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Osteoarthritis by Maintaining
Transforming Growth Factor-b1-
Induced Expression of Tissue
Inhibitor of Metalloproteinase-3 via
the Phosphatidylinositol 3-Kinase/Akt
Pathway
Weiwei Lu, Zhiyi He, Jia Shi , Zhenggang Wang, Wei Wu, Jian Liu , Hao Kang*, Feng Li*
and Shuang Liang

Department of Orthopaedics, Tongji Hospital, Tongji Medical College, HuazhongUniversity of Science and Technology,Wuhan, China

AMD3100 is a small-molecule inhibitor of the C-X-C motif chemokine ligand 12/C-X-C
chemokine receptor type 4 (CXCL12/CXCR4) axis, while its role in aggrecan metabolism is
unclear. We hypothesized that the AMD3100 modulates the transforming growth factor-b1
(TGF-b1)-induced expression of tissue inhibitor of metalloproteinase-3 (TIMP-3) in
chondrocytes. We evaluated expression of CXCL12/CXCR4 and TIMP-3 in the knee
joints of rats with and without osteoarthritis (OA) by immunohistochemistry,
immunofluorescence, Western blotting, and enzyme-linked immunosorbent assay
(ELISA). The rats were divided into sham control, destabilization of the medial meniscus/
AMD3100-treated (DMM/AMD3100-treated), and DMM/phosphate-buffered saline (PBS)-
treated groups. After 6 weeks, the rats were euthanized and subjected to histological and
immunohistochemical analyses. Also, interleukin (IL)-1-pretreated primary chondrocytes
were cultured in the presence of empty control (−, −), CXCL12a (+,−), CXCL12a + small
interfering RNA (siRNA) CXCR4 (+,+), or CXCL12a + siNC (+NC), and the expression levels
of target markers were evaluated by Western blotting and real-time reverse transcription
PCR (RT-PCR). The CXCL12/CXCR4 levels were higher, and the expression of TIMP-3 was
lower, in the OA rats compared to the healthy control rats. The rats in the DMM/AMD3100-
treated group revealed a markedly decreased immunological response and mild pathology.
Treatment with CXCL12a increased expression of aggrecan and disintegrin and
metalloproteinase with thrombospondin motifs-5 (ADAMTS-5) and suppressed that of
TIMP-3 in IL-1-pretreated primary chondrocytes. TGF-b1 increased expression of TIMP-3,
and this increase was reversed by CXCL12a via the phosphatidylinositol 3-kinase (PI3K)/Akt
signaling pathway. Moreover, these effects were inhibited by the CXCR4 antagonist
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AMD3100 and the PI3K inhibitor LY303511. In conclusion, inhibition of the CXCL12a/
CXCR4 signaling axis maintained TIMP-3 expression via the PI3K/Akt pathway. Our findings
provide insight into the mechanism by which AMD3100 prevents OA.
Keywords: AMD3100, CXCL12a/CXCR4, post-traumatic osteoarthritis, TIMP-3, PI3K/Akt signaling pathway
INTRODUCTION

Osteoarthritis (OA) is a common chronic disease and a leading
cause of chronic pain and physical disability, afflicting over 15%
of the elderly population (Yelin et al., 2019). Unfortunately, there
is no effective treatment for OA because its pathogenesis is
unclear (Vinatier et al., 2016; Chen et al., 2017).

Progressive deterioration and loss of articular cartilage is
crucial in the pathogenesis of OA (Onuora, 2015; Bortoluzzi
et al., 2018). Type II collagen and aggrecan are important
structural components of the cartilage extracellular matrix
(ECM) and are the primary determinants of the mechanical
properties of cartilage. Type II collagen has a three-helical
network structure and provides the structural strength and
elasticity of articular cartilage. Multiple aggrecan monomers
bind to hyaluronan and to link proteins to fill the interstices of
the collagen network, which plays a role in lubrication and
resistance to compression. Because aggrecan prevents
degradation of collagen fibrils, its loss is an important event in
early stage OA (Wilusz et al., 2014; Carballo et al., 2017). Matrix
metalloproteinases (MMPs), particularly the collagenase matrix
metalloproteinase 13 (MMP-13), are involved in degradation of
type II collagen (Wang et al., 2013a; Onitsuka et al., 2018), and
disintegrin and metalloproteinase with thrombospondin motifs-
5 (ADAMTS-5) is responsible for degradation of aggrecan
(Malfait et al., 2010; Verma and Dalal, 2011; Larkin et al., 2015).

Tissue inhibitor of metalloproteinase-3 (TIMP-3) is an
inhibitor of aggrecanases, which implies that TIMP-3 functions
as an endogenous inhibitor of these enzymes (Kashiwagi et al.,
2001; Li et al., 2014). Therefore, the mechanism by which TIMP-
3 protein levels are regulated in patients with arthritic diseases
warrants further investigation.

