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Real-time gaze tracking provides crucial input to psychophysics studies and
neuromarketing applications. Many of the modern eye-tracking solutions are expensive
mainly due to the high-end processing hardware specialized for processing infrared-
camera pictures. Here, we introduce a deep learning-based approach which uses the
video frames of low-cost web cameras. Using DeepLabCut (DLC), an open-source
toolbox for extracting points of interest from videos, we obtained facial landmarks critical
to gaze location and estimated the point of gaze on a computer screen via a shallow
neural network. Tested for three extreme poses, this architecture reached a median error
of about one degree of visual angle. Our results contribute to the growing field of deep-
learning approaches to eye-tracking, laying the foundation for further investigation by
researchers in psychophysics or neuromarketing.
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INTRODUCTION

Tracking the point of gaze as a window to the internal state of the human mind is a key requirement
in cognitive tasks, where it is important to control the attention of human subjects. This application
has been the focus of classic studies (Yarbus, 1967), and more recently, the approach has been used
not only as a clinical tool to detect neurological and neuropsychiatric disorders by studying the
patients’ gaze patterns (Adhikari and Stark, 2017), but also has been shown to be useful in every-
day applications, such as analyzing the trustworthiness of phishing emails (McAlaney and Hills,
2020). While there are different existing technologies to eye tracking on the market, an affordable
and practical technology is still missing, limiting the use of this technique to a broader audience.

There are two major approaches to video camera-based eye-tracking: model-based and
appearance-based. Model-based approaches calculate the point of gaze using a 3D model of the
eye and the reflected infrared patterns on the cornea. Guestrin and Eizenman (2006) documented
that pose-invariance of gaze estimation is highly dependent on the number of cameras and infrared
light sources, suggesting a stronger pose-invariance when using more than a single infrared source
(see Eyelink 1000 system-SR Research, Mississauga, ON, Canada as an example of a pose-invariant
model-based eye-tracking system with an array of infrared LEDs). Chen et al. (2008) eliminated
the errors induced by the 3D model, using a novel mathematical approach. The appearance-
based approach uses only the video camera’s image data. Here, machine-learning techniques are
often used to map the extracted coordinates of facial landmarks to the respective point of gaze
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(Lu et al., 2017). This is a straightforward problem when the
subject’s head is stationary, leading to a simple transformation
of facial landmarks’ relative positions to the point of gaze.
However, when under various head poses, this transformation
would differ as a function of the specific head pose. Here,
machine learning-based approaches could estimate such complex
relations between the position of facial landmarks and the point
of gaze (Ranjan et al., 2018). But note that proposed open-source
machine learning approaches have not yielded sufficient accuracy
[>3 degrees visual angle (dva)] appropriate for psychophysics
experiments (Zhang et al., 2017; Lemley et al., 2018).

Hence, we propose a new appearance-based eye-tracking
method, using a simple webcam while maintaining the
advantages of previous approaches, helping to make eye tracking
available to a broader audience: it reduces the high acquisition
costs of eye-tracking systems [high-end devices cost up to 40,000€
(Rakhmatulin, 2020)] and could also be implemented in space-
restricted use cases (like mobile environments) where multiple
cameras and infrared light sources are not available.

We introduce a two-stage pipeline; Stage 1: We extract the
facial landmarks critical to the estimation of gaze from the
raw video frames. For this, we utilize the DeepLabCut (DLC,
version 2.1.6.2)1 toolbox, a deep learning-based object-tracking
framework widely used for motion tracking in animals, based
on hand-labeled landmarks (Mathis et al., 2018; Nath et al.,
2019). Stage 2: GazeNet, a shallow, self-developed feed-forward
neural network, maps the extracted landmark coordinates to the
gaze position. This pipeline yields sufficient accuracy while it
is not restricted to a single pose. Our results indicate that this
pipeline is a proof of concept for a low-cost, multi-pose robust
eye-tracking system.

