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Accurate labeling is essential for supervised deep learning methods. However, it is almost

impossible to accurately and manually annotate thousands of images, which results in

many labeling errors for most datasets. We proposes a local label point correction (LLPC)

method to improve annotation quality for edge detection and image segmentation tasks.

Our algorithm contains three steps: gradient-guided point correction, point interpolation,

and local point smoothing. We correct the labels of object contours by moving the

annotated points to the pixel gradient peaks. This can improve the edge localization

accuracy, but it also causes unsmooth contours due to the interference of image noise.

Therefore, we design a point smoothing method based on local linear fitting to smooth

the corrected edge. To verify the effectiveness of our LLPC, we construct a largest

overlapping cervical cell edge detection dataset (CCEDD) with higher precision label

corrected by our label correction method. Our LLPC only needs to set three parameters,

but yields 30–40% average precision improvement on multiple networks. The qualitative

and quantitative experimental results show that our LLPC can improve the quality of

manual labels and the accuracy of overlapping cell edge detection. We hope that our

study will give a strong boost to the development of the label correction for edge detection

and image segmentation. We will release the dataset and code at: https://github.com/

nachifur/LLPC.

Keywords: label correction, point correction, edge detection, segmentation, local point smoothing, cervical

cell dataset

1. INTRODUCTION

Medical image datasets are generally annotated by professional physicians (Demner-Fushman et al.,
2016; Almazroa et al., 2017; Johnson et al., 2019; Zhang et al., 2019; Lin et al., 2021; Ma et al., 2021;
Wei et al., 2021). To construct an annotated dataset for edge detection or image segmentation tasks,
annotators often need to annotate points and connect them into an object outline. In the manual
labeling process, it is difficult to control label accuracy due to human error. Northcutt et al. (2021)
found that label errors are numerous and universal: the average error rate in 10 datasets is 3.4%.
These wrong labels seriously affect the accuracy of model evaluation and destabilize benchmarks,
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which will ultimately spill over model selection and deployment.
For example, the deployed model in learning-based computer-
aided diagnosis (Saha et al., 2019; Song et al., 2019, 2020;
Wan et al., 2019; Zhang et al., 2020) is selected from many
candidate models based on evaluation accuracy, which means
that inaccurate annotations may ultimately affect accurate
diagnosis. Tomitigate labeling errors, an image is often annotated
by multiple annotators (Arbelaez et al., 2010; Almazroa et al.,
2017; Zhang et al., 2019), which generates multiple labels for
one image. However, even if the annotation standard is unified,
differences between different annotators are inevitable. Another
way is to correct the labels manually (Ma et al., 2021). In fact,
multi-person annotation and manual label correction are time-
consuming and labor-intensive. Therefore, it is of great value to
develop label correction methods based on manual annotation
for supervised deep learning methods.

Most label correction works are focused on weak
supervision (Zheng et al., 2021), semi-supervision (Li et al.,
2020), crowdsourced labeling (Bhadra andHein, 2015; Nicholson
et al., 2016), classification (Nicholson et al., 2015; Kremer et al.,
2018; Guo et al., 2019; Liu et al., 2020; Wang et al., 2021; Li
et al., 2022), and natural language processing (Zhu et al., 2019).
However, label correction in these tasks is completely different
from correcting object contours. To automatically correct edge
labels, we propose a local label point correction method for edge
detection and image segmentation. Our method contains three
steps: gradient-guided point correction, point interpolation,
and local point smoothing. We correct the annotation of the
object contours by moving label points to the pixel gradient
peaks and smoothing the edges formed by these points. To

FIGURE 1 | (A) Visual comparison of the original label and our corrected label. Our LLPC can improve the edge positioning accuracy and generate more accurate

edge labels. (B) Precision-Recall curves of edge detection methods on our CCEDD dataset. The average precision (AP) is significantly improved over multiple baseline

models by using our corrected labels.

verify the effectiveness of our label correction method, we
construct a cervical cell edge detection dataset. Experiments with
multiple state-of-the-art deep learning models on the CCEDD
show that our LLPC can greatly improve the quality of manual
annotation and the accuracy of overlapping cell edge detection,
as shown in Figure 1. Our unique contributions are summarized
as follows:

• We are the first to propose a label correction method based on
annotation points for edge detection and image segmentation.
By correcting the position of these label points, our label
correction method can generate higher-quality label, which
contributes 30–40% AP improvement on multiple baseline
models.
• We construct a largest publicly cervical cell edge detection

dataset based on our LLPC. Our dataset is ten times larger than
the previous datasets, which greatly facilitates the development
of overlapping cell edge detection.
• We present the first publicly available label correction

benchmark for improving contour annotation. Our study
serves as a potential catalyst to promote label correction
research and further paves the way to construct accurately
annotated datasets for edge detection and image segmentation.

