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Mammalian platelets, devoid of nuclei, are the smallest cells in the blood stream.

They are essential for hemostasis, but also transmit cell signals that are necessary

for regenerative and generative processes such as inflammation, immunity and tissue

repair. In particular, in malignancies they are also associated with cell proliferation,

angiogenesis, and epithelial-mesenchymal transition. Platelets promote metastasis and

resistance to anti-tumor treatment. However, fundamental principles of the interaction

between them and target cells within tumors are complex and still quite obscure.

When injected into animals or circulating in the blood of cancer patients, cancer cells

ligate platelets in a timely manner closely related to platelet activation either by direct

contact or by cell-derived substances or microvesicles. In this context, a large number of

different surface molecules and transduction mechanisms have been identified, although

the results are sometimes species-specific and not always valid to humans. In this

mini-review, we briefly summarize the current knowledge on the role of the direct

and indirect platelet-tumor interaction for single steps of the metastatic cascade and

specifically focus on the functional role of P-selectin.
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INTRODUCTION

Hematogenous metastasis formation of solid human tumors is a multi-step, complex process
(1–4) that can be divided into five sequential phases (see below) beginning with distinct
changes in individual tumor cells within the bulk primary tumor. Controlled by various tumor
cell-intrinsic and external (environmental) factors, future metastatic cells acquire the ability to
leave the primary tumor through loosening their cell-cell and cell-matrix contacts, suppressing
intrinsic pro-apoptotic stimuli (anoikis suppression), re-arranging their cytoskeleton in the sense
of an epithelial-mesenchymal transition (EMT), and acquiring migratory capacity. By releasing
matrix-degrading substances, the future metastatic tumor cells, either alone or as cell clusters
invade the neighboring stroma and finally enter micro-vessels of the primary tumor (intravasation).
Within the bloodstream, the so-called circulating tumor cells (CTCs) can survive for only a
few hours due to hostile environmental conditions (shear stress, natural killer (NK) cell attack,
apoptotic stimuli due to insufficient anoikis suppression); therefore, they must protect themselves
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or leave the vascular system as efficiently as possible
(extravasation) in order to be eligible for the formation of
a later metastasis. For extravasation, tumor cells must overcome
the endothelial barrier of the blood vessels, either after dynamic
adhesion out of the blood flow (active) or after getting stuck
in micro-vessels whose diameters are too small (passive). After
leaving the vascular system, these disseminated tumor cells
(DTCs) can remain as single cells or small cell clusters for highly
variable periods of time (dormancy) before they proliferate again,
possibly triggered by the reversal of EMT called mesenchymal-
epithelial transition (MET), and thus colonize the foreign stroma
to form a clinically manifest metastasis.

The crucial role of tumor cell-mediated platelet activation for
promoting different steps of the metastatic cascade, particularly
for those taking place within the bloodstream, has extensively
been demonstrated and reviewed during the past decade, e.g.,
(5–13). Nevertheless, anti-coagulant therapy is still not routinely
implemented in the treatment of cancer patients (13). Therefore,
it is the time to ask which aspects of platelet-tumor interaction
have been underestimated so far and whether the common
preclinical models for studying the effects of platelets on
metastasis formation are really clinically meaningful. This mini-
review will briefly summarize the influence of platelets on cancer
cell growth in general and on the single steps of the metastasis
cascade in particular, taking into account those steps inside and
outside the bloodstream, the latter of which have been described
less frequently. Moreover, we will specifically deal with the
role of P-selectin for the platelet-tumor interaction, highlighting
recent advances in the molecular dissection of species-specific
differences in the tumor/P-selectin interaction.

PLATELET-TUMOR CELL INTERACTION
DURING THE METASTATIC CASCADE

There is a number of excellent reviews on the complex topic
of platelet-tumor-cell interaction available (5, 8, 14–16), which
we warmly recommend and at the same time apologize to the
authors of a large number of other brilliant studies that we cannot
include in this mini-review due to lack of space.

