides the best and most parsimonious description of the data.

The results of the model fitting, including the sum of squared residuals, point estimates of

the parameters, and the value of ΔAICc, are shown for each scenario in Table 3. It follows that

Scenarios 2 and 3 have the lowest values of ΔAICc, with Scenario 3 having a slightly higher

value. Since the latter has one extra parameter, this suggests that a scenario where only R2
a

is

allowed to be different constitutes the most parsimonious explanation for the data. Hence,

altogether Scenario 2 is favoured, according to which the two populations differ only in R2
a
. In

this case, we obtain an effective timescale of 32 hours, and values of R2
a

of 71% for the poly-

clonal and 17% for the monoclonal population, with 95% confidence intervals of [57%, 79%]

and [0%, 31%], respectively. Finally, the function OH,L(t) resulting from scenario 2 is shown in

Fig 7, highlighting the values of R2
a

estimated for each population.

Discussion

In this article, we introduce a new approach to analyse the variation in protein expression lev-

els in a cell population, which enables measuring the characteristic dynamics of the fluctua-

tions in cellular expression and estimating the magnitude of stable and unstable contributions

to the variation across cells. The analysis is based on the realisation that the difference between

the means of log-transformed expression levels in two selected cohorts isolated from a popula-

tion of interest converges with approximate exponential dynamics to an asymptotic value. By

normalising this asymptotic value by the difference in cohorts’ means immediately after their

isolation one obtains an unbiased estimation of the proportion of population variance that is

explained by the stable component R2
a
, while the mean convergence time τT measures the time-

scale of unstable component dynamics. This key insight stems from perceiving any cell popula-

tion as a mixture of many independent subpopulations, each with a characteristic mean

expression level, that is fixed yet distributed among the subpopulations. Under these assump-

tions, the population variance is equated to the sum of the variance of the subpopulations

Table 2. Overview of the Modelling Scenarios tested, with a description of how parameters R2
a

and τT were set in

the two biological populations, and the resulting number of parameters that are fitted. As discussed in the text,

parameter δ0 were fitted separately for each experiment.

Scenario Description # Parameters Fitted

1 R2
a

and τT have the same values in the two biological populations 8

2 R2
a

may have different values for each biological population, but τT has the same

value

9

3 Both R2
a

and τT may have different values for each biological population 10

4 Each experiment was fitted independently 18

https://doi.org/10.1371/journal.pcbi.1007910.t002
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means, which embodies the stable component of variation, and the variance of the expression

level within the subpopulations, which represents the unstable component.

At first sight, the stable and unstable components of expression variation, as formulated

here, are analogous to what Huang [10] referred to as population and temporal noise, respec-

tively. However, this analogy is not straightforward. Huang’s definition of population noise

precludes, by construction, any underlying genetic and stable epigenetic mechanisms. In con-

trast, the stable component, as defined here, is a statement about the dynamics of variation

and is silent about mechanism. We believe that the terms stable and unstable components are

not only intuitive but convey a more precise description of variation in terms of its temporal

dynamics. The mechanistic bases of these components remain a matter for further analysis.

Putative mechanisms underlying the stable component include genetic variation and non-vol-

atile epigenetic traits [10, 42]. In turn, the unstable component may be explained by noise in

gene expression [9, 10], transient metastable epigenetic variants [10, 42] or noise in the parti-

tioning of cellular contents during cytokinesis [43]. Stable gene expression variants, which

would be part of stable component of variation, are expected to be pervasive, since differentia-

tion stages, cell lineages and cell types are hallmarks of multicellular organisms [25, 26]. In

spite of this expectation, most quantitative approaches to expression variation in cells in the

past have focused on noise in gene expression [4, 7, 19, 21, 23, 24].

Table 3. Estimates for the parameters of the populations obtained by fitting the data on ΔH,L(t), based on the different modelling scenarios under consideration.

The results are presented in terms of ΔAICc, the difference between the value of the AIC (corrected for small sample size; see Materials and methods) of each scenario and

scenario 1. Modelling scenarios with lower values of ΔAICc provide a more parsimonious explanation for the data.