2. RELATED WORK

2.1. Label Correction
Deep learning is developing rapidly with the help of big
computing (Jouppi et al., 2017) and big data (Deng et al.,
2009; Sun et al., 2017; Zhou et al., 2017). Some works (Radford
et al., 2019; Brown et al., 2020; Raffel et al., 2020) focus on
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feeding larger models with more data for better performance
and generalization, while others design task-specific model
structures and loss functions (Hu et al., 2019; Huang et al.,
2021; Zhao et al., 2022) to improve performance on a fixed
dataset. Recently, data itself has received a lot of attention.
Ng et al. (2021) led the data revolution of deep learning and
successfully organized the first “Data-Centric AI” competition.
The competition aims to improve data quality and develop data
optimization pipelines, such as label correction, data synthesis,
and data augmentation (Motamedi et al., 2021). Competitors
mine data potential instead of optimizing model structure to
improve performance. Northcutt et al. (2021) found that if
the error rate of test labels only increases by 6%, ResNet18
outperforms ResNet-50 on ImageNet (Deng et al., 2009). To
improve data quality and accurately evaluate models, there is
an urgent need to develop label correction algorithms. In weak
supervision and semi-supervision (Li et al., 2020; Zheng et al.,
2021), pseudo label correction is usually implemented due to the
lack of supervision from real labels. Zheng et al. (2021) correct
the noisy labels by using a meta network for image recognition
and text classification. For supervised learning, bad data can be
discarded by data preprocessing, but bad labels seem inevitable
in large-scale datasets. In crowdsourcing (Bhadra andHein, 2015;
Nicholson et al., 2016), an image is annotated by multiple people
to improve the accuracy of classification task (Nicholson et al.,
2015; Kremer et al., 2018; Guo et al., 2019). Guo et al. (2019)
trained a model by using a small amount of data and design a
label completion method to generate labels (negative or positive)
for the mostly unlabeled data. However, label correction in these
tasks is significantly different from correcting object contours. In
this paper, to eliminate edge location errors and inter-annotator
differences in manual annotation, we propose an label correction
method based on annotation points for edge detection and image
segmentation. Besides, we compare our LLPC with conditional
random fields (CRF) (Sutton et al., 2012), which is popular as
post-processing for other segmentation methods (Chen et al.,
2017; Sun et al., 2020; Fan et al., 2021a; Lu et al., 2021; Ma
et al., 2022; Zhang et al., 2022). Dense CRF (Krähenbühl and
Koltun, 2011) improves the labeling accuracy by optimizing
energy function based on coarse segmentation images, while our

LLPC is a label correction method based on annotation points,
which are two different technical routes of label correction for
image segmentation. More discussion in Section 5.3.

2.2. Cervical Cell Dataset
Currently, cervical cell datasets include ISBI 2015 challenge
dataset (Lu et al., 2015), Shenzhen University dataset (Song
et al., 2016), and Beihang University dataset (Wan et al., 2019).
Supervised deep learning based methods require large amounts
of data with accurate annotations. However, the only public ISBI
dataset (Lu et al., 2015) has a small amount of data and simple
image types, which are difficult to train deep neural networks.
In this paper, we construct a largest high-accuracy cervical cell
edge detection dataset based on our label correctionmethod. Our
CCEDD contains overlapping cervical cell masses in a variety
of complex backgrounds and high-precision corrected labels,
which are sufficient in quantity and richness to train various deep
learning models.

3. LABEL CORRECTION

Our LLPC contains three steps: gradient-guided point correction
(GPC), point interpolation (PI) and local point smoothing (LPS).
I(x, y) is a cervical cell image and g(x, y) is the gradient image
of I(x, y) after Gaussian smoothing. xis is an original label point
of I(x, y). First, we correct the points xis to the nearest gradient
peak on g(x, y), as shown in Figure 2A, i.e.,

{

xis
}

→
{

xic
}

. i ∈
{1, 2, . . . , ns} . Second, we insert more points in large gaps, as

shown in Figure 2B, i.e.,
{

xic
}

→
{

x
j
I

}

. j ∈ {1, 2, . . . , nI} . ns
and nI are the number of points before and after interpolation,

respectively. Third, we divide the point set
{

x
j
I

}

into nc groups.

Each group of points is expressed as 8k. We fit a curve Ck

on 8k. k ∈ {1, 2, . . . , nc}. All curves {Ck} are merged into a
closed curve Cc, as shown in Figure 2C. Finally, we sample Cc

to obtain discrete edges Cd, as shown in Figure 2D. In fact, the
closed discrete edges generated by multiple curves fusion are
not smooth at the stitching nodes. Therefore, we propose a local
point smoothing method without curves splicing and sampling
in Section 3.3.

FIGURE 2 | The workflow of our LLPC algorithm. (A) Gradient-guided point correction (the red points→ the green points); (B) Insert points at large intervals; (C)

Piecewise curve fitting (the purple curve); (D) Curve sampling; (E) The gradient image with the corrected edge label (the green edges); (F) Magnification of the gradient

image. The whole label correction process is to generate the corrected edge (green edges) from original label points (red points) in (F).
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3.1. Gradient-Guided Point Correction
Although the annotations of cervical cell images are provided
by professional cytologists, due to human error, the label points
usually deviate from the pixel gradient peaks. To solve this
problem, we design a gradient-guided point correction (GPC)
method based on gradient guidance. We correct the label points
only in the strong gradient region to eliminate human error, while
preserving the original label points in the weak gradient region
to retain the correct high-level semantics in human annotations.
Our point correction consists of three steps as follows:

1. Determine whether the position of each label point is in strong
gradient regions.

2. Select a set of candidate points for a label point.
3. Move the label point to the position of the point with the

largest gradient value among these candidate points.