C-X-C motif chemokine ligand 12 (CXCL12), also known as
stromal derived factor-1 (SDF-1), belongs to the CXC
chemokine subfamily. In joint tissues, CXCL12 is produced
mainly by synovial fibroblasts, while CXCR4, the G-protein
coupled receptor, is expressed in chondrocytes (Kanbe et al.,
2002; Nagasawa, 2014). CXCL12 plays a protective role at
low concentrations, but can be destructive at high
concentrations.(Kitaori et al., 2009; Villalvilla et al., 2014).
CXCL12/C-X-C chemokine receptor type 4 (CXCR4) may play
a crucial role in the progression of OA. CXCL12 levels are
markedly increased in the knee-joint fluid of patients with
rheumatoid arthritis and of those with OA. CXCL12 also
regulates the catabolic activity of chondrocytes by stimulating
the release of matrix metalloproteinases and aggrecanases in
vitro (Kanbe et al., 2002; Chinni et al., 2006; Lu et al., 2016). The
CXCL12/CXCR4 axis plays a major role in the repair of cartilage
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by acting as a chemoattractant for inflammatory and stem cells
(Brand et al., 2005; Hu et al., 2013; Wang et al., 2017). The
CXCL12/CXCR4 axis may therefore play dual roles in early stage
OA. In this study, we evaluated the effect of the CXCL12/CXCR4
axis on TIMP-3 expression in rats with post-traumatic
osteoarthritis (PTOA) and explored the underlying mechanism
(s). First, we evaluated the levels of CXCL12/CXCR4 and TIMP-
3 in rats with early stage OA compared to healthy control rats.
Second, we induced OA in rats by destabilizing the medial
meniscus (DMM) and assessed the effect of AMD3100 on
progression of OA and expression of TIMP-3. Third, we
extracted and cultured rat primary chondrocytes with untreated
control, siNC + CXCL12a, CXCL12a, or small interfering RNA
(siRNA) CXCR4 + CXCL12a and assayed the aggrecan (ACAN),
transforminggrowth factor-b1 (TGF-b1),TIMP-3, andADAMTS-
4/5 protein and mRNA levels. Fourth, we explored the role of
mitogen-activated protein kinase (MAPK) signaling in CXCL12/
CXCR4-mediated activation of TIMP-3.
RESULTS

Expression of TIMP-3 Was Low and That
of the CXCL12/CXCR4 Axis Was High in
Rats With OA
We reported previously that SDF-1a induced expression of
ADAMTS and speculated about the underlying mechanism. To
investigate further the mechanism by which the CXCL12/CXCR4
axis mediates aggrecan metabolism, we determined the protein
levels of components of the CXCL12/CXCR4 axis and of TIMP-3
in the knee synovium and cartilage of OA rats and healthy control
rats using Western blotting. CXCL12/CXCR4-axis protein levels
were significantly higher in OA rats than in healthy control rats.
OA rats also exhibited lower TIMP-3 expression levels. (Figures
1F, G). Also, enzyme-linked immunosorbent assay (ELISA)
revealed elevated CXCL12 protein levels in the knee synovial
fluid of the OA rats (Figure 1C). Immunofluorescence staining
showed that 92.2% of chondrocytes and 62.7% of synoviocytes in
the OA rats were positive for CXCR4, compared to 11.2 and 5.2%,
respectively, in the healthy control rats (Figures 1A, B).
Furthermore, in the superficial zone of the cartilage of OA rats,
12.6% of chondrocytes were positive for TIMP-3 and there was
considerable loss of proteoglycan (Figures 1D, E). These changes
are directly related to aggrecan metabolism in OA. By
comparison, 72.2% of chondrocytes were positive for TIMP-3
and the loss of proteoglycans was reduced in the healthy control
rats (Figures 1D, E).
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AMD3100 Suppressed Cartilage Destruction
and Alleviated the Severity of OA
Safranin orange staining and immunohistochemistry showed
proteoglycan loss, cartilage damage, and decreased TIMP-3
expression in the knee joints of DMM/phosphate-buffered saline
(PBS)-treated rats. Cartilage destruction was significantly alleviated
in the sham control- and DMM/AMD3100-treated groups (Figure
2A). The Mankin score was lower (4.6 points; p < 0.05) in the
DMM/AMD3100-treated group than in the DMM/PBS-treated
group (9.4 points); while the scores of the sham control- and
DMM/AMD3100-treated groups did not differ significantly (p >
0.05; Figure 2B). The rats in the DMM/PBS-treated group also
showed significantly attenuated cartilage thickness (Figure 2C) and
a significantly reduced level of proteoglycan (Figure 2D).
AMD3100 treatment prevented joint destruction and loss of
proteoglycan, as indicated by the low Mankin score (Figure 2B),
and preserved cartilage thickness (Figure 2C). Quantification of
safranin orange staining of cartilage in the rats in the PBS-treated
group revealed a 66.4% decrease in proteoglycan loss, while the rats
in the sham control- and AMD3100-treated groups showed little
proteoglycan loss (Figure 2D). Finally, TIMP-3 expression was
maintained by AMD3100 (p < 0.05; Figure 2E).