Fitting ΔH,L(t)

Scenario SS Residuals Population Exp. # δ0 R2
a

(%) τT (h) ΔAICc

1 0.103 Polyclonal 1 0.55 61 32 0.0

2 0.62

3 0.63

Marilyn 1 0.24

2 0.29

3 0.26

2 0.028 Polyclonal 1 0.52 71 32 -40.5

2 0.58

3 0.59

Marilyn 1 0.37 17

2 0.40

3 0.37

3 0.025 Polyclonal 1 0.51 59 75 -39.6

2 0.57

3 0.58

Marilyn 1 0.37 24 24

2 0.41

3 0.38

4 0.015 Polyclonal 1 0.50 22 199 2.2

2 0.57 67 46

3 0.57 0 249

Marilyn 1 0.40 4 32

2 0.39 40 16

3 0.37 25 27

https://doi.org/10.1371/journal.pcbi.1007910.t003
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Measuring the extent to which selected cohorts of cells can restore the full complexity of the

population from which they were sorted is an intuitive approach to analyse the heterogeneity

of a population. This basic intuition motivated the experimental design used in several reports

[14, 16–18, 44], in which the stable and unstable components of variation were evoked and uti-

lised in an informal way. The capacity of cohorts to restore totally or partially the distribution

of the original population has often been interpreted and discussed qualitatively, based on the

visual inspection of raw flow cytometry histograms or of summary data time series. The pres-

ent report advanced beyond such “half-full / half-empty glass” interpretations of data by con-

tributing a rigorous quantitative method to analyse these kind of sorted cohort experiments

based on the estimation of the two parameters, R2
a

and τT, that encapsulate respectively the het-

erogeneity and the dynamics of the expression variation.

The method has limitations and constraints since it was tailored to the analysis of long-

tailed unimodal expression distributions characteristic of most constitutive proteins, such as

the T cell receptor. Applying this method requires conforming to the model assumptions and

also some caution with the sampling procedures, like any other inference method. The ques-

tion of how relaxing the assumptions affects the theoretical results, such as the convergence of

OH,L(t) to R2
a
, as well as the accuracy of estimates, deserves a systematic analysis that is beyond

our present scope. A preliminary simulation analysis indicates that the equality OH;Lð1Þ ¼ R2
a

may be fairly robust to mild violations of model assumptions. This asymptotic equality seems

to hold if one assumes a narrow distributed sub-population variance (s2
W), correlated or

uncorrelated with the sub-population mean, as well as if one takes a subpopulation means dis-

tribution with a different shape, provided that the full distribution is approximately normal in

logarithmic scale (S1 Text section E). The method may be repurposed to deal with multimodal

expression distributions and multiple time scales (e.g. stable, slow and rapid variation dynam-

ics) by modelling the full population as hierarchical mixture of sub-populations and allowing

cells to flow between sub-populations. The additional complexity will demand specifying non-

trivial assumptions about the structure of the cell flow function. At present, the population

model assumes that the sub-populations are independent and at fixed density, making it espe-

cially suited to analyse the expression variation in the abundant quiescent cell populations and

tissues of multicellular organisms. The values of R2
a

and τT estimated in proliferating cells will

reflect not only cell-intrinsic stable and unstable variation but also differential fitness effects

and noise in cell content partitioning upon cytokinesis [43]. The aggregate contribution of

these confounding factors can be empirically quantified by comparing the R2
a

and τT values for

the same cell types under proliferating and quiescent conditions.

The analysis method is grounded on a stochastic modelling framework. The protein expres-

sion levels in a single cell are described as very simple stochastic processes, based on [29], in

which the instantaneous protein production rate (captured by variable zt) fluctuates generating

a stationary log-normal distribution of expression levels in each subpopulation. Protein

expression has been modelled by others considering transcriptional burst dynamics that can

be shown to generate discrete numbers of transcripts following a negative binomial distribu-

tion. Although transcript copy number distributions are generally assumed to be described by

a negative binomial distribution at any range of expression levels, they are well-approximated

by a log-normal distribution at high copy numbers per cell [45]. Therefore the log-normal

