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INTRODUCTION 
 

Colorectal cancer (CRC) is a common malignancy 

throughout the world. CRC accounts for 8% of all 

cancer-related deaths [1], and the incidence of CRC is 

increasing, especially in Asian countries [2]. Colon 

adenocarcinoma (COAD), which accounts for 90% of 

all CRCs, is the most common histologic subtype [3]. 

Despite advances in technology, patients with COAD 

still have a poor prognosis, especially when metastasis 

to the lymph nodes or distant organs is present. 

Therefore, understanding the underlying mechanisms in 

COAD is important to provide new concepts for novel 

therapies for advanced COAD [4].  

 

MicroRNAs (miRNAs), a family of noncoding RNAs, 

are prevalent in multicellular and complex eukaryotes  

 

and participate in various physiologic processes of cells, 

including posttranscriptional regulation of gene 

expression [5, 6]. In cancer, miRNAs regulate various 

biologic processes of tumor cells, including proliferation, 

migration, and apoptosis [7, 8]. Notably, aberrant 

expression of miRNAs contributes to development and 

progression of COAD [9]. The strong evidence that 

dysregulation of miRNAs contributes to COAD patho-

genesis provides a rationale for targeting miRNAs in 

cancer treatment.  

 

Using bioinformatic analysis, miRNAs that exhibit 

oncogenic activity in carcinogenesis have been 

identified, including miR-21 [10], miR-155 [11], and 

miR-142 [12]. Literature indicates that miR-31-5p is 

overexpressed in diverse tumor types [13], and studies 

have explored its role in lung and breast cancer 
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Overexpression of the miR-31-5p contributes to tumorigenesis and metastasis in diverse neoplasms. In this 
study, we evaluated expression of miR-31-5p in patients with colon adenocarcinoma (COAD). We found that 
miR-31-5p was overexpressed in four cohorts (GSE30454, GSE41655, GSE18392, GSE108153) of COAD 
patients. Importantly, a LinkedOmics analysis revealed that high miR-31-5p expression was associated with 
poor overall survival of COAD patients. At total of 133 putative target genes of miR-31-5p were identified 
from TargetScan, miRDB, and TargetMiner. After integrating the target genes with 1,556 deregulated genes 
in COAD, 8 were acquired that may be targeted by miR-31-5p and contribute to COAD progression. Among 
these, tensin 1 (TNS1) showed the greatest prognostic ability in COAD and was strongly correlated with M2 
macrophages, regulatory T cells, and other immune cells. These findings indicate that, in COAD, miR-31-5p is 
a potential prognostic factor that affects immune infiltration by targeting TNS1. 
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metastasis [14, 15]. However, the underlying 

mechanisms of the role of miR-31-5p in COAD remain 

unknown. Although it has been postulated that miR-31-

5p regulates the WNT and Hippo signaling pathways to 

promote epithelial regeneration following injury [16, 

17], we wanted to investigate its function in COAD. 

Thus, we aimed to evaluate the prognostic value of 

miR-31-5p and its putative oncogenic functions in 

COAD and demonstrate the underlying potential 

mechanism through data mining. 

 

RESULTS 
 

miR-31-5p expression in COAD  
 

To evaluate the expression level of miR-31-5p in 

various cancers, we performed a systematic pancancer 

analysis based on The Cancer Genome Atlas (TCGA) 

and Genotype-Tissue Expression (GTEx) miRNA 

databases. The results showed that miR-31-5p is over-

expressed in many tumor types, including CRC, breast 

cancer, lung squamous cell carcinoma, liver 

hepatocellular carcinoma, and head and neck cancer 

(Figure 1A). To further validate high expression of 

miR-31-5p in COAD, microarray data from GEO 

databases were collected and comparisons between 

COAD and normal colon tissues were conducted by 

GEO2R. COAD tissue had significantly higher miR-31-

5p expression than the control group tissue in the 

GSE30454, GSE41655, GSE18392, and GSE108153 

data sets (Figure 1B).  