The processing object of our LLPC is a set of label points (
{

xis
}

)
corresponding to a closed contour. For an original label point
xis, we select candidate points along the normal direction of label
edge, as shown in Figure 2A. These points constitute a candidate
point set �xis

, and ximax is the point with the largest gradient in

�xis
. We move xis to the position of ximax to obtain the corrected

label point xic.

xic =
{

ximax if 1 > 0

xis otherwise
(1)

where

1 =
∣

∣

∣
max(ωj · g(xisj ))−min(ωj · g(xisj ))

∣

∣

∣
− λt ·max(ωj). (2)

xisj is a candidate point in �xis
. We judge whether a point xis is

in strong gradient regions through 1. If 1 > 0, the point will
be corrected; otherwise, it will not be moved. In this way, when
the radius (r) of �xis

is larger, our method can correct larger
annotation errors. However, this will increase the correction
error of label points due to image noise and interference from
adjacent edges. To balance the contradiction, the gradient value
of the candidate point g(xisj ) is weighted by ωj, which allows

setting a larger radius to correct larger annotation errors. We
compute the weight as

ωj = K(
∥

∥

∥
xisj − xis

∥

∥

∥

2
, h1), (3)

where

K(x, h) = κ(x/h)/h. (4)

K(x, h) is a weighted kernel function with bandwidth h. κ(x) is a
Gaussian function with zero mean and one variance. After point
correction,

{

xis
}

→
{

xic
}

.

3.2. Piecewise Curve Fitting
The edge generated directly from the point set

{

xic
}

is not smooth
due to the errors in point correction process (see Section 5.4).

FIGURE 3 | Merge multiple curves (C1 and C2) into one curve(Cc).

To eliminate the errors, we fit multiple curve segments and
stitch them together. In the annotation process of manually
drawing cell contours, the annotators perform dense point
annotations near large curvatures, and sparse annotations near
small curvatures to accurately and quickly outline cell contours.
Since the existence of large intervals is not conducive to curve
fitting, we perform linear point interpolation (PI) on these
intervals before curve fitting.

3.2.1. Point Interpolation
The sparse label point pairs can be represented as,

{

(xic, x
i+1
c )|

∥

∥xic − xi+1c

∥

∥

2
> 2 · gap

}

, (5)

where i = 0, 1 . . . ns − 1. Then, we insert points between the
sparse points pairs to satisfy

∥

∥

∥
x
j
I − x

j+1
I

∥

∥

∥

2
< gap, (6)

as shown in Figure 2B. j = 0, 1 . . . nI − 1. ns and nI are the
number of points before and after interpolation, respectively.
gap is the maximum interval between adjacent point pair. After

interpolation,
{

xic
}

→
{

x
j
I

}

.

3.2.2. Curve Fitting

We divide
{

x
j
I

}

into nc groups. Each group is expressed as

8k =
{

x1+k·sI , x2+k·sI , . . . , x
ng+k·s
I

}

. k = 0, 1 . . . nc − 1. nc =
⌈nI/s⌉ . As shown in Figure 3, s = 2(rf − nd) is the interval

between the center points of each group; rf =
⌊

(ng − 1)/2
⌋

is the group radius; ng is the number of points in the group.
To reduce the fitting error at both ends of the curve, there
is overlap between adjacent curves. The overlapping length
is 2nd. To fit a curve on 8k, we create a new coordinate
system, as shown in Figure 2C. The x-axis passes through the

x1+k·sI point and the x
ng+k·s
I point. The point set in the new

coordinate system is 8r
k
. We obtain a curve Ck by local linear

fitting (McCrary, 2008) on 8r
k
. This is equivalent to solving the

following problem at the target point xt = (x, y) on the curve
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Ck.

min
β0(x),β1(x)

ng+k·s
∑

j=1+k·s
ωj(x)(yj − β0(x)− β1(x) · xj) (7)

β0(x) and β1(x) are the curve parameter at the point xt .

(xj, yj) denotes the coordinates of point x
j
I in 8r

k
. The weight

function is

ωj(x) = K(
∥

∥x− xj
∥

∥

2
, h2)/

ng+k·s
∑

m=1+k·s
K(‖x− xm‖2 , h2). (8)

If the distance between the point x
j
I and the target

point xt is larger, the weight ωj(x) will be smaller.
The matrix representation of the above parameter
solution is

β = (XTωX)−1XTωY , (9)

where X =











1 x1+k·s
1 x2+k·s
...

...
1 xng+k·s











, Y =











y1+k·s
y2+k·s

...
yng+k·s











, β =
[

β0(x)
β1(x)

]

,

ω =









ω1+k·s(x)
ω2+k·s(x)

. . .

ωng+k·s(x)









.

The matrix ω is zero except for the diagonal. Each 8r
k

corresponds to a curve Ck. We stitch nc curves into a
closed curve Cc, as shown in Figures 2C, 3. Then, we

sample on the interval
[

x
1+k·s+nd
I , x

ng+k·s−nd
I

]

as shown in

Figure 2D. We convert the coordinates of these sampling
points to the original image coordinate system. Finally, we can
obtain a discrete edge Cd, as shown in Figures 2E,F.