MATERIALS AND METHODS

Recording
All data were recorded with a Logitech C922 Pro Stream
video camera (Logitech Europe S.A., Lausanne, Switzerland)
at a frame rate of 30 fps. For the tracking task, a 27-inch
(595 mm × 335 mm) 1440 p (2560 × 1440) iMac (Apple,
Cupertino, CA, United States) was used. All computations were
run on a Mac mini, 3.2 GHz i7, 16 GB RAM (Apple), no
dedicated graphics card.

Each recording session consisted of a small solid circle
traversing the screen horizontally, followed by a vertical
increment toward the bottom of the screen. This is repeated
in a continuous fashion until the vertical end is reached. This
behavioral paradigm lasted approximately 1 min (2.5 min for the
two additional subjects, because of more horizontal lines and a
slower movement of the circle). The subjects were asked to follow
the moving dot across the screen, while seated at a distance of
approximately 50 cm to the screen (eye distance to screen).

1Obtained from https://github.com/DeepLabCut/DeepLabCut, accessed on Mar 2,
2020, licensed under GNU Lesser General Public License v3.0.

To allow the subject to track the circle more easily, it slowed
down at direction changes. A speed-up during the long horizontal
paths kept the duration of the session short.

Because of the slow-down at the edges, more data points
were sampled toward the sides of the screen. To remove this
bias, the screen was divided into square regions with the side
length of 530 px. This resulted in 15 squares across the screen
surface, with the number of samples ranging between [28, 101]
(std = 26.8) ([42, 92] (std = 15.1) and [43, 96] (std = 16.2) for
the two additional subjects). We next took the smallest number of
points across the regions and randomly selected the same number
of points from all regions.

All the extracted data of three different poses were
combined into one dataset, which had a size of 3,569 frames.
Additionally, frames were removed from the dataset where the
likelihood score reported by DLC for at least one landmark
was below 0.7 (2.7% of all frames). This way, corrupted
frames, e.g., frames showing closed eyes, were omitted from
further analyses.

DeepLabCut
Frames with a low likelihood score were excluded using the DLC
network refinement function “extract_outlier_frames.”

The manual estimation of landmark positions was adjusted
using the function “refine_labels.”

For training the model using the new dataset, we first called the
setup function “create_training_dataset” and next, the function
“train_network.”

GazeNet
GazeNet is a shallow feed-forward artificial neural network,
implemented using PyTorch. It consists of 14 input neurons (the
x and y coordinates of the seven extracted facial landmarks).
The input layer was fully connected to the hidden layer
(N = 200 neurons; assigned heuristically by balancing between
error rate and convergence speed), implemented by a sigmoid
activation function. The hidden layer was also fully connected to
the output layer, consisting of two output neurons for the x and y
coordinate of the estimated point of gaze. Furthermore, GazeNet
uses the Stochastic Gradient Descent (SGD) method to accelerate
the process of finding the minimum of the loss function, with
a learning rate and momentum of 0.03 and 0.6, respectively,
also selected manually based on observing the resulting error
rate/convergence speed for the training and validation data.
Each 2,000-learning epochs, the learning rate is halved by a
scheduler to efficiently account for the increasingly smaller steps
toward an optimal solution. The number of frames examined
before adjusting GazeNet’s parameters in each epoch (batch size)
was set to four.

The chosen error function is a derivation of the mean squared
error (L2 loss):

L2 =

∑n
i = 1

(
ti − t̂i

)2

n

where n, t and t̂ denote the sample size, ground truth and the
estimated gaze location, respectively.
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FIGURE 1 | Outline of the algorithm architecture. (A) Video frames of the subjects captured while they are tracking a small circle on the screen (B) DeepLabCut
(DLC) is capable of tracking visual entities and is used to track the specific facial landmarks from the input video frames. An additional artificial neural network
(GazeNet) is provided with the landmark positions together with the respective coordinates of the moving stimulus presented on the screen. (C) GazeNet estimates
the coordinates of the target location on the screen based on the extracted facial landmarks.

