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Anatomy of the Breast

The human breast is comprised of glandular, ductal, connective, 
and adipose tissues (Fig. 1). The functional unit of the breast is 
the mammary gland, a tree-like structure of epithelial ducts sur-
rounded by adipose tissue.1 The glandular and adipose tissues are 
held together by connective tissue, including Cooper’s ligaments 
which attach the breast to the dermis of the overlying skin.2 Each 
breast has 15–20 sections (lobes) that branch out from the nipple. 
Each lobe is further divided into many smaller lobules, at the 
end of which are tiny bulb-like glands, known as terminal ductal 
lobular units (TDLUs), wherein milk is produced in response to 
hormonal signals. The lobes, lobules, and glands are connected 
by ducts, which deliver milk to openings in the nipple.3,4

The breasts of both women and men develop from the same 
embryonic tissues and are morphologically indistinguishable 
until the onset of puberty,5 at which time ovarian estrogens pro-
mote the sprouting, growth, and development of the mammary 
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Breast reconstruction is a type of surgery for women who 
have had a mastectomy, and involves using autologous tissue 
or prosthetic material to construct a natural-looking breast. 
Adipose tissue is the major contributor to the volume of the 
breast, whereas epithelial cells comprise the functional unit 
of the mammary gland. Adipose-derived stem cells (ASCs) 
can differentiate into both adipocytes and epithelial cells 
and can be acquired from autologous sources. ASCs are 
therefore an attractive candidate for clinical applications to 
repair or regenerate the breast. Here we review the current 
state of adipose tissue engineering methods, including the 
biomaterials used for adipose tissue engineering and the 
application of these techniques for mammary epithelial 
tissue engineering. Adipose tissue engineering combined 
with microfabrication approaches to engineer the epithelium 
represents a promising avenue to replicate the native structure 
of the breast.

Adipose and mammary epithelial tissue 
engineering

Wenting Zhu1 and Celeste M. Nelson1,2,*

1Department of Chemical and Biological Engineering; Princeton University; Princeton, NJ USA; 2Department of Molecular Biology; Princeton University; Princeton, NJ USA

Keywords: patterning, mammary epithelium, morphogenesis, 3D, organotypic

Abbreviations: ASC, adipose-derived stem cell; BAT, brown adipose tissue; ECM, extracellular matrix; iPSC, induced pluripotent 
stem cell; TDLU, terminal ductal lobular unit; WAT, white adipose tissue; 3D, three-dimensional

gland. In men, high levels of testosterone inhibit this develop-
ment. As a result, the breasts of human males are much less 
prominent than those of females.5

Approximately 1 in 8 women will develop invasive breast can-
cer in the United States, and up to 40% will require a mastec-
tomy.6 Breast reconstruction is a type of plastic surgery that aims 
to restore the shape, appearance, and size of a breast following 
its removal by mastectomy. Breast augmentation surgery, also 
known as augmentation mammoplasty, uses implants to increase 
the size of the breast or to restore its volume after weight loss or 
pregnancy. Saline-filled and silicone gel-filled implants are the 
most common. However, complications derived from the foreign 
body, such as capsular contracture, malposition, implant rupture, 
and infection, occur at a relatively high rate and frequently result 
in the need for implant removal.7

Breast reconstruction using the patient’s own tissues, rather 
than implantable devices, tends to produce better results with 
fewer complications and better approximates the shape, contour, 
softness, and fullness of the natural breast.4 The softness and 
suppleness which give the breasts their shape are mainly due to 
the presence of adipose tissue. Recent studies suggest the use of 
autologous fat tissue as an alternative implant material for breast 
augmentation.7-11 Stem cells are collected from the patient’s own 
adipose tissue and then placed, along with appropriate angiogenic 
and adipogenic growth factors, within a biodegradable scaffold. 
The transplanted stem cells are able to differentiate into new adi-
pose tissue or vascular endothelial cells.12 Adipose tissue engi-
neering is an emerging field that combines expertise in areas such 
as cell culture, cell differentiation, angiogenesis, tissue transfer, 
and polymer chemistry to regenerate adipose tissue de novo for 
breast reconstruction.