Metastasis is arguably a question of platelets. Most naturally
isolated and non-manipulated primary cell lines of both
malignant and benign origin can in vitro only grow in
presence of a growth-promoting supplement, usually serum that
contains important active components from platelets. Lysates of
platelets and also growth-promoting substances isolated from
platelets, such as epidermal growth factor (EGF), fibroblast
growth factor (FGF), transforming growth factor β (TGF-ß) or
vascular endothelial growth factor A (VEGF-A) can promote
and maintain the growth of both tumor cells and primary cells
in vitro (17–19). This function is mediated by specific receptor
tyrosine kinases (RTKs) in the cells. In contrast to serum, platelet-
free blood plasma is not able to promote the growth of cells
in culture (20). In vivo, therefore, growth signaling must either
be mediated by growth-promoting substances synthesized in
the growing cells themselves or must be replaced by functional
changes in the relevant signaling cascades or by the uptake of

growth-promoting substances via some kind of mechanism–for
instance from platelets. Since proliferation in most cell lines
in vitro depends on the above-mentioned supplementation by
platelet-derived agents, the question arises whether proliferating
cells in vivo predominantly also require a constant external
supply of growth-promoting substances and may therefore
largely depend on platelet-derived supplements for proliferation.
In any case, it is clear that due to unclear underlying relationships,
the validity of experimental results obtained in vitro must be
assessed with caution before they can be accepted as valid also
for the in vivo situation.

156 years ago, Armand Trousseau documented that venous
thromboembolism (VTE) “phlegmatia alba dolens” is frequently
associated with malignant tumors (21, 22). VTE is always
associated with platelet activation. Markers of platelet activation
are frequently seen in the plasma of cancer patients (23, 24).
Tumor microvesicles shed into the blood are able to activate
platelets and thereby to initiate blood clotting (25). Half a
century ago, Gasic et al. (26) described on the basis of animal
experiments that a pharmaceutical reduction of the platelet count
leads to a reduction in the number of metastases, drawing
attention to platelets as a new option for targeting the problem of
metastasis formation. The positive correlation between platelet
count and tumor progression is also well-known in clinical
oncology (7, 27, 28). Tumors activate platelets and facilitate
formation of microclots indirectly via soluble activators, possibly
contained in tumor-derived microparticles (MPs) (5, 29), or
through direct contact with platelets (30, 31). Platelet activation
can lead to thrombosis and VTE (22). Activated platelets
adhering to tumor cells are of crucial importance in metastasis
formation (5, 15). Blocking this adhesion in experimental
models has been proven to be effective in preventing both
tumor engrafting and metastasis (14, 32, 33). Integrin aIIbß3
(GPIIb/IIIa) and P-Selectin are two of a number of molecules
which have been demonstrated to mediate platelet binding
to human tumor cells, both of which can be blocked by
heparin (8, 34–38).

Platelets are equipped with complete and functional
machineries for protein synthesis and for the control thereof
(39). Obviously, different signaling events may take place
between platelets and target cells, leading to different types of
platelet activation. In addition, platelets are able to transfer
RNA to recipient cells (40) and thus exert signal-dependent
functional influence on them (39). Therefore, it seems likely
that the contact between platelets and tumor cells leads to a
transfer of platelet contents into tumor cells, including different
messenger and microRNAs and growth-promoting factors
(41, 42). Platelets have been demonstrated to be able to take up
tumor RNA from tumor microvesicles (43) and to profoundly
change biological processes in tumor cells, depending on
their own sets of genetic information (41). This information
changes with platelet provenience, genetic disorders or disease
(44). In order to dissect the role of platelets for single steps
of metastasis formation, we will divide the entire process into
five phases (45) (see Figure 1 for illustration of key aspects of
this mini-review):
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FIGURE 1 | Graphical summary of key aspects of tumor-platelet interaction during single steps of the metastatic cascade.
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1. Invasion of the basement membrane and cell migration