FIGURE 2 | Facial landmarks and pose variants. (A) The red dots denote the landmarks tracked by DLC. (B) Schematic of the three different poses used to train
and evaluate GazeNet (human head model design obtained from Thingiverse.com, #758647, designed by lehthanis, license: CC BY-SA 3.0, modified neck, added
textures).

For the data used in this work, containing x and y coordinates,
the difference of the ground truth and the estimation is calculated
as follows:

t − t̂ =
(
tx, ty

)
−
(
t̂x, t̂y

)
=

(
1x, 1y

)
The loss function (in pixels) is calculated using the following

formula:

Epx =

∑n
i = 1

√
1x2

i +1y2
i

n

Next, we used the following formula to calculate the error in
degrees of visual angle from the error in pixels:

Edva = arctan
(

Epx
dmm
·
swmm

swpx

)
·

180
π

Epx, dmm, swmm, swpx denote the error in pixels, distance between
the subject’s eyes and the screen in mm, the screen width in mm
and the screen width in pixels, respectively.

RESULTS

To estimate the location of gaze using videos of the face, we
recorded video frames of a subject while the subject was tracking

a small circle moving on a maze traversing the whole surface
of the monitor. Initially, 50 (1.4% of all recorded) frames were
randomly chosen from the recordings and the following facial
landmarks were annotated manually: the two lateral corners,
the center of the pupil, the two medial corners and the central
point between the upper lip and the philtrum (see Figures 1A–
C, 2A). These landmarks were chosen to capture all important
data from the eyes and sufficient data of the head pose. The
annotation was performed using DLC’s graphical user interface
by the experimenter. For all steps concerning GazeNet, the center
of the pupil was estimated by averaging the Cartesian location
of the four corners of each pupil. The subject carried out the
task with three different head poses to ensure independence
of the measurements from the pose (Figure 2B). After the
selected frames were manually annotated (which took around
30 min), the data were used to train DLC to enable tracking the
landmarks (see Methods for details on which subroutines of DLC
were used for this).

The tracking accuracy was further improved by extracting
a set of 50 frames with a low likelihood2. The estimated
landmark positions in these frames are then adjusted manually,

2The likelihood score denotes the level of confidence for a tracked landmark,
ranging from 0 to 1 (unlikely to very likely, respectively).
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FIGURE 3 | GazeNet’s training course and visualization of error for the test data. (A) Course of loss value for the training and validation data, measured by the mean
Euclidean distance between the ground truth and the respective estimated location, across the training iterations (epochs). Error bars indicate the standard deviation
across 5 distinct training instances. (B) The deviation of the estimated points (computed by GazeNet) from the actual location of gaze (for test data). The arrows
point from the ground truth toward the estimated location. The outer borders show the boundaries of the monitor. (C) Encountered relative frequencies of the
estimation error’s magnitude (n = 30 bins). The vertical dashed line depicts the median.

so that faulty-labeled facial features are in their respective correct
position afterward. Next, the improved data are merged into
a new dataset. Finally, this dataset is used to further train the
current DLC model. The overall training time for DLC lasted
about 35 h and the extraction of landmarks’ coordinates by the
trained DLC from the frames lasted around 40 min. Next, these
coordinates were homogeneously normalized by 600 (camera
frames were as large as 500× 600 pixels). This ensures that while
the relative point positions do not change, all coordinates vary
between 0 and 1.

The resulting dataset (consisting of only landmark coordinates
and corresponding position of the circle on the screen) is then

split into three sets: a training set (50%), validation set (25%),
and testing set (25%). The training and validation sets are used
to train GazeNet.

The network undergoes 15,000 iterations (epochs) on the
training set, which lasted about 35 min. The network parameters
corresponding to the iteration with the highest accuracy
(calculated at a resolution of 10 iterations) over the validation set
are saved and used in the upcoming steps.