Adipose Tissue and Adipose Tissue Engineering

Adipose tissue, also known as fat, is the anatomical term for 
loose connective tissue composed of adipocytes.12 Adipose tissue 
is primarily located beneath the skin and is also found around 
internal organs, in bone marrow, and as described above, is a 
major component of the human breast.13 There are two types 
of adipose tissue, white adipose tissue (WAT) and brown adi-
pose tissue (BAT), which have essentially antagonistic functions. 
WAT stores excess energy as triglycerides and BAT is specialized 
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Adipose-Derived Stem Cells for Tissue Engineering

Adipose-derived stem cells (ASCs) represent a readily available 
source for isolation of potentially useful stem cells.20 Stem cells 
are distinguished from other cell types by two properties. First, 
they have the ability to renew themselves through cell division 
while maintaining the undifferentiated state. Second, they have 
the capacity to differentiate into specialized cell types under cer-
tain physiologic or experimental conditions. There are primarily 
two kinds of stem cells that can be isolated from animals and 
humans: embryonic stem cells and adult stem cells. In 2006, 
researchers identified a new type of stem cell, called induced plu-
ripotent stem cells (iPSCs),22 which are generated from somatic 
cells by the transgenic expression of three transcription factors 
referred to as OSK: Oct3/4, Sox2 and Klf4.22,23 The use of ASCs 
circumvents ethical issues associated with embryonic stem cells 
and the potential for oncogenic issues associated with iPSCs.

Ideally, a stem cell used for applications in regenerative medi-
cine should meet the following criteria:24 (1) available in abun-
dant quantities (millions to billions of cells); (2) harvested using 
minimally invasive procedures; (3) able to differentiate into mul-
tiple cell lineages in a regulatable and reproducible manner; (4) 
safely and effectively transplanted to either an autologous or allo-
geneic host; (5) manufactured in accordance with current Good 
Manufacturing Practice guidelines.

Adipose stem cells can fulfill all of these criteria. ASCs are 
localized near the vasculature in adipose tissue,25 and can be 
retrieved in high number from either liposuction aspirates or 
fragments of subcutaneous tissue. Furthermore, ASCs are eas-
ily expanded in culture,26 with one gram of adipose tissue yield-
ing approximately 5,000 stem cells,27 500-fold greater than the 
yield from the same volume of bone marrow.28 ASCs have similar 
properties to bone marrow stem cells and are capable of osteo-
genic, chondrogenic, adipogenic, and neurogenic differentiation 
in culture. ASCs have been shown to be immunoprivileged, to 
prevent severe graft- vs.-host disease in culture and in vivo, and 
to be genetically stable in long-term culture.29 The potential of 
ASCs to differentiate into cells derived from all three germ layers 
has been shown in a variety of studies.30

Rodbell and colleagues pioneered the original methods in 
the 1960s to isolate ASCs from adipose tissue using fat from 
rats.31-33 Several other groups further adapted these methods for 
human fat.34-36 Briefly, raw liposuction aspirate or finely minced 
adipose tissue is washed, digested with collagenase, and cen-
trifuged to remove blood cells, saline, and local anesthetics.24 
Undifferentiated ASCs can be characterized by several cell-
surface markers including CD29, CD44, CD71, CD90 and 
CD105.37-39 One of the most important uses of ASCs is to replace 
fat tissue itself. ASCs are able to undergo adipogenic differen-
tiation in response to inductive stimuli including dexametha-
sone, insulin, forskolin, and peroxisome proliferator-activated 
receptor-γ (PPARγ).39-42 During this process, ASCs decrease 
their proliferation and change in morphology from an elongated 
fibroblast-like appearance to a rounded shape.43 In addition, 
these cells start accumulating intracellular lipid droplets, secrete 
increased amounts of the adipocyte protein leptin, and express 

to dissipate energy via the production of heat.14 BAT is especially 
abundant in newborns and in hibernating mammals to enable 
survival in cold temperatures.15 As an animal ages, BAT is gradu-
ally replaced by WAT.15 Adipose tissue contains several cell types 
in addition to adipocytes, including fibroblasts, macrophages, 
and endothelial cells.16,17

Tissue engineering involves the use of living cells, biomate-
rials, and suitable biochemical and physico-chemical factors to 
improve or replace biological function.18 Most patients possess 
excess adipocytes that can be harvested without creating defor-
mities.19 The therapeutic use of adipocytes in preclinical studies 
and clinical trials has been well documented.20 Adipose tissue has 
also been identified as a source of multipotent cells that have the 
capacity to differentiate into myogenic, osteogenic, and neuro-
genic lineages when cultured with the appropriate lineage-spe-
cific stimuli.21

Figure 1. Anatomy of the breast. The female breast consists of glandu-
lar, ductal, connective, and adipose tissues.
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Natural polymers are found as part of the native extracellular 
matrix (ECM).62 Compared with synthetic materials, natural 
polymers tend to be more biocompatible, and their mechanical 
and biological properties tend to match those found in vivo. 
The most common natural polymers used recently for adipose 
tissue engineering include collagen, derivatives of hyaluronic 
acid (HA), adipose-derived ECM, matrigel, gelatin, and decel-
lularized human placenta.46,48