Blocking the CXCL12/CXCR4 Axis
Maintained the Interleukin-1-Induced
Expression of TIMP-3 and Aggrecan, and
Enhanced the Expression of ADAMTS-5
and TGF-B1
To verify the role of the CXCLL2/CXCR4 axis in TIMP-3
activation in vitro, we assessed the effect of CXCL12a on
Frontiers in Pharmacology | www.frontiersin.org 3
markers of aggrecan metabolism—aggrecan, ADAMTS-5,
TIMP-3, and TGF-b1. Rat primary chondrocytes pretreated
with or without interleukin (IL)-1 (24 h, 10 ng/ml) were
cultured with empty control, IL-2 control, CXCL12a, siRNA
CXCR4 + CXCL12a, or siNC + CXCL12a in vitro for 24 h, and
the aggrecan, ADAMTS-5, TIMP-3, and TGF-b1 mRNA and
protein levels were assayed. Treatment with 250 ng/ml CXCL12a
significantly increased aggrecan and ADAMTS-5 mRNA levels
(p < 0.05) but did not significantly affect those of TGF-b1 or
ADAMTS-5. Chondrocytes treated with the CXCR4 siRNA
exhibited similar TGF-b1 and ADAMTS-5 mRNA levels to the
control (Figure 3A). Primary chondrocytes cultured with 250
ng/ml CXCL12a for 72 h exhibited markedly increased
expression of aggrecan and ADAMTS-5 (p < 0.05) and
significantly decreased expression of TIMP-3, but TGF-b1
protein levels were unaffected (Figure 3B, p < 0.05). Primary
chondrocytes pretreated with IL-1 and CXCL12a (250 ng/ml) for
72 h exhibited weak TIMP-3 staining (Figure 3C). Therefore,
CXCL12a suppressed TIMP-3 expression.

AMD3100 Maintained Expression of
TIMP-3 and Smad3
Immunohistochemical and immunofluorescence analyses
showed tha t bo th TIMP-3 and mothe r s aga in s t
decapentaplegic homolog 3 (Smad3) were expressed in
cartilage of the rats in the sham group. The percentages of
TIMP-3 and Smad3 positive cells were significantly lower in
the cartilage of the rats in the DMM/PBS-treated group (16.0 and
5.4% of all chondrocytes, respectively), while AMD3100
prevented the loss of TIMP-3 and Smad3 in the OA rats (54.4
FIGURE 1 | Expression of the CXCL12/CXCR4 axis and TIMP-3 in healthy control and OA rats. (A, B) Immunofluorescence analysis of CXCL12/CXCR4-stained
synoviocytes and chondrocytes from healthy control and OA rats; quantitative data in (B) (n = 6 per group, *p < 0.05). (C) CXCL12a/b levels in the synovial fluid of healthy
control and OA rats by ELISA (n = 5 per group, *p < 0.05). (D) TIMP-3 staining of superficial chondrocytes in the cartilage of healthy control and OA rats. Counterstaining by
safranin orange; scale bar, 100 µm. (E) Number of TIMP-3-stained cells (n = 6 per group, *p < 0.05). (F) Western blotting of TIMP-3 and the CXCL12/CXCR4 axis in
chondrocytes and synoviocytes from healthy control and OA rats; quantitative data in (G). GAPDH served as the loading control (n = 6 per group, *p < 0.05).
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FIGURE 2 | AMD3100 protects OA cartilage from proteoglycan loss and maintains TIMP-3 levels. (A) Safranin orange staining and immunostaining of TIMP-3 in
knee sections from the sham, PBS-treated, and AMD3100-treated groups (scale bar, 100 µm). (B) Mankin scores of articular cartilage from the sham, AMD3100-
treated and PBS-treated groups (n = 9 per group); (C) Cartilage thickness (n = 9 per group); (D) Proteoglycan loss from knee cartilage (n = 9 per group). (E) Number
of TIMP-3 positive chondrocytes in knee cartilage (n = 9 per group). *DMM/PBS compared to sham group (p < 0.05); #DMM/3100 compared to DMM/PBS group
(p < 0.05).
FIGURE 3 | Blocking the CXCLL2/CXCR4 axis maintained IL-1-induced expression of TIMP-3 and aggrecan and enhanced expression of ADAMTS-5 and TGF-b1.
(B) Primary chondrocytes were cultured in the presence of empty control, IL-2 control, CXCL12a (+,−), CXCL12a +siRNA CXCR4 (+,+) or CXCL12a + siNC (+NC) for
72 h and subjected to Western blotting of the protein levels of aggrecan, ADAMTS-5, TIMP-3, and TGF-b1. GAPDH served as the loading control (n = 4 per group).
(C) Densitometric analysis. (A) Real-time PCR of aggrecan, ADAMTS-5, TIMP-3, and TGF-b1 mRNA levels in IL-1-induced primary cartilage treated with empty
control (−,−), CXCL12a (+,−), CXCL12a +siRNA CXCR4 (+,+), or CXCL12a + siNC (+NC) for 24 h; *CXCL12a compared to empty control (p < 0.05); #siNC +
CXCL12a compared to CXCR4 + CXCL12a siRNA (p < 0.05). (D) Primary chondrocytes were cultured in the presence of empty control, CXCL12a (250 ng/ml) or
CXCL12a + AMD3100(20 mM) for 48 h. Immunofluorescence staining for TIMP-3; representative images are shown. TIMP-3 was visualized using a goat anti-rabbit
IgG, and nuclei were stained blue by DAPI. Scale bar, 200 µm.
Frontiers in Pharmacology | www.frontiersin.org January 2020 | Volume 10 | Article 15544
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and 38.3% of all chondrocytes, respectively) (Figures 4A, B; p <
0.05). Blocking the CXCLL2/CXCR4 axis maintained the
expression of Smad3; the AMD3100-treated group showed
significantly more stained cells compared to the PBS-treated
group (51.9 and 17.7% of all chondrocytes, respectively) (Figures
4A, B; p < 0.05).