approximation underlying the dynamics of zt is justified by the observation that the transcripts

encoding the TCR α and β chains are among the most abundant in the cell [46]. This model of

the single cell expression dynamics was used to simulate a population formalised as a large

mixture of independent subpopulations. By applying the equation for partitioning the variance

to this mixture model, the analysis based on log-transformed values emerged as the best
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approach, since in this case the contributions due to the stable and unstable components are

additive, greatly simplifying inference. This is particularly relevant for flow cytometry data,

which is typically analysed in a logarithmic scale. It is interesting to note that [18] also relied

on log-transformed values for quantification, based on the analysis of time-series of expression

levels in individual cells.

An important result here is that the rigorous unbiased estimation of R2
a

can be done based

on a time series of normalised measurements of the difference between the means of log-trans-

formed expression levels in isolated cohorts. The normalisation by the value immediately after

sorting is a critical part of the inference procedure. A similar normalisation by the initial value

was used by Singh et al. [32] to analyse the temporal evolution of the squared coefficient of var-

iation of a single population, under a model that assumed that the observed variation was

completely due to noise in gene expression. Using this type of analysis in settings of transcrip-

tion inhibition, these authors [32] assessed whether noise in mRNA production and degrada-

tion or promoter activity fluctuations contribute to noise in protein expression. The

normalisation of the differences by their initial value (t = 0) in the present work formalises the

definition of how much of the initial difference, introduced by the process of sorting by design,

remains at later times (function O(t)). Hence, a key requirement is that the isolated cohorts

being compared have different means just after sorting. This strongly argues to using high and

low expressors as the basis for quantification, in order to maximise the measurement resolu-

tion. In practice, one has to manage a tradeoff between how extreme are the expression levels

(to increase resolution and dynamic range of the readout) and how many cells are contained

in the cohorts (sample size). One cannot overstate the absolute requirement for an adequate

experimental design that guarantees independent measurements of the expression levels to

sort the high and low expressors and to quantify their expression means at t = 0 and subse-

quent time points. If the measurement errors of the sorting and of the quantifications are not

uncorrelated, the statistical effect of regression to the mean will lead to inaccurate under-esti-

mates of both R2
a

and τT. In the analysis of the TCR expression we relied on fresh re-staining of

cultured cells and the independent reacquisition of the TCR intensity measurements after sort-

ing. Ideally, different TCR labels (e.g. antibodies to different epitopes) should be used to sort

and to quantify the cellular expression. If experimental limitations preclude the independence

of sorting and quantification measurements, the effect of regression to the mean should be

part of the data analysis.

The estimation based on the mean expression levels broadens the range of applications. It is

often argued that the standard experimental techniques that measure bulk expression are obso-

lete in the context of the studies of gene expression noise, because their population-averaged

readouts mask cell heterogeneity (see, for example, [10, 47]). The present analysis framework

enables to use these techniques, as one may combine the isolation of cells (the only step requir-

ing the analysis at the single-cell level), with population-averaged readouts to quantify R2
a

and

τT. The function Δ(t), which is at the core of the estimation process, can be approximated as

the logarithm of the fold-ratio between the raw mean values of the two populations. In theory,

by measuring R2
a

and the full population variance (s2
T), one could estimate the actual values of

s2
W and s2

a
in Eq 13. This would allow one to compare the values of s2

W and s2
a

in different bio-

logical populations. Also, the variances of the isolated cohorts can be further informative,

allowing the estimation of the ratio between the absolute values of the contribution of the sta-

ble component in the isolated cohort and in the starting population. However, the estimate

obtained in this way is biased, under-estimating the true value by up to 20%. Consequently, if

an estimate of this ratio is needed, we suggest a simulation-based approach.
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Empowered by the quantitative framework, we analysed the variation in the expression lev-

els of the T-cell receptor (TCR) in mouse CD4+ T cells. The variation in the expression levels

of some membrane receptors of T cells, such as CD5 [48–50] and CD127 [51] shows some sta-

ble component, whereas the expression of IL-4 and IL-10 is unstable and volatile [13, 15].