3.3. Local Point Smoothing
In Section 3.2, we stitch multi-segment curves to obtain a closed
cell curve, and then sample the curve to generate a discrete edge.
In fact, there is no smoothness at the splice nodes. To generate a
smooth closed discrete edge, we design a local point smoothing
(LPS) method without curves splicing and sampling. As shown
in Figure 4A, we insert more points in large intervals (gap = 1).
As shown in Figure 4B, we only correct the center point of 8r

k
by fitting a curve (Ck). By shifting the local coordinate system by

one step (s = 1), each point in
{

x
j
I

}

will be corrected by fitting

a curve. These correction points constitute a discrete edge Cd.
Because no curves are spliced, the generated edge is smooth at
each point. The pipeline of our LLPC is shown in Algorithm 1.

1https://github.com/Lyken17/pytorch-OpCounter

FIGURE 4 | Local point smoothing to generate smooth closed discrete edges.

(A) Insert points; (B) Move the coordinate system and correct each point by

curve fitting. All corrected points constitute a discrete edge.

Algorithm 1: LLPC Label Correction Algorithm.

Input : I, a RGB image. F, a annotation file of I (F contains
k point lists). r = 15, λt = 4, ng = 14.

Output: The corrected discrete edge Cd.

1 Cd← [];
2 for i← 1 to k do
3 xs← F[i];
4 xc← GPC(xs, I, r, λt) (based on Equation 1);
5 xI← PI(xc, gap = 1) (based on Equation 6);
6 xt← LPS(xI , ng) (based on Equation 7);
7 Cd← Append (Cd, xt)

8 end

3.4. Parameter Setting
In Section 3.1, we set the parameters r = 15, λt = 4
and h1 = r/2. In Section 3.2, we set ng = 14.
rf =

⌊

(ng − 1)/2
⌋

. h2 = rf /2. When gap = 1
and s = 1, the Section 3.3 is a special case of the

Section 3.2. See Section 5.4 for more discussion of
parameter selection.

4. EXPERIMENTAL DESIGN

4.1. Data Aquisition and Processing
We compare our CCEDD with other cervical cytology datasets
in Table 1. Our dataset was collected from Liaoning Cancer
Hospital & Institute between 2016 and 2017. We capture
digital images with a Nikon ELIPSE Ci slide scanner,
SmartV350D lens and a 3-megapixel digital camera. For
patients with negative and positive cervical cancer, the optical
magnification is 100× and 400×, respectively. All of the
cases are anonymized. All processes of our research (image
acquisition and processing, etc.) follow ethical principles.
Our CCEDD dataset includes 686 cervical images with a
size of 2,048×1,536 pixels (Table 2). Six expert cytologists
outline the closed contours of the cytoplasm and nucleus in
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TABLE 1 | Comparison with other cervical cytology datasets.

Dataset Image size Dataset

size

Dataset size Open

(512 × 512)

ISBI (Lu et al., 2015) 1,024 × 1,024 17 68
√

SZU Dataset (Song et al., 2016) 1,360 × 1,024 21 84 ×
BHU Dataset (Wan et al., 2019) 512 × 512 580 580 ×
CCEDD 2,048 ×1,536 686 8,232

√

For a fair comparison of the sizes of different datasets, we crop the images to 512 × 512,

and our CCEDD is about ten times larger than other datasets. Best results are highlighted.

TABLE 2 | The detailed description of CCEDD.

Our CCEDD Uncut CCEDD Cut CCEDD

Image size 2,048 ×1,536 512 × 384

Training set size 411 20,139

Validation set size 68 3,332

Test set size 207 10,143

Dataset size 686 33,614

FIGURE 5 | Image cutting method. (A) 4×4 cutting grid; (B) move the grid

right; (C) move the grid down; (D) move the grid right and down.

cervical cytological images by an annotation software (labelme;
Wada, 2016).

We randomly shuffle our dataset and split it into training,
validation and test sets. To ensure test reliability, we set this
ratio to 6:1:3. To be able to train various complex neural
networks on a GPU, we crop a large-size image into small-
size images. If an image is cut as shown in Figure 5A, it will
result in incomplete edge at the cut boundary. To maximize
data utilization efficiency, we move the cutting grid, as shown
in Figures 5B–D. After label correction, we cut an image with
a size of 2,048×1,536 into 49 image patches with a size of
512×384 pixels.

4.2. Baseline Model and Evaluation Metrics
4.2.1. Baseline Model
Our baseline detectors are 10 state-of-the-art models. We
evaluate multiple edge detectors, such as RCF (Liu et al., 2019),
ENDE (Nazeri et al., 2019), DexiNed (Poma et al., 2020),
FINED (Wibisono and Hang, 2020), and PiDiNet (Su et al.,
2021b). Furthermore, we explore more network structures for
edge detection by introducing segmentation networks, which
usually only requires simple modifications of the last layer of
networks. These segmentation networks include STDC (Fan
et al., 2021b), UNet (Ronneberger et al., 2015), UNet++ (Zhou
et al., 2019), CENet (Gu et al., 2019), MSU-Net (Su et al., 2021a).

To aggregate more shallow features for edge detection, wemodify
multiple layers of STDC, i.e., STDC+. More details of these
network structure can be found in our code implementation.