AMD3100 Maintained TIMP-3 Expression
Mediated by TGF-b1 by Inducing Akt
Phosphorylation
CXCL12a mediates Akt phosphorylation, and Akt regulates
TGF-b1 signaling by directly interacting with Smad3 (Conery
et al., 2004). To probe the mechanism underlying the inhibitory
effect of CXCL12a on TGF-b1-induced TIMP-3 expression,
primary chondrocytes were treated with TGF-b1 (10 ng/ml)
for 1 h, followed by LY303511 (10 mM) or AMD3100 (20 mM) for
1 h, and finally SDF-1a for 72 h. The mRNA and protein levels of
TIMP-3 were analyzed using real-time PCR and Western
blotting (Figures 5A, B). CXCL12a inhibited the TGF-b1-
induced increase in TIMP-3 mRNA levels; this effect was
blocked by LY303511 (TGF-b1 + CXCL12a vs. TGF-b1 +
CXCL12a + LY303511, p < 0.05) and AMD3100 (TGF-b1 +
CXCL12a vs. TGF-b1 + CXCL12a + AMD3100, p < 0.05). This
result is consistent with our Western blot results. LY303511, an
Akt inhibitor, prevented CXCL12a-mediated TIMP3
downregulation, suggesting that CXCL12a prevented the TGF-
b1-induced increase in TIMP-3 expression by activating the
phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway
and inducing Akt phosphorylation.

To assess further the interaction of the PI3K/Akt signaling
pathway with the CXCL12a/CXCR4 axis and TGF-b1, primary
Frontiers in Pharmacology | www.frontiersin.org 5
chondrocytes were treated with CXCL12a, TGF-b1, or CXCL12a
+ TGF-b1. CXCL12a induced phosphorylation of Akt (Figure 6)
and TGF-b1 induced phosphorylation of Smad3 (Figure 6B; p <
0.05). Also, application of both TGF-b1 and CXCL12a
significantly suppressed TGF-b1-induced phosphorylation of
Smad3 (Figures 6C, D; p < 0.05). Western blotting showed
that TGF-b1 promoted phosphorylation of Smad3, which was
suppressed by CXCL12a. CXCL12a acted upon the TGF-b1-
Smad3 signaling pathway to exert biological effects. Total Smad3
expression in the cytoplasm and nucleus suggested that CXCL12t
inhibited Smad3 nuclear translocation (Figure 6). To explore the
function of the PI3K/Akt signaling pathway further, primary
chondrocytes were treated with CXCL12a, TGF-b1, CXCL12a +
TGF-b1, or an Akt inhibitor (LY303511) (Figure 6). The results
showed that TGFb-induced phospho-Smad3 was maintained by
Akt inhibitor treatment (Figures 6F, G).
DISCUSSION

Crucial risk factors may vary among joints and disease stages. It
is difficult to distinguish between single and clustered risk factors
associated with disease development or progression (Zhang et al.,
2005). OA is a disease caused by many factors including gender,
age, genetic factors, biomechanical changes, body mass index
(BMI), nutritional factors, and bone mineral density (Pereira
et al., 2015).