With the increasing availability of single cell genomics, proteomics and metabolomics tech-

niques there is accumulating evidence that T cell populations that hitherto were perceived as

homogeneous are in fact complex mixture of cell types and cell states, which may be reversible

and transient, raising the issue of stability and dynamics. From a practical perspective, differ-

ent mouse models are available with different genetic diversity in the TCR loci, which gives a

handle to tease apart genetic and non-genetic components of variation. Hence, in our analysis

of TCR expression levels we studied a genetically heterogeneous polyclonal population, and

also a particular isogenic population, from Marilyn TCR transgenic mouse [27] with Rag2-

deficient background. These two populations display distinct variances of the TCR levels that

are, not surprisingly, positively associated with the genetic TCR diversity. We asked whether

these two populations could be described by equal or different values of R2
a

and τT and found

that the most parsimonious explanation for the data was a model where only one of these

parameters differs. The model with different τT and the same value of R2
a

performed marginally

better based on the AIC. However, the point estimate of the characteristic time of the poly-

clonal population in this scenario was about 20 days, which is unreasonably uncertain given

the implied extrapolation beyond the experimental observation time of 96 hours. Furthermore,

even if long time scales have been described for the restoration of a bimodal population distri-

bution from selected unimodal cohorts (e.g. over 30 days in [18, 44]), the scenario of very dis-

tinct τT values for wildtype and transgenic populations is biologically unsound. This scenario

requires that the expression of transgenic TCR would differ from natural TCR expression in

terms of the protein turnover rate β as well as noise in gene expression, such that the same R2
a

could be present in populations with markedly different variances (Fig 8). Therefore, based on

these statistical and biological considerations we rejected this scenario. We concluded in

favour of the scenario in which the TCR expression fluctuates with a characteristic time of 32

hours in the both populations, which differ in the values of R2
a
, the polyclonal having R2

a
¼

71% and monoclonal Marilyn having R2
a
¼ 17%. The relatively small yet not negligible value

of R2
a

obtained for the latter population may be particular and not necessarily generalisable to

other TCR-transgenic populations. It is worth mentioning that the analysis of another such

TCR transgenic population led to a higher R2
a

value [52], suggesting that transgenic popula-

tions, which are known to display different variance of the TCR levels (e.g. [36]), may also dif-

fer in the extent of the stable component of variance.

The capacity to analyse the variation in TCR expression validates experimentally the theo-

retically-designed methodology. We could quantify the two key parameters in the two cell pop-

ulations, implying that the methodology has enough power to resolve the stable and unstable

components of variance even when the unimodal distribution of interest is remarkably

narrow.

Beyond this key methodological result, what do the actual estimates of R2
a

and τT tell about

phenotypic variation in TCR expression?

High and low expressors were maintained in vitro for as long as possible in the absence of

any stimulation thus precluding cell division. Using this setup, we focused on cell-intrinsic

components only, and avoiding the above mentioned complications arising from cell division.

As a consequence of this choice, the present data do not exclude the possibility that signals

arising from the intermittent stimulus from the antigen-presenting cells in the in vivo environ-

ment may change the values of both R2
a

or τT for the populations tested. Also, cell division is
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expected to decrease the timescale of the fluctuations in a twofold manner. First, protein dilu-

tion into the daughter cells may effectively reduce the value of β, even if yeast studies indicate

that protein levels are remarkably constant if corrected for cellular volume [53]. Second, cell

division may affect the stability of epigenetic modifications facilitating the transitions between

chromatin states or bistable transcriptional switches that affect quantitatively TCR expression

in this way reducing the effective τT. A similar point was made in a study [54] of induced plu-

ripotent stem cells. These cells maintained a memory of transcriptional and epigenetic signa-

tures indicative of the cell of origin that vanished with sequential passages. Hanna et al. [55]

reported a similar impact of cell division itself. Furthermore, cell division and generation time

variability may introduce cell-extrinsic deformations of the expression distribution by differ-

ential selection of lineages (see [56] for a theoretical analysis). These potential peculiarities of

the experimental design notwithstanding, the estimates of R2
a

and τT are to our knowledge the

first reported values and therefore interpreting the meaning of these values requires indirect

comparison with other estimates.