In order to invade the surrounding extracellular matrix of the
primary tumor, tumor cells have to modify the extracellular
matrix, including the basement membrane, and migrate through
this matrix to proliferate in the bordering ectopic tissue. A
limited number of studies so far directly show that platelets
are capable of infiltrating pimary tumors so that platelet-tumor
interaction might already take place during this early step of
the metastatic process (46–49). When activated, platelets release
a variety of growth-promoting agents from their α-granules.
Among these are TGF-ß (50, 51), hepatocyte growth factor
(HGF) and platelet-derived growth factor (PDGF) that directly
promote or help to trigger epithelial-mesenchymal transition
(EMT) (52), a crucial process of this first metastatic phase, by
which epithelial cells change morphology toward a mesenchymal
bipolar type and acquire new metabolic and functional (invasive)
capacities (51). In a groundbreaking work, Labelle et al. showed
(10) that the absence of TGF-ß in platelets impairs the ability
of tumor cells to metastasize due to reduced TGF-ß/ Smad
and NF-κB signaling. In order to induce EMT, a tumor cell
apparently has to be in direct physical contact with platelets:
gene expression signatures associated with EMT and tumor
progression were robustly enriched in cells treated with the
platelet pellet, but not in cells treated only with the platelet
releasate. The importance of direct contact between platelets
and tumor cells, also reported in the aforementioned study
by Labelle et al., is supported by observations from electron
microscopy, where the degranulation of platelets, indicating
platelet activation, has proved to be more pronounced in
platelets which have immediate contact with tumor cells than
in platelets which are located at some distance from them
(31, 53). The authors also demonstrated that tumor cells
that have direct contact with platelets can engulf parts of
these. These facts indicate that tumor cells in the first phase
of metastasis depend on at least two signals from platelets
(through direct and indirect tumor/platelet contact), whereby
signal transmission through platelet-cell contact is mandatory for
metastasis formation. Accordingly, a recent study has shown that
direct contact between platelets isolated from advanced gastric
cancer patients and gastric cancer cells particularly induced
migration, invasion, adhesion, and MMP9 expression in the
tumor cells (54).

Interestingly, aggregates of extravasated platelets in invasive
parts of clinical specimens of human pancreatic cancer biopsies
were demonstrated to be associated with markers for the
first steps in EMT, such as increased levels of Snail1 and
reduced/lost E-cadherin (41, 46). Likewise, platelets directly
surrounding primary tumor cells were observed in almost 60%
of a Japanese cohort of HER2-negative breast cancer patients
(biopsy specimens) and platelet-positive tumor cells showed
EMT marker expression (55). Moreover, platelet-derived MPs
have been shown to play an active role in cell invasion by
transferring microRNA. For instance, microRNA-223 delivered
by platelet-derived MPs from NSCLC patients into tumor cells
promote invasion by targeting EPB41L3 inside the tumor cells
(42). Likewise, platelet MPs derived from ovarian cancer patients

promoted EMT and thus migration of epithelial ovarian cancer
cells by microRNA-939 (56).

2. Intravasation into the surrounding vasculature or
lymphatic system

Growing tumors, like all other cells, depend on blood supply.
Pericytes and endothelial cells are important cellular components
of the tumor’s own vasculature. The proliferation of endothelial
cells is dependent on VEGF-A (57). Platelets are the major source
of VEGF-A in the blood stream (58, 59). Interestingly, if isolated
megakaryocytes are added to endothelial cell cultures, endothelial
cell growth can even take place under serum-free culture
conditions, i.e., in absence of other extracellular promoters
of cell proliferation (60). Platelets are obviously important
not only for the proliferation of tumor cells, but also for
normal endothelial cells. However, platelets can react selectively
to different activation stimuli (61), resulting in differentiated
releases of pro- or anti-angiogenic contents from their α-
granules. This circumstance explains the ability of platelets to
either facilitate or suppress vascularization (62). Therefore, the
term “activation” can only be a generic term for a number of finer
differentiable processes.

Metastatic dissemination can happen along two paths:
Hematogenously, typically by entering the venous route,
and along lymphatics. Depending on tumor provenience,
vascularization, surrounding tissue and localization, venous
intravasation can take place actively or passively (63). Cells
having passed EMT are able to pass through the endothelial
layer of tumor vasculature into the vascular lumen. Intravasation
is also in part facilitated by localized and transient TGF-
ß signaling and by the expression of EGF receptors on the
tumor cell (63–65). Platelets are important sources of EGF and
known to be present in and around extravascular tumor tissue
(53) and can thus be presumed to play an active role in this
context. Moreover, activated platelets are a primary source of
lysophosphatidic acid (LPA) (66), a lipid with growth factor-
like signaling properties, which up-regulates the activity of
different matrix metalloproteinases in cancer cells (67). These
factors promote not only the detachment of tumor cells from
the primary site and invasion, but also their enter into the
circulatory system (68).