Loss of articular cartilage and subchondral bone sclerosis is a
key characteristic of OA. Histologically, OA is characterized by
early fragmentation of the cartilage surface, chondrocyte
cloning, vertical clefts in the cartilage, variable deposition,
FIGURE 4 | Blocking the CXCLL2/CXCR4 axis maintained TIMP-3 and Smad3 expression. (A) Cartilage sections from the sham, DMM/AMD3100-treated, and
DMM/PBS-treated groups were subjected to immunohistochemical and immunofluorescence analysis of TIMP-3 and Smad3. Scale bar, 100 µm. (E) Numbers of
cells positive for TIMP-3 and Smad3 (n = 9 per group, p < 0.05). *DMM/PBS compared to sham (p < 0.05); #DMM/AMD3100 compared to DMM/PBS (p < 0.05).
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FIGURE 5 | CXCL12a suppressed TGF-b1-induced elevated expression of TIMP-3 via the Akt pathway. Primary chondrocytes were treated with TGF-b1 (10 ng/ml) for 1 h,
followed by LY303511 (10 mM) or AMD3100 (20 mM) for 1 h and CXCL12a (250 ng/ml) for 72 h. (A) TIMP-3 mRNA level by real-time RT-PCR. (B) TIMP-3 protein level by
Western blotting. Differences between treatments were analyzed using one-factor ANOVA and were considered significant for p < 0.05. (n = 4 per group, *p < 0.05).
FIGURE 6 | CXCL12a -induced phosphorylation of Akt downregulated TGF-b1-induced phosphorylation of Smad3. (A C, E) Rat primary chondrocytes were treated with
CXCL12a (250 ng/ml), TGF-bp1 (10 ng/ml), or TGF-b1 (10 ng/ml) and CXCL12a (250 ng/ml) for the indicated times. Phosphorylated Akt, P-Smad3 and Smad3 levels by
Western blotting. (B, D) Protein expression detected by western blotting was quantitated by densitometric analysis. (n = 4 per group, *p < 0.05). (F) Rat primary chondrocytes
were treated with CXCL12a (250 ng/ml), TGF-b1(10 ng/ml), or Akt inhibitor (LY303511) for 48 h. P-Smad3 and Smad3 levels were determined by Western blotting. (G) Protein
expression detected by western blotting was quantitated by densitometric analysis. Differences between treatments were analyzed using one-factor ANOVA and were
considered significant for p < 0.05. *TGF-b1 compared to sham (p < 0.05); #CXCL12a+TGF-b1+LY303511 compared to CXCL12a+TGF-b1 (n = 4 per group p < 0.05).
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remodeling, and violation of the tidemark by blood vessels
(Pereira et al., 2015). Aggrecan is among the major structural
components of cartilage, forming colossal aggregates with the
glycosaminoglycan hyaluronan (HA), which is trapped within
networks of collagen II. This composite structure endows
cartilage extracellular matrix (ECM) with compressive
strength and articular cartilage with shock-absorbing
properties (Mead and Apte, 2018). Loss of aggrecan is a
milestone in early stage OA, because aggrecan prevents loss of
collagen fibrils (Scanzello et al., 2011; Verma and Dalal, 2011;
Schmal et al., 2014; Apte, 2016). Therefore, guaranteeing the
integrity of aggrecan is important for ameliorating OA. Under
physiological conditions, aggrecan homeostasis is maintained
by stable expression of aggrecanases and TIMP-3. If this
homeostasis cannot be maintained, aggrecan is lost, leading to
the development of OA (Huang andWu, 2008; Lim et al., 2010).
We reported previously that CXCL12/CXCR4 promotes
expression of aggrecanase (Lu et al., 2016); however, why
aggrecanase levels were related to neither loss of aggrecan nor
the progression of OA was unclear.

We explored the correlation of CXCL12/CXCR4 and TIMP-
3. First, we investigated expression of CXCL12/CXCR4 in OA
and healthy control rats. Expression of the CXCL12/CXCR4 axis
was increased and that of TIMP-3 was decreased in the OA rats,
implying a link between the CXCL12/CXCR4 axis and TIMP-3-
related cartilage loss (Figure 1). However, whether the CXCL12/
CXCR4 axis controls activation of TIMP-3 in OA or is a
causative agent of OA was unclear.