The characteristic time of the variation in protein expression represents a transient memory

of expression levels [7]. Various studies have quantified the dynamics of fluctuations in expres-

sion levels of various molecules, reporting characteristic times that range from hours [7, 12] to

days and weeks [14, 16–18, 44]. In studies quantifying the dynamics of the percentage of T

cells expressing cytokines [13, 15], the effective timescale was estimated to be about 70 hours

for the cytokines IL-10 [13] and IL-4 [15], which was linked to the slow dynamics of chromatin

remodelling [13, 15]. The longer time scales were systematically obtained in scenarios with cell

division and that involved the restoration of a multimodal distribution of expression levels

from biased cohorts. The dynamics of multimodal distributions, in which cells switch between

overtly distinct subpopulations, may correspond to transitions between cellular states. These

For the unimodal TCR expression, we estimated an effective timescale of 32 hours, in the

absence of cell division. This timescale is shorter than that necessary to restore a full multi-

modal distribution from extremely biased cohorts [18, 44]. The TCR protein complex is argu-

ably one of the most complex receptors in terms of its composition, trafficking and regulation.

In quiescent cells, such as the naive cells analysed here, it is continuously recycled between the

plasma membrane and intracellular membranes with a fast rate of less than an hour. The TCR

in the ensemble of these two pools has a slow turnover rate. The treatment with protein synthe-

sis inhibitor up to 12 hours led only to modest changes in expression levels [57], suggesting

that βmight be greater than 12 hours. However, this estimate is potentially problematic, since

this treatment may alter the regulation of the TCR complex levels, as it may up-regulate the

expression of the mRNA encoding its z chain sub-unit [58]. Sousa and Carneiro [59] estimated

the baseline TCR turnover in an human T cell line by fitting the dynamics of the mean upon

short-term stimulation, and found a value for β of 15 hours. Both values [57, 59] are compati-

ble with the effective timescale estimated here, which lumps protein stability and the auto-cor-

relation time of the rate of protein production, and suggest that β is of the same order of

magnitude as τT in the case of the TCR.

The different components that may underly the stable variation in TCR expression levels

are systematically addressed in Fig 9. The mean TCR level has been shown to be distributed

among the Vβ-family subsets in CD4 as well as CD8 human T cell populations [37], under con-

ditions in which there was a strong correlation with cell size. Given that the high and low

expressors cohorts in our experiments had virtually the same size distribution as assessed by

the respective forward scatter signal, it is likely that part of the stable variance in TCR expres-

sion is in fact due to the genetic diversity at the TCR locus. The question is whether genetic

diversity ultimately explains all the stable variation. The estimate of a positive value for R2
a

in
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the nominally monoclonal TCR transgenic population suggests that non-genetic variation

may contribute to stable differences in expression levels of the TCR among cells. This might be

a particular feature of TCR-transgenic populations, as their relationship to the actual clones in

a polyclonal T cell population is not trivial. The specific mechanism that would mediate such

non-genetic variation is unclear at present. We speculate that the stable component in this sys-

tem may arise from a myriad of chromatin modifications in the form of “molecular switches”,

which would affect, directly or indirectly, the expression of the TCR. This speculation is

inspired on theoretical studies [13, 60], which predicted these marks to be stable once fully

established, but also potentially variable among cells. In terms of the full range of modifications

affecting expression of the TCR in cis and in trans, some could be present, while others could

be absent in each individual cell in a stochastic yet stable pattern of modifications [13, 60]. In

those cells in which the balance of modifications happens to be tilted towards those inducing

expression, levels of the TCR would be higher than average, while in cells with lower TCR lev-

els this balance would be shifted in the direction of those leading to decreased expression. Sim-

ilar considerations could be made to any epigenetic variants in any of the vast number of

transcription factors and regulatory proteins that control the TCR complex expression. Finally,

in this enumeration of the causes of stable variation in TCR levels, it is worth noting that

despite we have been referring to the population of T cells in Marilyn transgenic mice as

“monoclonal” throughout this article, the cells are not a T cell clone derived from a mature T