Collagen is the most prevalent natural polymer used in cur-
rent adipose tissue engineering research due to its biodegrad-
ability, biocompatibility, weak antigenicity, and the ability to 
be shaped to fill a specific defect.63 Several studies have dem-
onstrated that 3D collagen sponges can support adipogenesis 
from a variety of cell sources,64-67 as well as promote the devel-
opment of new adipose tissue in vivo after 12 weeks.68 Mauney 
et al. studied the ability of collagen and PLA matrices to sup-
port adipogenesis both in culture and in vivo, and found that 
although collagen scaffolds supported greater cell attachment 
upon seeding and greater lipid accumulation in culture, both 
collagen and PLA scaffolds were undetectable after 4 weeks 
in vivo due to rapid degradation.48,52 Human preadipocytes 
could be successfully and reproducibly inoculated and cultured 
on 3D HA-based scaffolds, and were able to differentiate into 
adipocytes in culture,69 but their properties in vivo remain to 
be investigated. Adipose-derived ECM promotes a favorable 
microenvironment for adipogenesis, but has yet to be formu-
lated as a 3D porous scaffold.70-72 The placenta is also a rich 
source of ECM and basement membrane components, and 
contains similar types of collagen as does adipose tissue,73 and 
therefore has great potential for use as a scaffold for adipose 
tissue engineering. Mature adipocytes were observed 8 weeks 
after seeding within a decellularized human placenta scaffold.74 
However, the isolation and decellularization procedure for the 
placenta is both expensive and time-consuming.74

In summary, several studies have demonstrated adipose tis-
sue formation using both synthetic and natural polymers. On 
the one hand, synthetic materials offer consistent control of 
material properties. On the other hand, natural materials offer 
considerable advantages with respect to biocompatibility and 
degradation properties. Additional studies are needed to further 
demonstrate and compare long-term in vivo functionality of 
each material for clinical applications in soft tissue replacement.

Epithelial Tissue Engineering

Epithelial tissues line the cavities and surfaces of structures 
throughout the body and also form many glands, including the 
mammary gland. Epithelial cells can arise from each of the three 
germ layers of the embryo. The epidermis and its appendages, 
including the mammary gland, originate from the ectoderm. In 
contrast, the lining of the gastrointestinal tract derives from the 
endoderm, and the inner linings of body cavities derive from 
the mesoderm.75

In 2004, two groups demonstrated the capacity of ASCs to 
differentiate into endothelial cells, a specialized epithelium.76,77 
Subsequent studies have demonstrated the differentiation 

adipogenic proteins including fatty acid-binding protein and 
lipoprotein lipase.41,43-45 Large soft tissue defects are common 
following trauma, burns, and oncological resections including 
mastectomy, as described above. The ability of ASCs to produce 
fat tissue definitely represents a promising avenue to reconstruct 
these various tissue defects.

Biomaterials for Adipose Tissue Engineering

Tissue-specific scaffolds are essential to differentiate ASCs and 
effectively construct three-dimensional (3D) tissues. Ultimately, 
the scaffold must degrade as it is replaced by healthy host tissue. 
A number of scaffold biomaterials have been investigated for the 
purpose of engineering adipose tissue, including synthetic scaf-
folds and naturally derived materials.46 Several factors must be 
considered when designing a scaffold, including its mechanical 
properties, degradation characteristics, immunogenicity, cellular 
response to the material, ease of handing in the clinic, and cost.47

Synthetic scaffolds have been used widely for adipose tissue 
engineering. The advantages of synthetic polymers include the 
ability to specifically tailor their mechanical, chemical, and deg-
radation properties.48 Considerable work has been performed 
using synthetic polymers such as poly(lactic acid) (PLA), poly-
glycolic acid (PGA), polyethylene terephthalate (PET), and 
poly(lactic-co-glycolic acid) (PLGA).48

PLA and PGA have been used for studies both in culture and 
in vivo and have the potential to support regenerated adipose tis-
sue.49-52 When ASCs were cultured on PLA-based scaffolds in 
the presence of adipogenic stimulants, they showed significant 
upregulation of adipogenic transcript levels and substantial lipid 
accumulation. However, the scaffolds rapidly degraded within 4 
weeks after implantation in a rat muscle pouch defect model.52 
Likewise, PGA, while showing promise to support adipogenesis 
in culture, also degrades rapidly in vivo.49-51,53,54 When mouse 
3T3-L1 cells, a preadipocyte cell line derived from disaggre-
gated Swiss 3T3 mouse embryos,55 were seeded on fibrous PET 
matrices, they acquired morphological and biological features of 
mature adipocytes.56 However, long-term studies have yet to be 
performed.