In vivo, TIMP-3 activation and cartilage loss were correlated
with activation of the CXCL12/CXCR4 axis. Blockade of the
CXCL12/CXCR4 axis maintained expression of TIMP-3 and
alleviated cartilage loss by repressing the degradation of
aggrecan, indicating a role in the progression of PTOA
(Figure 2). The rats in the DMM/AMD3100-treated group
showed less severe damage to cartilage, implying that AMD3100
alleviated PTOA-associated loss of articular cartilage (Figure 2).
Also, stable expression of TIMP-3 was maintained by inhibiting
expression of the CXCL12/CXCR4 axis (Figure 2). This is, to our
knowledge, the first report of the function of the CXCL12/CXCR4
axis in TIMP-3-related cartilage loss.

There is a link between decreased TIMP-3 expression and
ECM loss, and maintenance of TIMP-3 expression ameliorates
OA-associated degradation of cartilage. In vitro, CXCL12a
suppressed expression of TIMP-3 in primary chondrocytes
(Figure 3). We found that CXCL12a activated aggrecanase in
primary chondrocytes pretreated with IL-1 (Figure 3). Also,
aggrecan levels were enhanced by CXCL12, indicating that the
CXCL12/CXCR4 axis plays a dual role in aggrecan metabolism.
ADAMTS-5 mRNA is a conserved sequence; effects on
ADAMTS-5 appeared to be stronger at the protein level than
at the transcriptional level, suggesting the involvement of post-
transcriptional effects. When a stable state cannot be sustained,
aggrecan is lost and the ECM is degraded. CXCL12a had little
effect on TGF-b1 mRNA and protein levels in IL-1-treated
primary chondrocytes. CXCL12a increased ADAMTS-5
Frontiers in Pharmacology | www.frontiersin.org 7
protein levels but had little effect on mRNA levels, implying
posttranscriptional regulation.

TIMP-3 may have potential for inhibiting cartilage loss (Dunn
et al., 2014; Li et al., 2014). Unlike the other members of the TIMP
family, TIMP-3 is insoluble and remains tightly bound to the
matrix (Brew et al., 2000). In vivo, TIMP-3 is regulated by the
TGF-b1 signaling pathway. TGF-b1-induced expression of TIMPs
is a key factor in the progression of OA and is regulated by Smad
proteins (Cross et al., 2005; Leivonen et al., 2013; Wang et al.,
2013b; Zhu et al., 2017). Smad2/3 signaling mediates TGF-b1-
induced expression of TIMP-3, and the gene encoding TIMP-3 is a
target of Smad signaling (Qureshi et al., 2008). In the absence of
Smad3, mice are deficient in aggrecan and type II collagen due to
activation of MMP13 via p38 and Runx2(Chen et al., 2012). As a
component of the intracellular TGF-b1 signaling pathway, Smad3
promotes expression of TIMP-3, which plays a critical role in
aggrecan homoeostasis (Di Sabatino et al., 2009; Medina et al.,
2011; Leivonen et al., 2013). During the development of OA,
CXCL12 regulates numerous homeostatic and pathological
processes via its receptor CXCR4 by activating several signal
transduction pathways, including the PI3K/Akt pathway (Xue
et al., 2017; Lin et al., 2018). It is, therefore, possible that cross-
talk between the Smad and the PI3K/Akt pathways influences
ECM production.

CXCL12a suppressed TGF-b1-induced elevated expression of
TIMP-3. The CXCL12-related signaling pathway includes PI3K/
Akt, MAPK, nuclear factor-kappaB, and Wnt/b-catenin (Corr,
2008; Tian et al., 2013; Xue et al., 2017; Yin et al., 2019).
Activation of the PI3K/Akt pathway influences the adhesion,
survival, migration, and proliferation of cells (Yano et al., 2007).
In this study, CXCL12 inhibited expression of Smad3 and of its
target gene, TIMP-3. Therefore, SDF-1a likely regulates
expression of TIMP-3 via Smad3. We found that AMD3100
reversed the TGF-b1-induced downregulation of TIMP-3
expression in primary chondrocytes. These effects of CXCL12
were reversed by LY303511, implying that the PI3K/Akt pathway
was involved in the process of CXCL12-induced decrease in
TIMP-3 expression. Thus, activation of the PI3K/Akt pathway
interferes with Smad3 phosphorylation, preventing TGF-b1-
induced TIMP-3 expression. Moreover, CXCL12a-induced Akt
phosphory la t ion impeded TGF-b1- induced Smad3
phosphorylation and the PI3K inhibitor LY303511 blocked the
CXCL12a-mediated suppression of TGF-b1-induced expression
of TIMP-3. Therefore, CXCL12a modulates TGF-b1 signal
transduction by promoting Akt phosphorylation, suppressing
Smad3 expression, and reducing TIMP-3 production in
primary chondrocytes.