Fig 9. Overview of the components of TCR expression levels variation in naive CD4 T cells from monoclonal Marilyn transgenic and polyclonal

wildtype mice. The first partition of the variance in each population corresponds to the stable and unstable components experimentally estimated in this

article. The further partitions of the stable component are indicative of the putative genetic and epigenetic causes of the variation. The percentages represent

the expected proportions of the variance in log transformed TCR expression levels explained by the indicated components. The values in brackets in the

diagram of the monoclonal population were normalised by the variance in the polyclonal population. The values in black are experimental estimations. The

values in grey italic are guesses obtained by assuming that the variance explained by somatic chimerism and/or epigenetics is the same in polyclonal and

transgenic populations.

https://doi.org/10.1371/journal.pcbi.1007910.g009
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cell. Instead, they are continuously differentiating in the thymus and being exported to circula-

tion. One cannot rule out that these T cells or their bone marrow and thymic precursors

underwent sporadic somatic mutations in any of those genes affecting TCR complex expres-

sion. The genetic mosaicism of somatic tissues has been well documented (reviewed in [61])

following the advent of single cell sequencing, and thus, one must envisage the possibility that

part of the stable variation observed in transgenic TCR expression is due to bone fide genetic

variation. Simple back of the envelop calculations suggest that epigenetic variants and/or

mutational mosaicism outside the TCR locus may represent more than 1/6 of the stable vari-

ance in the wild type CD4 T cell. Assuming that epigenetics and/or mosaicism explain the

same amount variance in both monoclonal and polyclonal populations, that all the stable vari-

ance in the former (which corresponds to 17% relative to monoclonal and 8% relative to poly-

clonal variances) is explained by these two processes and that the stable variance in the latter is

explained by these two processes and by TCR diversity, we have that in the polyclonal popula-

tion 8/71 of the stable variance is explained by epigenetics/mosaicism and 63/71 is explained

by genetic TCR diversity (see Fig 9).

Our quantitative framework makes a connection between systems biology, in particular

gene expression noise [9], and quantitative genetics [62]. In both domains, decomposing

the variance, or another measure of variation, have been instrumental in studying the prop-

erties of different biological systems (see, for example, [42]). The notion of intrinsic and

extrinsic noise put forward by Elowitz and colleagues [4, 19] is based on decomposing the

coefficient of variation of expression levels into these two noise sources. Others have

focused on either generalising this distinction or developing new decompositions [21, 23,

24, 63]. In fact, these approaches may be combined with the framework developed here, to

further partition the unstable component, for example, into intrinsic and extrinsic noise.

Likewise, in connection with quantitative genetics, parameter R2
a

can be interpreted as the

“heritability” in expression levels of a population. This arises from an analogy with the

decomposition of phenotypic variation into a contribution from additive genetic variation

and another due to environment (see, for example, [28, 62]), neglecting non-additive

genetic variation. At present, this constitutes a mere analogy, since R2
a

is defined even in the

absence of cell division.

Hitherto, the studies on the phenotypic variation in gene expression levels at the individual

cell level have relied experimentally on timelapse imaging of single cells or on population snap-

shots using single-cell resolution techniques such as flow cytometry, qPCR, RNAseq or Cytof.

The quantitative framework and methodology proposed here, relying on estimates of the

mean of the expression levels in appropriately selected cohorts, enables studying the sources

and dynamics of the variation in cellular expression levels by conjugating a single step of sort-

ing with the full gamut of transcriptomic, proteomic and metabolomic technologies available

to measure bulk expression. This opens new prospects for studying quantitative traits and

responses in heterogeneous cell populations. Furthermore, the model for expression levels

considered here can be further extended to incorporate, for example, the gene regulatory net-

works regulating cell differentiation (e.g. [64]). Finally, the sophistication of DNA recording-

based methods to account for past fluctuations in the transcript levels of a cell or its lineage

will generate massive sets of single-cell transcriptomics data points suitable for decomposition

into stable and unstable components [65]. In summary, we have put forward a solid theoretical

framework to dissect the components of variation in expression levels according to their stabil-

ity and dynamics, which enables the further analysis of how different molecular mechanisms

may modulate each component.
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Materials and methods

Ethics statement

This research project was ethically reviewed and approved by the Ethics Committee of the

Instituto Gulbenkian de Ciência, and by the Portuguese National Entity that regulates the use

of laboratory animals (DGAV—Direção Geral de Alimentação e Veterinária (license reference:

0421/000/000/2013). All experiments conducted on animals followed the Portuguese

(Decreto-Lei number 113/2013) and European (Directive 2010/63/EU) legislations, concern-

ing housing, husbandry and animal welfare.