 

Correlation between miR-31-5p expression and 

clinical characteristic of COAD patients 

 

To assess whether miR-31-5p could be used as a 

prognostic predictor of COAD, a Kaplan-Meier curve 

was generated using the LinkedOmics Database. As 

depicted in Figure 2A, 2B, no statistical difference  

in survival outcome was observed between COAD 

patients exhibiting lower and higher expression of  

miR-31-5p (P = 0.091). Because the miR-31-5p 

expression in COAD patients was significantly different 

depending on pathologic N stage (P = 0.038), we

 

 
 

Figure 1. Expression validation of miR-31-5p. (A) Pancancer expression of miR-31-5p in GEDS. (B) Upregulation of miR-31-5p in the 
microarrays tissues, based on Gene Expression Omnibus (GEO) data sets. Notes: a, GSE18392; b, GSE108153; c, GSE30454; d, GSE41655. 
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further evaluated the prognostic value of miR-31-5p in 

different pathologic stages and found that high miR-31-

5p expression was significantly correlated with a poor 

prognosis in patients with pathologic stage IV COAD 

(P = 0.016). In COAD patients with microsatellite 

stability (MSS) phenotype, miR-31-5p expression was 

significantly different depending on histologic type (P = 

5.97e–4), number of involved lymph nodes (P = 2.5e–3), 

and pathologic stage (P = 5.4e–3).  

 

In silico exploration of miR-31-5p targets and their 

prognostic value  

 

To identify the mechanisms underlying miR-31-5p 

involvement in different biologic processes of COAD 

development, the potential targets of miR-31-5p were 

identified with miRWalk 3.0 target prediction tools. We 

retrieved target sets from three website servers: 

TargetScan, miRDB, and TargetMiner. The results of 

the three predicted target gene sets were integrated by 

drawing a Venn diagram. One hundred thirty-three 

overlapping genes were identified as promising targets 

of miR-31-5p (Figure 2C).  

 

From GEPIA, 1,556 deregulated genes (DEGs) in 

COAD were identified (Figure 2D). The thresholds of 

DEGs were set as follows: | Log2 fold change (FC) | ≥ 2 

and P value < 0.01. After integrating the 133 miR-31-5p 

target genes with the 1,556 DEGs in COAD, we 

identified 8 specific genes (SLC6A6, SATB2, TNS1, 

KRT80, FGF7, CACNB2, MAP1B, and DMD) that 

might be targeted by miR-31-5p and play a role in 

COAD progression (Figure 2E). Expression of the 8 

genes was evaluated using the UALCAN database. As 

shown in Figure 3A, 6 genes (SATB2, TNS1, FGF7, 

CACNB2, MAP1B, and DMD) were underexpressed  

in tissue samples of COAD patients, which might  

be related to the overexpression of miR-31-5p in 

COAD. CBioPortal for Cancer Genomics (cBioPortal, 

https://www.cbioportal.org/) was applied to explore 

genetic alterations of these 6 genes. Analysis showed 

that DMD, TNS1, and MAP1B are the most frequently 

altered genes with a high ratio of missense mutations 

based on 619 samples from DFCI COAD data sets 

(Figure 3B).  

 

Validation of TNS1 expression and its prognostic 

value  

 

To further determine the prognostic value of the 6 genes 

in COAD, we performed an overall survival (OS) 

analysis using GEPIA tools, which showed that high

 

 
 

Figure 2. Prognostic value of miR-31-5p and target genes related with COAD. (A, B) Kaplan-Meier curve for miR-31-5p in clinical 
COAD samples. The P values of the Kaplan-Meier curve for COAD patients and pathologic stage IV COAD patients were 0.091 and 0.017, 
respectively. (C) Integration of miR-31-5p predictive genes from TargetScan, miRDB, and TargetMiner. (D) The differentially expressed genes 
in COAD retrieved from GEPIA. The thresholds were set as follows: | Log2 fold change (FC) | ≥ 2 and P value<0.01. (E) Venn diagram for 
overlap analysis of miR-31-5p target genes related to COAD. 

https://www.cbioportal.org/
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expression of TNS1 is correlated with a poor prognosis 

(P = 0.03). Furthermore, the prognostic value of TNS1 

was validated using LinkedOmics (P = 0.055), the 

UALCAN database (TCGA samples; P = 0.022), and 

the PrognoScan database (P = 0.019; expression 

histogram: 221747_at) (Figure 4A–4D). Data from 

LinkedOmics indicated that expression of TNS1 is 

significantly different depending on number of involved 

lymph nodes, pathologic N stage, and pathologic stage 

(P = 0.005, 0.011, and 0.048, respectively). TNS1 

protein levels in COAD and normal colon tissues were 

acquired from The Human Protein Atlas (THPA) and 

are presented in Figure 4E. Distinctly positive TNS1 

protein was observed in the epithelium of normal colon 

tissues, whereas the majority of malignant cells 

displayed weak cytoplasmic immunoreactivity. 