Platelets are absent in the lymphatic vessels, but may be
present around tumor tissue in the interstitial space, which is
drained through the lymphatic vessels. In case of intravasation
into the lymphatic system (69), EMT, which is normally driven
by platelets, is not mandatory, the epithelial morphology is
usually preserved (70). Instead, a high interstitial (oncotic) fluid
pressure in the tumor has been suggested to promote lymphatic
intravasation of tumor cells (71).

3. Survival in the circulation

Cancer patients are prone to have a significant number of
circulating tumor cells (CTCs) in their blood (72). Such cells
are capable to develop into tumors (73). However, most of the
shed tumor cells that have entered the bloodstream have been
proved to perish, proposedly due to shear stress or attacks by
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immune effector cells (74). Activated platelets form a protective
cloak around CTCs, which is essential for their survival and gives
them the ability to metastasize (8). To form the platelet coating,
CTCs have receptors and ligands able to bind circulating platelets
such as P-selectin ligands (75), whose detailed biochemical
composition has long been recognized to be very diverse (76)
and is still incompletely known. Activated platelets express a
variety of adhesion molecules (8), but P-selectin is one of the
most intensely studied in animal experiments (77) and can be
inhibited by heparin (32). The platelet cloak obviously provides
mechanical protection against shear forces and attacks of the
immune system by high-grade transfer of MHC class I molecules
to the tumor cell surface (27, 78) and by the TGF-ß-GARP-axis
(79). The platelet coating enables CTCs to bind fibrin(ogen) and
attract leukocytes, thereby occasionally forming intravascular
microclots. Most CTCs circulate as single cells, although CTC
clusters have a strongly boosted metastatic potential (80). In
addition, the protective coating of platelets provides growth-
promoting factors that are essential for the proliferation of
tumor cells and tumor vessels. This phase of the metastatic
cascade is also of considerable therapeutic interest. Heparins are
known to block platelet binding to tumor cells and impair the
binding activity of P-selectin (32, 33). They have been shown
to impede malignant progression in cancer patients (81) and
to prevent the development of transplanted or intravascularly
transmitted tumors in experimental mouse models (8, 14, 36,
82, 83). Silva et al. demonstrated in a murine system that
an oversulfated non-anticoagulatory heparan sulfate from an
ascidian is able to disrupt platelet binding to tumors, thereby
preventing metastasis formation (33). This finding suggests
that the above properties may be inherent to a whole group
of glycosaminoglycans.

4. Extravasation from vasculature to secondary organs

In parallel with the intravasation and circulation of tumor cells,
a second, highly complex process takes place: The preparation
of the pre-metastatic niche that is mandatory for successful
extravasation and metastasis (84–87). A small fraction of
the CTCs can in cooperation with cells derived from bone
marrow subsequently extravasate into distant organs that
have been prepared for extravasation forming a pre-metastatic
niche (88). This process is partly driven by tumor-derived
MPs and involves a variety of myeloid cells and progenitor
cells, platelets, immune cells, the preparatory adaptation of
endothelial cells, upregulation of fibronectin, metalloproteinases
and several other molecules and reprogramming of
stromal cells to form a permissive environment for
CTCs (16, 70).

Platelets are known to recruit leukocytes to sites of
inflammation in the vasculature. The endothelial adherence of
platelets is dependent on Integrin aIIbß3 and on P-selectin
(89) and facilitates the formation of metastatic niches. Taken
together, platelets have been shown to stimulate extravasation
(90, 91), for instance by releasing ATP from their dense granules
upon activation, which in turn modulates endothelial junctions
and the endothelial cytoskeleton to induce a breakdown of the
endothelial barrier (92).