Notation

The function log(�) denotes the natural logarithm, and random variables are represented as

bold symbols, as in x. We use E½x� to denote the expected value of a random variable x, and

V½x� the variance. The notation z � LN ðm; sÞ represents a random variable z following a log-

normal distribution with parameters μ and σ, having therefore the probability density func-

tion:

f ðzÞ ¼
1
ffiffiffiffiffiffi
2p
p

s z
exp �

1

2s2
ðlog ðzÞ � mÞ2

� �

ð24Þ

Numerical simulations

Simulations of the model based on stochastic differential equations were performed using cus-

tom software written in C++, based on the GNU Scientific Library (http://www.gnu.org/

software/gsl/). For a given value of the parameters τ and β, the stochastic model (Eqs 4 and 5)

was simulated, using the Brent-Dekker method (GNU Scientific Library) to adjust the value of

σ so as to obtain the desired value of σW.

Simulations of cell sorting experiments to isolate appropriate cohorts were done using an

initial population with σT = 0.3, having 1.2 × 106 cells and 2 × 104 sub-populations, with the

number of cells per sub-population following a multinomial distribution. From the starting

population, 10% of cells were isolated. As a simple approximation of an experimental setting,

each isolated cohort was divided into 3 replicates, and simulated for a given period of time,

with snapshots of each replicate being collected at equally spaced times.

Data analysis, fitting and model selection

Numerical analysis was conducted using MATLAB (Mathworks). The exponential model was

fitted to the data by non-linear least squares. To study the relationship between τT and parame-

ters β and τ, simulations were ran for several combinations of values of (R2
a
, β, τ). The values of

τT were estimated by fitting the exponential model. Fitting the ensemble of the experimental

data was done by equally weighting each experiment, based on the number of data points per

experiment. Values of the Akaike Information Criterion (AIC) were corrected for small sample

size, as highlighted in section 2.4 of ref. [41], and include the residual variance as an additional

effective parameter being estimated for each model. Confidence intervals (95%) were obtained

by bootstrapping each experiment separately, then fitting the ensemble of the data.

Mice

C57BL6/J and B6.Rag2−/− mice were obtained from the Jackson Laboratory. Marilyn mice [27]

were kindly provided by Olivier Lantz (Institut Curie, France), and bred with B6.Rag2−/− to
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produce Marilyn.Rag2−/−. Mice were bred and maintained under specific pathogen free condi-

tions at the animal house of the Instituto Gulbenkian de Ciência, and used for experiments

with ages between 8 and 12 weeks.

Antibodies and flow cytometry

Flow cytometry was performed using a Beckman-Coulter CyAN ADP. Fc receptors were

always blocked prior to staining, by incubation with FcBlock (2.4G2, produced in-house).

Cells were stained at 4˚C, in ice-cold buffer with PBS, 5% fetal bovine serum (PAA), and,

except in the case of sorting, with 0.1% sodium azide.

Monoclonal antibodies produced in-house used were: anti-TCR-Cβ (H57-597), anti-CD4

(GK1.5), anti-CD8 (YTS169.4), anti-CD25 (PC61), anti-CD45RB (16A), anti-CD62L (MEL-

14), anti-B220 (RA3-6B2), anti-MHC-II (M5/114), anti-Mac1 M1/70), anti-CD3� (2C11),

anti-CD3� (2C11). Commercial antibodies were: anti-CD49b (pan-NK, DX5, BD), anti-CD4

(RM4-5, BD), anti-CD44 (MEL-14, eBioscience), anti-TCRγδ (GL3; BD). Biotinylated anti-

bodies were further labeled with PE-Streptavidin (BD).