Newly formed adipose tissue was obtained when a combina-
tion of ASCs and PLGA spheres was injected into subcutane-
ous tissue of immune-deficient mice.57 Unfortunately, the new 
adipose tissue could not retain a specific shape because the 
implanted PLGA support rapidly disappeared after degradation. 
A separate study used PLGA scaffolds seeded with rat preadipo-
cytes prior to implantation and found maximum formation of 
adipose tissue at 2 months, followed by a decrease at 3 months, 
and complete absence of adipose tissue and PLGA at 5–12 mo.58 
Other synthetic materials have also been explored for adipose 
tissue engineering applications, and some show promise for 
potential soft tissue replacement. These include polytetrafluo-
roethylene (PTFE),59 polyethylene glycol diacrylate (PEGDA),60 
and polyethylene glycol (PEG).60,61 Whereas adipose tissue can 
be formed in vivo using synthetic scaffold-based tissue engi-
neering strategies, the long-term maintenance of adipose tissue 
remains elusive.
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approach is to incorporate epithelial cells, fibroblasts, endothe-
lial cells, adipocytes, and macrophages into a single platform. 
This, together with incorporation of adequate matrix scaffolds, 
will enable the generation of more complex, realistic mammary 
tissues.90

Conclusions

The field of tissue engineering offers great potential for abro-
gating the current limitations of breast reconstruction following 
tumor resection. The primary basis for any tissue-engineered 
construct is the cellular source that is used to initiate new tissue 
growth. ASCs provide an abundant and readily accessible source 
of multipotent stem cells. The use of stem cells expanded in 
culture and combined with novel biomaterials for organ recon-
struction offers a potential solution for tissue replacement. ASCs 
have several advantages over other sources of stem cells, the most 
important being their ease of availability. The ability of ASCs to 
differentiate into epithelial cells makes them a promising tool for 
breast reconstruction. With the evolution of biological micro-
fabrication, it is plausible to construct tissue models in which the 
biology, chemistry, geometry, and mechanics can be controlled 
at every length scale. Future studies are needed to demonstrate 
the safety and efficacy of adipocytes and epithelial cells derived 
from ASCs in animal models or clinically, either alone or in 
combination with novel biomaterial scaffolds.
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potential of ASCs into an epithelial lineage. Human ASCs were 
able to undergo epithelial differentiation in culture in the pres-
ence of all-trans retinoic acid. The differentiated cells displayed 
several epithelial characteristics including monolayer forma-
tion, the expression of the epithelial-specific marker cytokeratin 
18, and the formation of keratin fibers. The percentage of ASCs 
able to undergo epithelial differentiation as quantified by flow 
cytometry analysis was greater than 80%.78 Studies by several 
other groups suggest that the epithelial differentiation of ASCs 
can also be initiated by direct cell-cell or cell-matrix contacts,79,80 
or by secreted factors such as cytokines, interleukins, or growth 
factors present in conditioned media.75

Cells typically reside in a 3D microenvironment in vivo. 
Several recently developed techniques for microfabricating 
3D epithelial tissues hold promise for engineering these struc-
tures with a higher level of physiological and histological real-
ism.81-83 Our lab has developed an engineered tissue model of 
the mammary epithelial duct comprised of murine mammary 
epithelial tubules of arbitrary geometry embedded within a 3D 
type I collagen gel.81 A concentrated suspension of mammary 
epithelial cells is placed within micro-scale collagen cavities pre-
pared by replica micro-molding. Over a 24-h period, the cells 
form contacts with their neighbors, synthesize and assemble a 
basement membrane, and rearrange into a polarized epithelial 
tubule. When induced with growth factors, such as those that 
act downstream of ovarian hormones in vivo, these 3D epithe-
lial tissues undergo branching morphogenesis, thus expanding 
the epithelial tree.81 Importantly, these epithelial tissues can also 
be engineered within gels containing adipocytes,84 thus more 
closely approximating the native structure of the mammary 
gland (Fig. 2). This model has been used to analyze quantita-
tively the spatial and temporal dynamics of gene expression85,86 
and the mechanical stress profile during branching morphogen-
esis,87,88 as well as how the biophysical characteristics of the host 
microenvironment affect the invasive phenotype of breast tumor 
cells.89 Given that the mammary gland is composed of multiple 
cell types, one of the major challenges of the microfabrication 

Figure 2. Reconstructing the breast. Schematic of 3D microfabrication procedure used to build the mammary epithelial tissues. Preadipocytes are 
seeded in unpolymerized collagen. Cavities of collagen gel are generated by molding the cell-gel mixture around a patterned elastomeric stamp. In 
the presence of differentiation medium (DM), preadipocytes are induced to differentiate into adipocytes. Epithelial cells are then embedded into the 
cavities, which form hollow tubules conforming to the size and shape of the collagen cavities.
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