4.2.2. Evaluation Metrics
We quantitatively evaluate the edge detection accuracy
by calculating three standard measures (ODS, OIS, and
AP) (Arbelaez et al., 2010). The average precision (AP) is
the area under the precision-recall curve (Figure 1B). F1-

score= 2·precision·recall
precision+recall is the harmonic average of precision and

recall. ODS is the best F1-score for a fixed scale, while OIS is the
F1-score for the best scale in each image.

4.3. Experimental Setup
4.3.1. Training Strategy
Data augmentation can improve model generalization and
performance (Bloice et al., 2019). In training, we perform rotation
and shearing operations, which require padding zero pixels
around an image. In testing, there is no zero pixel padding.
This lead to different distributions of training and testing sets
and degrade the model performance. Therefore, we perform data
augmentation in pre-training and no augmentation during fine-
tuning.

Due to the different structures and parameters of baseline
networks, a fixed number of training iterations may lead to
overfitting or underfitting. For accurate evaluation, we adaptively
adjust the iteration number by evaluating the average accuracy
(AP) on the validation set. The period of model evaluation is
set 1 epoch for pre-training and 0.1 epoch for fine-tuning. After
the i-th model evaluation, we can obtain Modeli and APi (i =
1, 2, · · · , 50). If APi < min(APi−j), the training ends and we
obtain the optimal model Modelj|max(APj). j = 1, 2, 3 in pre-
training and j = 1, 2, · · · , 10 in fine-tuning. The maximum
iteration number is 50 epochs for pre-training and fine-tuning.
Besides, we also dynamically adjust the learning rate to improve
performance. The learning rate l decays from 1−4 to 1−5. If
APi < APi−1, li = li−1/2.

4.3.2. Implementation Details
We use the Adam optimizer (Kingma and Ba, 2015) to optimize
all baseline networks on PyTorch (β1 = 0, β2 = 0.9). We use
random normal initialization to initialize these networks. To be
able to train various complex neural networks on a GPU, we
resize the image to 256×192. The batch size is set 4. We perform
color adjustment, affine transformation and elastic deformation
for data augmentation (Bloice et al., 2019). All experiments are
implemented on a workstation equipped with a Intel Xeon Silver
4110 CPUs and a NVIDIA RTX 3090 GPU.

5. EXPERIMENTAL RESULTS AND
DISCUSSION

5.1. Edge Detection of Overlapping
Cervical Cells
We show the visual comparison results on our CCEDD in
Figure 6. The quantitative comparison is shown in Table 4 and
Figure 1B. These results have important guiding implications for
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FIGURE 6 | Visual comparison results on CCEDD dataset. (A) Slightly overlapping cells. (B,C) Highly overlapping cells. (D,E) Overlapping cell masses. (F,G) Blurred

overlapping cells. (H,I) Overlapping cells in complex environments.

accurate edge detection of overlapping cervical cells. We analyze
several factors affecting the performance of overlapping edge
detection.

• Loss function design. RCFLoss (Liu et al., 2019) produces
coarser edges, as shown in Figure 7. This may be robust for
natural images, but poor localization accuracy for accurate
cervical cell edge detection.
• Network structure design. Long-distance skip connections

can fuse shallow and deep features for constructing multi-
scale features. Our experiments show that the U-shaped
structure is effective for overlapping edge detection [e.g.,
UNet (Ronneberger et al., 2015), UNet++ (Zhou et al., 2019)
and MSU-Net (Su et al., 2021a)].

• Pre-training. Due to the huge distribution difference between
natural and medical images, pre-training may degrade
performance (e.g., CE-Net; Gu et al., 2019) or have limited
improvement (e.g., STDC; Fan et al., 2021b).

5.2. Effectiveness of Label Correction
In our LLPC, the position of label points is locally corrected
to the pixel gradient peak. As shown in Figures 1A, 8B, Our
LLPC can generate more accurate edge labels. Besides, we
can easily generate corrected masks from corrected points
in the labelme software (Wada, 2016). Compared with the
original mask in Figure 8C, our corrected mask has higher
edge localization accuracy and smoother edges, as shown in
Figure 8D.
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We train multiple networks using original label and corrected
label. The quantitative comparison results is shown in Table 3

and Figure 1B. Compared with the original label, using the
corrected label to train multiple networks can significantly
improve AP (30–40%), which verifies the effectiveness

FIGURE 7 | Visual comparison of different loss functions. (A) Input; (E)

Ground truth; (B,F) PiDiNet (Su et al., 2021b); (C,G) RCF (Liu et al., 2019);

(D,H) DexiNed (Poma et al., 2020); (B–D) BCELoss; (F–H) RCFLoss (Liu et al.,

2019). “BCELoss” is binary cross entropy loss function. Compared with

BCELoss, RCFLoss (Liu et al., 2019) can produce coarser edges.

of our label correction method. Table 4 shows that the
performance improvement comes from two aspects. First,
our corrected label can improve the evaluation accuracy in
testing (0.541→0.588). Second, using our corrected label
to train network can improve the accuracy of overlapping
edge detection in training (0.588→0.755), as shown in
Figure 9.

FIGURE 8 | Label correction for edge detection and semantic segmentation.