 

Correlation of TNS1 expression with immune 

infiltration level in COAD  
 

We assessed the correlation of TNS1 expression with 

immune infiltration level in COAD using TIMER. As 

shown in Figure 5, TNS1 expression was significantly 

correlated with tumor purity, macrophages (r = 0.602, P 
= 3.15e–41), CD4+ T cells (r = 0.527, P = 3.92e–30), 

dendritic cells (r = 0.468, P = 3.19e–23), and neutrophils 

(r = 0.403, P = 4.38e–17). The correlation of TNS1 

expression with T cells was further evaluated using 

GEPIA, which indicated TNS1 is closely associated 

with naïve T cells (r = 0.43, P = 4.3e–14), effector T cells 

(r = 0.48, P = 0), central memory T cells (r = 0.43, P = 

4.4e–14), resident memory T cells (r = 0.41, P = 1.3e–12), 

exhausted T cells (r = 0.42, P = 3.9e–13), resting 

regulatory T (Treg) cells (r = 0.43, P = 1.3e–13), and 

effector Treg cells (r = 0.41, P = 1.1e–12). In addition, 

correlation of TNS1 with markers of the M1 (PTGS2, 

IRF5) and M2 (CD163, MS4A4A) phenotypes was 

analyzed, resulting in correlation indices of 0.1, 0.21, 

0.44, and 0.48, with P values of 0.087, 0.00, 1.4e−14, and 

0.00, respectively (Figure 6). The results suggest that 

TNS1 is more closely related to M2 than M1, indicating 

TNS1 might regulate macrophage polarization in 

COAD. 

 

DISCUSSION 
 

MiR-31 is a significant prognostic predictor in various 

neoplasms [18] and plays a major role in regulating 

tumorigenesis in ovarian, breast, lung, and renal cell 

carcinoma [19–21]. RNA immunoprecipitation results 

from a microarray study showed that LINC01116 

competed with VEGFA to bind with miR-31-5p in 

tumorigenesis of glioma [22]. Studies have shown that 

miR-31 expression correlates inversely with metastasis in 

breast cancer patients, which is achieved via coordinated 

repression of RhoA [14]. In addition, miR-31

 

 
 

Figure 3. Expression and mutation analysis of miR-31-5p target genes related to COAD. (A) Expression of integrated genes in 
COAD and normal tissues based on TCGA samples analyzed by the UALCAN database. (B) OncoPrint of integrated gene alterations in COAD. 
Genomic alterations of the 8 genes are mutually exclusive.  
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is also involved in immune and inflammation responses, 

such as regulating T-cell exhaustion during chronic 

viral infection [23] and acting as a negative regulator of 

the noncanonical NF-κB pathway in adult T-cell 

leukemia [24].  

 

The role of miR-31 in COAD has been explored in 

several studies. In one study, exogenetic overexpression 

of miR-31 was shown to promote COAD cell growth, 

invasion, and migration in vitro by repressing its target 

gene SATB2 [25]. In addition, elevated expression of 

the long noncoding RNA MIR31HG, the host transcript 

of miR-31-5p, has been associated with poor prognosis 

in COAD patients independent of consensus molecular 

subtypes and cytotoxic T lymphocyte and fibroblast 

infiltration [26]. Recent studies also revealed that miR- 

 

 
 

Figure 4. Kaplan-Meier curve and histochemistry for TNS1 in clinical COAD samples. (A) Kaplan-Meier curve for TNS1 of COAD 
patients analyzed in the LinkedOmics database. (B) Kaplan-Meier curve for TNS1 of COAD patients analyzed in the UALCAN database. (C) 
Kaplan-Meier curve for TNS1 of COAD patients analyzed in GEPIA. (D) Kaplan-Meier curve for TNS1 of COAD patients analyzed in the 
PrognoScan database. (E) Histochemistry of TNS1 in normal colon and colorectal adenocarcinoma tissues. The expression distribution of TNS1 
in normal colon tissue and CRC patient samples was evaluated in THPA. Normal HPA036089 (ID1857) and tumor HPA036089 (ID 3550) were 
presented.  
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31-5p may be a useful prognostic biomarker for anti-

EGFR therapy in CRC because high miR-31-5p 

expression was associated with shorter progression-free 

survival [27]. Furthermore, a comprehensive miRNA 

expression profiling study identified elevated miR-31-

5p expression in BRAF-mutant COAD, which 

highlights its possible functional role in the serrated 

pathway [28]. In addition, miR-31-5p is also associated 

with resistance to chemotherapy, such as oxaliplatin 

[29] and sorafenib [20]. 