Cell sorting and in vitro cultures

Single-cell suspensions were prepared from lymph nodes, and also spleens in the case of Mari-

lyn.Rag2−/− animals (due to limited number of cells), by passing cells through a nylon mesh.

Cohorts of cells were sorted according to the TCR levels on a FACSAria (BD), using a strategy

based on negative selection of CD4+ T cells. Briefly, cells were stained for TCR (anti-TCR-Cβ)

and lineage markers not expressed by naive CD4+ T cells, and then lineage- cells falling within

the desired TCR gates (illustrated in Fig 6 and S1 Text section H) were sorted. A polyclonal

naive population was sorted as CD45RBhigh, lineage- (CD8, pan-NK, B220, TCRγδ and CD25)

cells, while Marilyn cells were sorted as CD62L+, lineage- (B220, CD11c, pan-NK, Mac1,

MHC-II). The use of CD62L as an alternative marker of naive cells allows for a more efficient

sorting (due to a slow loss in the CD45RB signal throughout the sorting), given the limited

number of cells, based on the fact that the vast majority of Marilyn cells retain a naive pheno-

type [27]. Before each sorting for Marilyn cells, the gating for CD62L+Lineage- cells, when ana-

lysed in a control sample also labeled for CD4, includes more than 80% of TCR+CD4+ Marilyn

cells. Purities of the sorted populations were assessed by staining aliquots of the sorted popula-

tions for CD4 expression, were typically greater than 96%.

After sorting, T cells were cultured in flat-bottom 96-well plates (50 × 103 cells per well), in

RPMI (Invitrogen), 10% fetal bovine serum (PAA), 1% Sodium Pyruvate (Gibco), penicillin/

streptomycin (Gibco), gentamycin (Sigma), 50μM 2-ME (Gibco), in an incubator at 37˚C,

with 5% CO2.

TCR levels were quantified by staining, under optimal, saturating conditions, with anti-

TCRCβ antibody, which binds to the constant region of one of the sub-units of the TCR (see,

for example, [66]). Cells maintained in culture were analysed at different time-points by re-

staining the TCR, using the same antibody anti-TCRCβ (clone and fluorochrome) as used for

the sorting. In each time-point, 3 replicates (wells) of each sorted population were analysed.

The fresh re-staining of the cells is essential to produce measurements of the TCR levels that

are independent and uncorrelated with the sorting measurements, eliminating biases expected

from the statistical effect of regression to the mean. Also, it avoids additional cell stress and

death arising from treatment of cells with acidic buffers to remove antibody bound (for exam-

ple, [67]). In each experiment, an additional population (control) was sorted in parallel, keep-

ing the same gates used for all expressors, but without staining for the TCR, as a control for the

impact of this staining. In each time-point, TCR levels of the control population were
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compared against those of “all expressors”, confirming that the staining for the sorting does

not induce massive changes in TCR expression levels.

Data were analysed using FlowJo 8.8.7 (Tree Star Inc.). Cells gated on forward-scatter and

side-scatter, live cells (propidium iodide negative) and CD4+ cells. For the analysis of TCR lev-

els, cells were further gated on CD62L+ cells, to reduce experimental variation in TCR levels.

Percentages of CD62L- cells were always lower than 20% in early time-points (up to 48 hours),

and similar to those from control cells, arguing against impact of staining for the TCR in order

to sort cells. Gated data was exported as text files and analysed in MATLAB (Mathworks)

using custom code.

Supporting information

S1 Text. All the supporting information is provided in a single document with the following

sections: A- Detailed derivation of the mean and variance of the full population. B- Basic prop-

erties of the logarithmic transformation. C- Model of protein expression in a cell population

for untransformed values. D- The asymptotic difference between the means of log-trans-

formed expression levels in two distinct cohorts is given by R2
a
. E- Robustness of the equality

OH;Lð1Þ ¼ R2
a

relative to model assumptions. F- Dynamics of the mean of log-transformed

values. G-Analysis of the variances of isolated cohorts. H- Forward scatter distributions in

sorted cohorts of high and low expressors.

(PDF)
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