(A) Original edge; (B) Corrected edge; (C) Original mask; (D) Corrected mask.

TABLE 3 | Edge detection results on our CCEDD dataset.

Year/Model/Loss 1AP(%)
Label correction No label correction

Params (M) MACs(G)

AP ODS OIS AP ODS OIS

2019/RCF/RCFLoss 41.0 0.612 0.599 0.594 0.434 0.485 0.485
14.81 19.56

2019/RCF/BCELoss 41.9 0.667 0.638 0.645 0.470 0.507 0.512

2019/ENDE/BCELoss 37.0 0.733 0.682 0.691 0.535 0.548 0.555 6.06 32.51

2020/DexiNed/RCFLoss 30.3 0.649 0.633 0.635 0.498 0.528 0.533
35.08 27.72

2020/DexiNed/BCELoss 38.5 0.723 0.671 0.680 0.522 0.541 0.549

2020/FINED/RCFLoss 28.4 0.602 0.604 0.450 0.469 0.510 0.402
1.43 14.38

2020/FINED/BCELoss 41.4 0.703 0.660 0.621 0.497 0.528 0.530

2021/PiDiNet/RCFLoss 37.2 0.590 0.581 0.574 0.430 0.481 0.479
0.69 3.74

2021/PiDiNet/BCELoss 42.7 0.648 0.624 0.628 0.454 0.496 0.501

2021/STDC1/BCELoss 12.9 0.394 0.466 0.472 0.349 0.438 0.443
14.26 4.48

2021/STDC1(pretrain)/BCELoss 13.1 0.407 0.478 0.483 0.360 0.451 0.454

2021/STDC2/BCELoss 16.1 0.403 0.473 0.478 0.347 0.435 0.442
22.30 7.01

2021/STDC2(pretrain)/BCELoss 15.0 0.413 0.484 0.488 0.359 0.449 0.454

2021/STDC1+/BCELoss 41.3 0.701 0.652 0.659 0.496 0.518 0.524 13.76 39.28

2021/STDC2+/BCELoss 38.2 0.694 0.648 0.656 0.502 0.525 0.532 21.83 41.81

2015/UNet/BCELoss 38.9 0.729 0.679 0.689 0.525 0.539 0.546 31.03 41.96

2019/CE-Net(pretrain)/BCELoss 37.5 0.696 0.653 0.658 0.506 0.530 0.535
60.24 17.36

2019/CE-Net/BCELoss 36.4 0.712 0.668 0.675 0.522 0.540 0.547

2019/UNet++(DS)/BCELoss 37.6 0.739 0.687 0.696 0.537 0.548 0.555
9.16

26.76

2019/UNet++/BCELoss 39.6 0.755 0.691 0.701 0.541 0.550 0.557 26.75

2021/MSU-Net/BCELoss 39.7 0.749 0.689 0.699 0.536 0.550 0.556 47.09 59.93

Our baseline model contains RCF (Liu et al., 2019), ENDE (Nazeri et al., 2019), DexiNed (Poma et al., 2020), FINED (Wibisono and Hang, 2020), PiDiNet (Su et al., 2021b), STDC (Fan

et al., 2021b), UNet (Ronneberger et al., 2015), CE-Net (Gu et al., 2019), UNet++ (Zhou et al., 2019), MSU-Net (Su et al., 2021a). “BCELoss” is binary cross entropy loss function.

“RCFLoss” is an annotator-robust loss function for edge detection (Liu et al., 2019). STDC2 (Fan et al., 2021b) has more parameters than STDC1 (Fan et al., 2021b). “UNet++(DS)”

is UNet++ (Zhou et al., 2019) with deep supervision. “MACs” is multiply-accumulate operation. “Params” and “MACs” are calculated by THOP1. Best and second best results are

highlighted and underlined.
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FIGURE 9 | Visual comparison results of training with different labels. (A) Input image; (B) UNet++ (Zhou et al., 2019)/BCELoss + Original label; (C) UNet++ (Zhou

et al., 2019)/BCELoss + Corrected label; (D) Corrected labels. Compared with the original label, the corrected label can improve the accuracy of overlapping

edge detection.

TABLE 4 | Performance improvement analysis of label correction.

Training/Evaluation AP ODS OIS

Original label/Original label 0.541 0.550 0.557

Original label/Corrected label 0.588 0.592 0.598

Corrected label/Corrected label 0.755 0.691 0.701

Use UNet++ (Zhou et al., 2019) for evaluation. Best results are highlighted.

5.3. Comparison With Other Label
Correction Methods
In Figures 10, 11, we compare our LLPC with active
contours (Chan and Vese, 2001) and dense CRF (Krähenbühl
and Koltun, 2011). We observed that active contours (Chan
and Vese, 2001) is refinement failure of nucleus contours in
Figure 10F, and dense CRF (Krähenbühl and Koltun, 2011)
fails due to complex overlapping cell contours in Figure 11C.
Since active contours (Chan and Vese, 2001) and dense
CRF (Krähenbühl and Koltun, 2011) are global iterative
optimization methods based on segmented images, which
are uncontrollable for label correction of object contours and
ultimately lead to these failed results. Our LLPC is the local label
point correction without iterative optimization. Therefore, the
correction error of our LLPC is controllable and the error in one
place does not spread to other places, which is crucial for robust
label correction. Besides, dense CRF (Krähenbühl and Koltun,
2011) is nonplussed over overlapping instance segmentation
refinement, while our LLPC corrects label based on annotation
point and can handle overlapping label correction, as shown in
Figure 11E.