Taken together, the data imply that PTOA-associated
aggrecan loss can be relieved by blocking the CXCL12/
CXCR4 axis, which activates the PI3K/Akt pathway and
suppresses the TGF-b1-induced Smad pathway. This
enhances our understanding of the role of the CXCL12/
CXCR4 axis in the development of PTOA. However, the
detailed mechanism of CXCR4 signaling for ECM remodeling
requires further study.
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METHODS

Reagents and Antibodies
AMD3100 (ab120718, Purity: > 99%), LY303511 (ab145193) and
primary antibodies for CXCL12 (ab25117), CXCR4 (ab124824),
aggrecan (ab36861) ADAMTS-5 (ab41037), Smad3(ab52903),
TIMP-3 (ab39184) and TGF-b1 (ab92486) were purchased
from Abcam (Cambridge, UK), p-Akt (ab38449), p-Smad3
(ab122028) were purchased from Optomics (Hermiston, OR,
USA).CXCL12a and CXCL12b ELISA kits were purchased from
Tsz Biosciences (Boston, MA, USA). Alzet osmotic mini-pumps
(2006) were purchased from DURECT Corporation (Cupertino,
CA, USA). Recombinant rat CXCL12a, IL-1 and other reagents
were purchased from Beyotime (Shanghai, China).

Animals and Experimental Design
Sprague-Dawley rats were purchased from the Experimental
Animal Center of Tongji Medical College (Wuhan, China) and
were raised at the Animal Care Facility of Tongji Medical College
as described previously. Animal studies were authorized by the
Institutional Animal Research Committee of Tongji Medical
College, and all experimental protocols involving animals were
approved by the Institutional Animal Care and Use Committee
(number TY20130286; 14 December 2013). Thirty 8-week-old
male Sprague-Dawley rats (200 g ± 10 g) were divided randomly
into three groups. The rats in the DMM/AMD3100-treated (n =
10) group were anesthetized with pentobarbital sodium,
underwent destabilization of the medial meniscus (DMM) of
the right knee as described by Glasson et al. (Glasson et al., 2007),
and were infused with AMD3100 (3 mg/day) using an osmotic
mini-pump (model 2006). The rats in the DMM/PBS-treated
group (n = 9) underwent the same surgical procedure on the
right knee as those in the DMM/AMD3100-treated group but
were infused with phosphate-buffered saline (PBS) using an
osmotic mini-pump. The rats in the sham control group (n =
11) underwent sham surgery on the right knee and did not
receive infusion. All of the rats were euthanized at 6 weeks
after surgery.

Protein Extraction and Western Blotting
Whole protein was extracted from cell lysates and quantified
using a Bicinchoninic Acid (BCA) Protein Assay Kit (Thermo
Scientific, Rockford, IL, USA). Nuclear and cytoplasmic proteins
were extracted using a Protein Assay Kit purchased from
Beyotime (P0028; Shanghai, China).Total cellular extract (20
µg per well) was loaded on 8–15% (according to molecular
weight) sodium dodecyl sulphate-polyacrylamide gels and
transferred to polyvinylidene difluoride membranes (Millipore,
Boston, MA, USA) by electroblotting. The membranes were
blocked with 5% skim milk at room temperature for 1 h, and
incubated with the appropriate primary antibodies overnight at
4°C. The membranes were then washed and incubated with the
corresponding secondary antibodies at room temperature for 1
h. Finally, immunoreactive protein bands were visualized by
chemiluminescence (Boster, Wuhan, China) using the
ChemiDoc™ XRS+ System with Image Lab™ software (Bio-
Rad, Hercules, CA, USA). The membranes were re-probed with a
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monoclonal anti-glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) antibody (Cell Signaling Technology, Boston, MA,
USA) as a loading control.

Cell Culture and Treatment
Primary rat chondrocytes were obtained from the knee cartilage
of new-born Sprague-Dawley rats as described previously. The
knee cartilage of new-born rats was cut into pieces in bioclean
PBS. The knee cartilage sections were treated in trypsin-
ethylenediaminetetraacetic acid (EDTA) for 20 min at 37°C
and digested with collagenase (Beyotime, Shanghai, China) in
complete Dulbecco's modified Eagle's medium (DMEM) for 2 h.
Next, chondrocytes were percolated and cultured in 2:3 DMEM:
F12 containing 10% fetal bovine serum (FBS) and 0.25% L-
glutamine. Because primary chondrocytes undergo
dedifferentiation during repeated passages, 0-generation
chondrocytes were used in all experiments (Gosset et al., 2008).