 

The present study evaluated miR-31-5p expression level 

in a pancancer analysis and concluded that miR-31-5p is 

broadly overexpressed in most neoplasms, indicating 

that miR-31-5p might be a clinically useful biomarker 

for human malignancies. Our Kaplan-Meier plot 

revealed that miR-31-5p contributed to tumor 

progression based on pathologic stage, suggesting miR-

31-5p might contribute to tumorigenesis in COAD. In 

addition, a previous study reported that miR-31-5p is 

upregulated in all four murine COAD stages and one of 

the most upregulated miRNAs in the earliest stages, 

suggesting it may be involved in COAD initiation [30]. 

Based on out study, miR-31-5p could be involved in 

both the initiation and metastasis of COAD.  

 

To elucidate the potential mechanism of miR-31-5p 

involvement in COAD, a computational target prediction 

was performed, which identified a pivotal miR-31-5p 

target gene, TNS1, which is downregulated in COAD 

patients and closely correlated with COAD progression. 

This is consistent with a recent study that found  

that TNS1 level was negatively correlated with miR-31 

in COAD tumor tissues [31]. TNS1 is a key component 

of specialized cellular adhesions that bind to extra-

cellular fibronectin fibrils [32]. One study demonstrated 

that TNS1 was expressed in normal tissues but had 

greatly reduced expression in tumor tissues [33] and 

was associated with tumorigenesis. However, it is 

controversial whether TNS1 plays a negative or positive 

role in carcinogenesis. Zhou et al. reported that TNS1 

was highly expressed in human CRC cell lines SW620 

and RKO and promoted CRC cell proliferation and 

invasion [34]. Zhang et al. reported that miR-548j 

promoted human breast cancer invasiveness by 

downregulating TNS1 expression [33]. An in vitro 

study indicated that higher expression of TNS1 

promoted metastasis [35]. Interestingly, we observed 

that TNS1 was markedly decreased in COAD samples; 

however, OS analysis showed that high expression of 

TNS1 was correlated with poor survival outcome. A 

recent study demonstrated that TNS1 is required for 

fibronectin fibrillogenesis on extracellular vesicle 

fractions by promoting clustering of extracellular 

matrix–bound integrins and that its depletion 

significantly inhibits pulmonary metastasis [36].

 

 
 

Figure 5. Correlation of TNS1 expression with immune infiltration level in COAD. TNS1 expression is significantly correlated with 
tumor purity and has strong correlations with macrophages, CD4+ T cells, dendritic cells, and neutrophils.  
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Phospho-TNS1 was highly elevated in EMT cells after 

TGFβ treatment and was specifically observed  

in tissue samples of patients with poor-prognosis  

lung adenocarcinoma [37]. Based on this evidence, 

TNS1 negatively impacts COAD tumorigenesis and 

may accelerate metastasis by regulating epithelial to 

mesenchymal transition (EMT). 

 

Immune infiltrate correlation analysis indicates that 

TNS1 is strongly correlated with macrophages, which 

are the most abundant hematopoietic cells in the COAD 

tumor microenvironment (TME) [38]. We speculate that 

TNS1 may play an important role in COAD TME. It is 

believed that M1 and M2 macrophages are active in 

tumor prevention and tumor promotion, respectively. 

Our results indicate that TNS1 is more closely 

associated with M2 macrophages, suggesting TNS1 

might negatively affect tumorigenesis of COAD by 

enhancing M2 polarization. Because a high Treg cell 

ratio in tumors is associated with poor survival [39], the 

relationship between TNS1 and Treg cells observed in 

the present study further validates the involvement of 

TNS1 in COAD tumorigenesis. In fact, previous reports 

have indicated that miR-31 can mediate immune 

reaction. However, whether miR-31 interacts with 

tumor-infiltrating immune cells by targeting TNS1 and 

whether miR-31 plays different roles in CRC according 

to microsatellite instability status warrant further 

investigation. In addition, although miR-31 has been 

validated as a pivotal marker involved in COAD, a 

combination of different markers may provide better 

prognostic prediction [40, 41].  