5.4. Ablation Experiment
5.4.1. Ablation of Label Correction Method
Our LLPC contains three steps: gradient-guided point correction
(GPC), point interpolation (PI), and local point smoothing (LPS).

FIGURE 10 | Qualitative comparison of single-cell label correction. (A) Input;

(B) Gradient image; (C) Original mask; (D) Input + original mask; (E) Active

contours (Chan and Vese, 2001) for cytoplasm; (F) Active contours (Chan and

Vese, 2001) for nucleus; (G) Dense CRF (Krähenbühl and Koltun, 2011); (H)

Our LLPC.

Although our GPC can correct label points to pixel gradient
peaks, there is still some error in the correction process. LPS can
smooth the edges corrected by GPC, as shown in Figure 12A.
Table 5 shows that GPC is the most important part of our
LLPC (0.541→0.731), while PI and LPS can further improve
the annotation quality by smoothing edges (0.731→0.755).
Only smoothing the original labels (“w/o GPC”) is ineffective
(0.541→0.533). Because this may lead to larger annotation
errors. Compared to piecewise curve fitting in Section 3.2,
LPS can generate smoother edges, as shown in Figure 12B.
These qualitative and quantitative results verify that the three
components of our LLPC are essential.
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FIGURE 11 | Qualitative comparison of label correction for overlapping cell

masses. (A) Input; (B) Original mask; (C) Dense CRF (Krähenbühl and Koltun,

2011); (D) Our LLPC (mask); (E) Our LLPC (edge).

FIGURE 12 | (A) Ablation of gradient-guided point correction. “GPC” is

gradient-guided point correction. (B) Visual comparison of different label

correction methods. (B1) The green curves generated by piecewise curve

fitting (w/o LPS); (B2) The discrete edge sampled from the curves in (B1); (B3)

The curves smoothed by LPS; (B4) The discrete edges without curve sampling.

5.4.2. Selection of Hyper-Parameters
To set the optimal parameters, we conduct parameters ablation
experiments in Table 6. gap can control the point density in PI.
For local curve fitting, gap = 1 is optimal. Therefore, for an
unknown dataset, our LLPC only needs to set three parameters,
i.e., r, λt and ng . A qualitative comparison of these parameters
with different settings is shown in Figure 13. r controls the
maximum error correction range in human annotations. If r is
too small, large label errors cannot be corrected. If r is too large,

TABLE 5 | Ablation of our LLPC. “GPC” is gradient-guided point correction.

Correction method AP ODS OIS

Original label 0.541 0.550 0.557

GPC (w/o PI, w/o LPS) 0.731 0.682 0.692

Our LLPC 0.755 0.691 0.701

w/o GPC 0.533 0.545 0.552

w/o PI 0.663 0.619 0.625

w/o LPS 0.742 0.689 0.699

“w/o LPS” is using piecewise curve fitting instead of local point smoothing. Use

UNet++ (Zhou et al., 2019) for evaluation. “PI” is point interpolation. Best results

are highlighted.

TABLE 6 | Parameters ablation of our label correction method.

r λt gap ng AP ODS OIS

7 4 1 14 0.691 0.645 0.653

11 4 1 14 0.732 0.681 0.691

19 4 1 14 0.746 0.691 0.701

23 4 1 14 0.734 0.683 0.692

15 1 1 14 0.750 0.689 0.700

15 2 1 14 0.751 0.690 0.700

15 3 1 14 0.745 0.691 0.700

15 5 1 14 0.750 0.689 0.699

15 10 1 14 0.729 0.679 0.688

15 15 1 14 0.708 0.658 0.664

15 4 1.5 14 0.749 0.688 0.698

15 4 2 14 0.742 0.689 0.699

15 4 1 10 0.750 0.689 0.699

15 4 1 12 0.729 0.687 0.697

15 4 1 16 0.752 0.690 0.700

15 4 1 18 0.750 0.687 0.698

15 4 1 14 0.755 0.691 0.701

Use UNet++ (Zhou et al., 2019) for evaluation. For our CCEDD, we set r = 15, λt = 4,

and ng = 14. Best results are highlighted.

the error of point correction is larger. r limits the correction range
in space, while λt is the threshold for a limitation of gradient
values variation during the correction process. If λt is large,
label points are corrected only when the gradient value changes
sharply in the search direction. ng controls the scale of the local
smoothing. For our CCEDD, r = 15, λt = 4, and ng = 14.

5.4.3. Ablation of Training Strategy
Our training strategy can eliminate the influence of different
distributions of the training and test sets due to data
augmentation, and improve the AP by 3.6% in Table 7. To
fairly evaluate multiple networks with different structures
and parameters, we employ adaptive iteration and learning
rate adjustment to avoid overfitting and underfitting. Table 8
and Figure 14A verify the effectiveness of our adaptive
training strategy.
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5.5. Computational Complexity
5.5.1. Label Correction
Our LLPC takes 270 s to generate 100 corrected edge images with
a size of 2,048×1,536 pixels on CPU. Because our label correction
algorithm is offline and does not affect the inference time of a
neural network, we have not further optimized it. If the algorithm

FIGURE 13 | Visual comparison results for different parameters settings in our

LLPC. “Default” is r = 15, λt = 4, and ng = 14. “w/o weight” is ωj = 1 in

Equation (3).

runs on GPU, the speed can be further improved, which can save
more time for label correction of large-scale datasets.