GazeNet was trained five times; each time, we selected
a random set of frames for training, validation and testing.
Figure 3A shows the training and validation loss based on the
five different runs for up to 15,000 iterations, to the point where
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FIGURE 4 | Location-wise analysis of GazeNet’s performance. (A) Magnitude of error based on the ground truth locations on the screen, calculated for different
regions of the screen. The color bar was limited to the value of the 95% upper bound of the encountered average errors. (B) Fitted linear regression on the distance
from the center of the screen versus error magnitude. (C) Distribution of the estimated point of gaze relative to the actual location of gaze. Position [0,0] indicates the
gaze location.

the training loss and validation loss reached a plateau. The
high similarity of the accuracy across different runs suggests an
independence of the training on the selected frames and the initial
parameters of the training algorithm.

The resulting estimations of a single run of the trained
GazeNet on the test set are shown in Figure 3B (lasting less
than 1 s for all frames). For every sample, an arrow was drawn
from the ground truth target location toward the estimated
location. Figure 3C shows the histogram of the encountered
error magnitudes representing their relative frequencies
(median = 1.29 dva). The histogram of error magnitudes for each
pose is presented in the Supplementary Figure 1.

To further analyze the encountered errors, we divided the
screen into 144 equally sized, square regions (of an edge length
160 pixels), for each of which the average error was calculated
for the corresponding target points (Figure 4A). The average of
the adjacent regions was used to calculate the error for regions
with no target points (only non-empty neighboring regions were
considered). A fitted linear regression across all the errors relative
to their distance (Euclidean) from the center (eccentricity) of
the screen shows no significant relationship (p-value of 0.208)
(Figure 4B), indicating that the estimation accuracy was not
systematically dependent on the eccentricity of the target. Using a
Gaussian kernel density estimation with a sample grid resolution
of 400 × 400 and a granularity of 12 levels to calculate the

probability density function, Figure 4C shows a larger error
along the horizontal axis. The estimated location is also slightly
shifted toward the left side of the target location. To check if
our trained algorithm would help detecting new subjects’ gaze
locations, we further used the already-trained DLC on two new
subjects performing a slightly different continuous gazing task
and reached comparable estimation results (see Figure 5). This
suggests that with a sufficiently generalized model of DLC, no
further training for new subjects will be required.

Table 1 shows where our setup stands compared to other
approaches that are appropriate for psychophysics studies in
terms of the size of computer screen, processing power, the
distance of camera to the subject. A commercial device was also
included as an example. This comparison shows that our method
is pose-invariant and applicable in limited space, while providing
a comparable accuracy at a low cost.

DISCUSSION

Cognitive neurosciences and neuromarketing rely on gaze
tracking (Lim, 2018; Zareian et al., 2020; Parto Dezfouli
et al., 2021; Veith et al., 2021); however, a proper solution
has been missing due to the high number of degrees of
freedom involved with the possible combinations of eye
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FIGURE 5 | Visualization of test results for two additional subjects. The top row and bottom row each show one subject’s results. (A,C) The deviation of the
estimated gaze position (computed by GazeNet) from the actual gaze position. The arrows point from the ground truth location toward the estimated position. The
outer borders represent the boundaries of the monitor. (B,D) Histograms of the relative frequencies of the estimations error’s magnitude, in degrees visual angle
(dva). The vertical dashed lines depict the median error. The two subjects’ data included 4068 and 4973 frames (top and bottom row panels, respectively), of which
3.3 and 2.3% were removed due to the DLC’s likelihood threshold.

and head movements. Here, we showed that by using a
recently introduced pose-estimation tool named DLC, the
dimensionality of gaze tracking could be reduced considerably
to estimate the point of gaze with a shallow artificial neural
network. Using the coordination of seven facial landmarks
necessary to capture the gaze-relevant information, our system
was able to estimate the gaze location with a median
accuracy of 1.29 dva.