Real-Time Reverse Transcription-
Polymerase Chain Reaction Analysis
Quantitative real-time reverse transcription-PCR (qRT-PCR)
was conducted as described previously (Lu et al., 2016). In
brief, chondrocytes were digested in TRIzol reagent
(Invitrogen, Grand Island, NY, USA) and total RNA was
extracted utilizing an RNeasy Mini Kit (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer's instructions. First-
strand cDNA was synthesized using Moloney murine leukemia
virus (MMLV) reverse transcriptase (Promega, Madison, WI,
USA). For real-time PCR, cDNA was amplified using SYBR
Green Master Mix (Invitrogen). All procedures were performed
at least three times, and gene expression levels were normalized
to that of GAPDH. The following primer pairs were used:
forward, 5'-CTTCCCAACTATCCAGCCAT-3'; reverse, 5'-
CTGCTGTAAAGGTTGACGGTGTA-3' for rat aggrecan;
forward, 5'-CTCCATGCAGCTTTCACTGT-3'; reverse, 5'-
TCAGAATTTGGAATCGTCGTG-3' for rat ADAMTS-5;
forward, 5'-TATAGCAACAATTCCTGGCGTTAC-3'; reverse,
5'-TGTATTCCGTCTCCTTGGTCA-3' for rat TGF-b1;
forward, 5'GTGGTGGGAAAGAAGCTGGTGAA-3'; reverse,
5'-TGGCAAGATTAGTGTCCGGG-3' for rat TIMP-3;
forward, 5'-GGCACAGTCAAGGCTGAGAATG-3'; reverse, 5'-
GGTGGTGAAGACGCCAGTA -3' for rat GAPDH.

Enzyme-Linked Immunosorbent Assay
Synovial fluid was obtained from the knees of healthy control
rats and PTOA rats. Concentrations of CXCL12a and CXCL12b
in the synovial fluid were determined using the corresponding
enzyme-linked immunosorbent assay (ELISA) kits (Tsz
Biosc iences , Boston, MA, USA), according to the
manufacturer's instructions.

Rna Interference Assay
RNA Interference was performed as described previously. The
small interfering RNA (siRNA) against CXCR4 was obtained
from Transheep Bio (Shanghai, China). Gene silencing was
conducted according to the manufacturer's instructions.
Briefly, primary rat chondrocytes were treated and incubated
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for 72 h. When the cell density reached ~50%, 5 µl of
Lipofectamine 2000™ (Invitrogen) was diluted in 250 ml of
Opti-MEM medium and incubated for 5 min at room
temperature. The CXCR4 siRNA and empty siRNA were
diluted in 250 µl of Opti-MEM medium and treated with
Lipofectamine 2000™. Next, the samples were incubated for
20 min at room temperature. The siRNA-lipid mixture was
added to the samples, which were incubated at 37°C in a 5%
CO2 atmosphere for 6 h. Finally, Opti-MEM was replaced with
2:3 DMEM:F12 containing 10% FBS and 0.25% L-glutamine for
24 h. The sequences of the CXCR4 siRNAs were as follows: 5t-
GCGAGGUGGACAUUCAUCUTT-3 t ( s en s e ) , 5 t -
UUCUCCGAACGUGUCACGUTT-3t (antisense).

Histological Assessment
At the time of euthanasia, the knee joints were isolated and fixed
in 10% formalin for 48 h, decalcified in 10% EDTA (pH 7.4) for
14 days, and embedded in paraffin. Next, sagittal-oriented
sections of the knee joints were stained with safranin orange
and hematoxylin and the severity of OA was assessed using the
modified Mankin scoring system (Mankin et al., 1971;
Ostergaard et al., 1999). All of the samples were evaluated by
three blinded independent observers, and the mean scores of
each joint were calculated.

Immunohistochemistry and
Immunofluorescence
Immunohistochemistry was conducted utilizing a standard
protocol. Sections of rat cartilage were analyzed using the
DakoREAL™ EnVision™ Detection System (Dako, Glostrup,
Demark), followed by counterstaining with 0.02% safranin
orange. For immunofluorescence, chondrocytes or sections
were fixed and incubated with the indicated primary
antibodies, followed by the corresponding fluorophore-
conjugated secondary antibodies (Invitrogen). Nuclei were
stained with 4',6-diamidino-2-phenylindole (DAPI). The slides
Frontiers in Pharmacology | www.frontiersin.org 9
were incubated at room temperature in darkness for 1 h.
Fluorescence intensity was quantitated using Image Pro Plus
software (Media Cybernetics, Rockville, MD, USA). The
numbers of positively stained cells in the whole cartilage area
of five sequential sections per rat were determined.

Statistical Analysis
Experiments were performed at least three times with similar
results. Data are means ± 95% confidence intervals. Student's t-
test was used to compare differences between two groups; and a
multifactorial analysis of variance (ANOVA) for comparisons of
three or more groups. The level of significance was defined as p <
0.05. The data were analyzed using Statistical Package for the
Social Sciences (SPSS) 15.0 software.
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