5. Colonization at secondary tumor sites

MicroRNAs regulate several processes in metastasis, such as
EMT and stemness of cancer cells (70). In experimental models,
EMT has been found to be accompanied by growth arrest (93).
As metastatic lesions frequently exhibit epithelial characteristics,
and because of known mesenchymal-epithelial transition (MET)
in embryonic tissues, a discussion regarding the necessity of
MET for colonization, the final step in metastasis, emerged.
This discussion produced differentiated results and showed
that lymphatic and hematogenic metastasis must be assessed
differently with regard to EMT/ MET, as EMT is not mandatory
in lymphatic metastasis (70). The role of platelets in colonization
of distant organs other than lymphatic must obviously be seen
separately. The EMT/ MET landscape was nicely discussed by
Jolly et al. (94). In addition, the ability to form blood vessels in
distant organs is important for colonization and depends not only
on VEGF-A but also on PDGF, which are stored in the α-granules
of platelets (95). As the EMT–taking place in primary tumors–
obviously “prepares” tumor cells for several subsequent steps of
the metastatic cascade, in vivo models that circumvent primary
tumor formation (such as the most commonly used intravenous
or intracardiac injection models) neglect crucial parts of the
pathophysiology of metastasis formation (see below).

THE ROLE OF P-SELECTIN FOR THE
PLATELET-TUMOR CELL INTERACTION

Platelets exert their tumor- and metastasis-promoting effects
via membrane components or secreted products, both of
which can be stored in their secretory granules. Among the
membrane components, P-selectin is one of the most intensively
studied mediators of platelet-tumor interaction. Inhibiting
this P-selectin-mediated platelet-tumor interaction by heparin
attenuates tumor cell dissemination in vivo (32). One reason
might be that P-selectin critically contributes to the formation
of the platelet cloak surrounding CTCs, which protects tumor
cells from NK cell attack (27). Furthermore, P-selectin was
supposed to mediate the dynamic interaction of tumor cells
with platelets by initiating tumor cell tethering and rolling,
a process subsequently consolidated into firm adhesion via
GPIIb/IIIa (as suggested by in vitro experiments on immobilized
platelets under shear stress conditions) (96, 97). While P- and
L- (leukocyte) selectin have been shown to synergistically affect
systemic dissemination of tumor cells in vivo, the inhibitory
effect of heparin on this process is due to the blockade of P-
selectin function (77). P-selectin was also shown to be crucially
involved in the release of acid sphingomyelinase from platelets,
which was promoted upon tumor cell binding to the platelets
through p38 MAPK signaling. Released acid sphingomyelinase
in turn was shown to activate integrins on the tumor cell surface
promoting metastasis in vivo (98). Furthermore, P-selectin also
seems to mediate platelet infiltration into tumors through its
cytoplasmic domain binding to talin1, thereby triggering talin1-
mediated activation of αIIbβ3 integrin and hence recruitment of
platelets into tumors (99).
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Importantly, however, there are species-specific differences
in the regulation of P-selectin levels and in the specificity of
P-selectin ligands between mice and men. Pro-inflammatory
stimuli such as TNF-α or IL-1β, which are commonly
systemically up-regulated in the context of cancer (100), further
up-regulate P-selectin mRNA levels in mice (101), but not in
humans. Infusing baboons with E. coli (leading to markedly
elevated plasma TNF-α), increases mRNA levels for E-selectin
but decreases mRNA levels for P-selectin in many organs
(102). The murine Selp gene promoter has canonical binding
sites for NF-κB (p50/p52 heterodimers) and ATF-2 similar
to those in the SELE and Sele genes (103). In contrast,
the human SELP gene promoter lacks these sites (104) and
has, instead, a non-canonical binding site for NF-κB (p50
or p52 homodimers) (105, 106). Replacing the murine Selp
gene promoter with the human promoter leads to higher P-
selectin levels on thrombin-activated platelets (107). Likewise,
SELP transgenic mice also show higher levels of human P-
selectin on activated platelets as compared to the normal (mouse)
P-selectin levels on activated platelets from wildtype mice
(108). These major differences should be carefully considered
when the findings of xenograft experiments using human
tumor cells within a murine organism are extrapolated to the
clinical situation.