 

In summary, the current study confirmed the 

overexpression of miR-31-5p in COAD. More 

importantly, miR-31-5p may be a latent tumor biomarker

 

 
 

Figure 6. Correlation of TNS1 expression with immune infiltration level in COAD. TNS1 is closely related with abundance of T cells 
and has a stronger relationship with macrophage M2 cells than M1 cells.  
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that can serve to predict prognosis in patients with 

COAD, especially in those with pathologic stage IV 

disease. Bioinformatics analyses identified TNS1 as a 

potential gene targeted by miR-31-5p that may regulate 

immune cell infiltration and play a vital role in TME 

and tumorigenesis of COAD. 

 

MATERIALS AND METHODS 
 

Expression level of miR-31-5p in COAD 
 

Gene Expression Display Server (GEDS, http://bioinfo. 

life.hust.edu.cn/web/GEDS/) was used to explore the 

expression pattern of miR-31-5p in COAD [42]. 

GEDS is a platform that collects 40 tissues and 1,594 

cells lines from The Cancer Genome Atlas (TCGA), 

Genotype-Tissue Expression (GTEx), Cancer Cell 

Line Encyclopedia (CCLE), and MD Anderson Cell 

Lines Project (MCLP), providing information  

on human gene, miRNA, and protein expression in 

tissues and cell lines. In addition, we collected 

microarray data from the GEO database (GSE30454, 

GSE41655, GSE18392, and GSE108153) to compare 

the expression of miR-31-5p in COAD and normal 

tissue.  

 

Analysis of survival and miR-31-5p in COAD 

 
The correlation between miR-31-5p and survival in 

COAD was analyzed using the LinkedOmics database 

(http://www.linkedomics.org/) [43]. The LinkedOmics 

database collected multiomics data and clinical data of 

32 cancer types from The Cancer Genome Atlas 

(TCGA) project. The thresholds were set according  

to the following steps: Step 1: TCGA_Colorectal 

adenocarcinoma (COADREAD); Step 2: miRNASeq, 

HS miR platform; Step 2b: histological_type colona-

denocarcinoma [N:391]; Step 3: miR-31-5p; Step 4: 

TCGA_COADREAD, Clinical data type, clinical 

platform; and Step 5: Non-Parametric Test (Attribute 

Dependent).  

 

Prediction of miR-31-5p targets  
 

To identify the targets of miR-31-5p, we searched the 

miRNAwalk3.0 website (http://mirwalk.umm.uni-

heidelberg.de/), and three databases (TargetScan, 

miRDB, and TargetMiner) were mined. Only those 

genes predicted by all three databases were 

recognized as target genes. Then, we collected 

differentially expressed genes (DEGs) associated with 

COAD from the Gene Expression Profiling Interactive 

Analysis (GEPIA) online database (http://gepia. 

cancer-pku.cn/). Genes that were both miRNA target 

genes and COAD-related genes were determined 

using a Venn diagram. 

Expression and survival analysis of overlapping 

genes 

 

The expression and methylation of overlapping genes 

were evaluated using the UALCAN database (http:// 

ualcan.path.uab.edu/index.html) [44]. To evaluate the 

prognostic value of overlapping genes in COAD, we 

analyzed the overall survival (OS) rate of those genes in 

COAD using the GEPIA tool. The thresholds were set 

as follows: median group cutoff, 95% confidence 

interval, and P = 0.05 significance level. Then, we 

further validated the OS of those genes in COAD using 

UALCAN database and PrognoScan (http://dna00. 

bio.kyutech.ac.jp/PrognoScan/) [45]. In addition, 

immunohistochemical results of pivotal targeted genes 

in normal colon tissue and COAD tissue were obtained 

from The Human Protein Atlas (THPA, https://www. 

proteinatlas.org/).  

 

Gene correlation analysis with immune infiltration 

 

The online TIMER database was used to assess the 

correlation of gene expression with the level of immune 

infiltrates [46]. The gene module in TIMER allows 

users to analyze the gene expression with CD4+ T cells, 

CD8+ T cells, macrophages, dendritic cells, and 

neutrophils. Furthermore, the gene expression with the 

T-cell infiltrates in COAD were confirmed using 

GEPIA.  
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