5.5.2. Model Evaluation
We rewrite the evaluation code (Arbelaez et al., 2010) on GPU
for fast evaluation. The average FPS using the UNet++ (Zhou
et al., 2019) is 173 for 10,143 test images with a size of 256×192
pixels. In training, we need to calculate the AP of the validation
set to adaptively control the learning rate and the number of
iterations (see Section 4.3). Fast evaluation greatly accelerates our
training process.

5.5.3. Neural Network Inference
We test the inference speed of UNet++ (Zhou et al., 2019). For
207 images with a resolution of 1,024×768, the average FPS is 9.
For 207 images with a resolution of 512×512, the average FPS is

TABLE 7 | Ablation of two-stage training strategy.

Training methods AP ODS OIS

w/o augmentation, w/o fine-tuning 0.729 0.672 0.683

w/ augmentation, w/o fine-tuning 0.732 0.674 0.682

w/ augmentation, w/ fine-tuning 0.755 0.691 0.701

We perform data augmentation in pre-training and no augmentation during fine-tuning.

Use UNet++ (Zhou et al., 2019) for evaluation. Best results are highlighted.

TABLE 8 | Ablation of adaptive training strategy.

Training methods AP ODS OIS epoch

w/o AIT, w/o ALR 0.683 0.639 0.642 50

w/o AIT, w/o ALR 0.449 0.653 0.657 70

w/o AIT, w/o ALR 0.308 0.647 0.653 100

w/ AIT, w/o ALR 0.747 0.684 0.693 13

w/ AIT, w/ ALR 0.750 0.693 0.700 21

We evaluate UNet++ (Zhou et al., 2019) on the validation set. “AIT” is adaptive iteration

training. “ALR” is adaptive learning rate. Best results are highlighted.

FIGURE 14 | (A) Training schedules. “AIT” is adaptive iteration training. “ALR” is adaptive learning rate. We evaluate UNet++ (Zhou et al., 2019) on the validation set.

(B) Comparison of network parameters, running efficiency and edge detection performance. “MACs” is multiply-accumulate operation. “FPS” is the average speed by

evaluating 10,413 images with a resolution of 256×192.
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FIGURE 15 | Label correction for natural images. (A) Original edge; (B)

Corrected edge; (C) Original mask; (D) Corrected mask.

26. For 10,413 images with a resolution of 256×192, the average
FPS is 295. Figure 14B shows the running efficiency comparison
of multiple benchmark models. According to the report of Wan
et al. (2019), the methods of Wan et al. (2019), Lu et al. (2015),
and Lu et al. (2016), took 17.67, 35.69m and 213.62 s for an image
a resolution of 512×512, respectively. Compared with these
method, the UNet++ (Zhou et al., 2019) is significantly faster.
Many cervical cell segmentation approaches (Phoulady et al.,
2017; Tareef et al., 2017, 2018;Wan et al., 2019; Zhang et al., 2020)
consist of three stages, including nucleus candidate detection, cell
localizations, and cytoplasm segmentation. Fast edge detection of
overlapping cervical cell means that the detected edges can be
used as a priori input of these segmentation networks to improve
performance at a small cost.

6. DISCUSSION

6.1. Label Correction for Natural Images
Our label correction method can correct a closed contour
by correcting the position of label points, which does not
require additional prior assumptions (e.g., contour shape,
object size). We annotated several images in the PASCAL
VOC dataset (Everingham et al., 2010) with labelme (Wada,
2016) and corrected the label (r = 7, λt = 4, and
ng = 9). As shown in Figure 15, our label correction
method can generate more accurate object contours, which

demonstrates the feasibility of our label correction method for
natural images.

6.2. Overlapping Edge Detection
Overlapping edge detection of cervical cell is a challenging task
due to the presence of strong and weak gradient edges. For edges
with strong gradients, it only requires low-level detail features.
For edges with weak gradients in overlapping region, it may
require high-level semantics to reason contours and connect
edges based on the context in strong gradient regions. While
Unet++ (Zhou et al., 2019) achieves the best results on our
CCEDD, there is no difference in the detection of these two
different types of edges. Designing new network structures and
loss functions for overlapping edge detection may be a way to
further address this challenge.

7. CONCLUSIONS

We propose a local label point correction method for edge
detection and image segmentation, which is the first benchmark
for label correction based on annotation points. Our LLPC can
improve the edge localization accuracy and mitigate labeling
error from different annotators in manual annotation. Only
three parameters need to be set in our LLPC, but using
the label corrected by our LLPC to train multiple networks
can yield 30–40% AP improvement. Besides, we construct a
largest overlapping cervical cell edge detection dataset based
on our LLPC, which will greatly facilitate the development of
overlapping cell edge detection. In future work, we plan to
develop a label point correction method with local adaptive
parameter adjustment.
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