Furthermore, not only different P-selectin levels on activated
human vs. murine platelets, but also different ligands at the
tumor cell surface used for binding human vs. murine P-
selectin have to be considered: as reported quite recently, there
is considerably more murine than human P-selectin binding
to human tumor cells particularly when tumor cells express
both canonical selectin ligands, i.e., the glycan epitopes sialyl-
Lewis A and X (sLeA+/X+); there was much less difference
seen with sLeA-/ sLeX+ or sLeA-/ sLeX- cells suggesting that
the sLeA epitope (capping a variety of different carbohydrate
structures) might specifically support murine P-selectin binding
(109). All tested tumor cell lines stemming from a range of
entities shared the ability to bind human and murine P-selectin,
again underlining the crucial importance of P-selectin in the
context of cancer. Interestingly, several tumor cell treatments
aiming at disrupting tumor cell/ P-selectin interaction impaired
human vs. murine P-selectin binding quite differently suggesting
that different ligands are functional for both species (109).
Another dimension of complexity results from the differential
binding and adhesion behavior of human tumor cells to murine
vs. human P-selectin under static and dynamic experimental
conditions, respectively: while all tested human tumor cells
bound human and murine P-selectin under static conditions,
only sLeA+/X+ and sLeX+ cells (but not sLeA-/sLeX- cells) were
able to adhere dynamically on murine P-selectin. Among them,
only those co-expressing PSGL-1 were able to adhere dynamically
on human P-selectin (109). These observations imply that the
ability of human tumor cells to directly interact with platelets
inside the bloodstream (dynamic conditions) or outside the
bloodstream (static conditions) might be remarkably different in
mice and men.

Hence, species-specific differences in both the regulation
of P-selectin levels on platelets as well as P-selectin binding

properties to tumor cells must be considered when extrapolating
data from animal models to humans (107, 109). Furthermore,
most of our knowledge on the importance of platelets for cancer
metastasis stems from experimental metastasis (dissemination)
models, in which tumor cells are usually taken from in vitro
culture for immediate injection into the tail vein or left
ventricle of mice (10, 11, 27, 32, 77). This approach abrogates
the prior selection of the most metastasis-competent tumor
subpopulation, as would be the case within a three-dimensional
primary tumor containing heterogeneous stroma components,
tumor-infiltrating host cells, regions of differential oxygen and
nutrient supply, etc., which all contribute to the selection of
a very small fraction of cells that eventually cause metastases.
Thus, it is highly questionable to which extent the tumor cells
from conventional cell culture (that are used in experimental
metastasis models, i.e., intravenous and intracardiac injection
models) represent the actual phenotype of tumor cells that
would spontaneously detach from a real primary tumor. In
addition, intravenous and intracardiac injection (dissemination)
models apply huge loads of tumors cells as opposed to the
single tumor cells or clusters of few cells that would normally
travel through the blood stream during spontaneous metastasis
formation, which might imply additional limitations of the very
common dissemination models. In the few available studies
using spontaneousmetastasis xenograft mousemodels, P-selectin
deficiency alone did not reduce metastasis formation to the
lung (110) or intraperitoneally (111). It might therefore well
be that some of the previously reported functional in vivo
experiments on the platelet-tumor interaction during metastasis
formation do not really apply to the human situation. This
difference might explain why, despite tremendous efforts during
the past decades, anti-coagulant therapy is still not routinely
used for preventing metastasis in cancer patients. A great step
forward would be further mechanistic studies in spontaneous
metastasis xenograft models using mice with fully humanized
P-selectin expression. It should also be considered that one
reason for the suboptimal clinical outcomes may be that anti-
coagulants are likely to be ineffective in clinically apparent
solid tumors. In these, abnormal metabolic conditions prevail,
which, among other things, also lead to necrosis. It is likely that
platelet activation and release of growth promoting factors can
occur under such conditions without the involvement of specific
platelet receptors which can be inhibited by anti-coagulants.
Clinical studies using patients with advanced tumor stages are
therefore probably not suitable for testing the anti-metastatic
potential of anti-coagulants.

An evaluation of nine clinical studies by Akl et al. (112)
is similar in content to the consented summary mentioned
above (81). An often significant delay of tumor progression, but
without clinical cure, is the bottom line. To test the question
of prophylaxis against metastasis by heparins, tumor patients
with a clinical R0 tumor or patients with a complete remission
of non-solid tumors would probably be most appropriate. Non-
anticoagulant heparins or heparin analogs could be useful in
reducing the risk of bleeding complications in these patients.

In summary, targeting the P-selectin/ligand
interaction is a promising approach for the future
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development of anti-metastatic therapies. To achieve
this goal, mice with fully humanized P-selectin
should ideally be used in xenograft experiments in
the future.
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