Although the DLC here was trained on data from one of the
subjects, it was able to extract the relevant facial landmarks from

the other two subjects. The results for the additional two subjects
suggest that our approach’s performance should be robust for
other new subjects.

Our dataset here were recorded under a specific experimental
setting (lighting, screen-eye distance, room temperature,
elimination of distraction). Nevertheless, given DLC’s image
augmentation feature which simulates different environmental
settings by artificially modifying the low-level visual features
of input frames, we expect the algorithm to be robust also
against different environmental settings. Furthermore, there
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TABLE 1 | Comparison of the previous studies with our proposed approach.

Studies Error (dva) Estimated price ($) Pose-
invariance

Tested for
online use

# Cameras Camera
model

Analysis
approach

Additional
drawbacks

Ours (Zdarsky
et al.)

1.29 < 100 � × 1 Logitech
C922 Pro
Stream
video

camera

Appearance-
based using
deep neural

networks and a
shallow neural

network

Chen et al.,
2008

1 400–1000 � � 2 MINTRON
MTV-

03K9HE

Model-based
with noise
reduction

Takes
considerable
space (due to

the stereo
camera and
infrared light

sources)

Lemley et al.,
2018

3.64 < 100 � � 1 Normal
webcams

Appearance-
based with a
convolutional

neural network

Lu et al., 2011 0.62 < 100 × × 1 Not
specified

Appearance-
based with

linear
regression

Tobii TX300
(Tobii,

Stockholm,
Sweden)

0.4 > 40, 000 � � Not
specified

Not
specified

Model-based

are other sources of variability which may affect the stability
of our framework’s results; our framework shall therefore be
tested using different video cameras of different resolutions, for
a higher number of poses and yet a higher number of different
environmental settings as simulated by DLC’s pipeline. Ideally,
testing the sensitivity to these sources of variability would depend
on the specific use case of our approach. For instance, in a mobile
web-based marketing application, where customers’ attention
to different sections of an e-marketing website is measured,
the framework should be tested for stability against a potential
continuous change of the subjects’ head position.

We observed that the error along the X-axis is larger than
the error along the Y-axis (Figure 4C). This could be due to the
horizontal motion of the tracked dot being faster than the vertical
speed. This may have given rise to a less accurate pursuit of the
dot by the subject on the horizontal axis. Future studies could
resolve this issue by either using a modified path for the dot with
curved corners, or sequentially presenting a series of dots on a
grid of locations to avoid the artifact of speed differences on the
accuracy of the gaze-following behavior.

Even though the dataset was only from one subject, our results
indicate that this system is comparable in accuracy, but can be
built at a fraction of the cost of other systems. Training our
architecture using data from a large-scale dataset [like MPIIGaze
(Zhang et al., 2019)], with videos of multiple subjects, a multitude
of poses under improper lighting conditions, may help reach
higher levels of generalizability. This is not only true for DLC, but
also for GazeNet, which may become more generalized using data
from different subjects and further train the model based on prior

training. However, the shallow design might limit the efficiency
of the learning process in terms of generalizability. The overall
training time as well as the feature extraction time needed for
both DLC and GazeNet could be considerably lowered by using a
GPU instead of a CPU. For instance, 682 × 540 pixel frames can
be processed at around 30 Hz on an NVIDIA GTX 1080 TI GPU,
while videos with a frame size of 204× 162 could be processed at
around 85 Hz (Mathis et al., 2018).

DeepLabCut’s accuracy can be increased by using videos with
a higher quality as input (using a higher-resolution camera) or by
using a larger number of labeled frames. The performance could
be further improved by optimizing GazeNet’s parameters (e.g.,
number of hidden layers and their respective neurons, learning
rate and scheduling parameters) using automatic hyperparameter
optimization strategies.
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