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Key gene network related to primary 
ciliary dyskinesia in hippocampus of patients 
with Alzheimer’s disease revealed by weighted 
gene co‑expression network analysis
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Abstract 

Background:  Alzheimer’s disease (AD) is closely related to aging, showing an increasing incidence rate for years. As 
one of the main brain regions involved in AD, hippocampus has been extensively studied due to its association with 
many human diseases. However, little is known about its association with primary ciliary dyskinesia (PCD).

Material and Methods:  The microarray data of hippocampus on AD were retrieved from the Gene Expression 
Omnibus (GEO) database to construct the co-expression network by weighted gene co-expression network analysis 
(WGCNA). The gene network modules associated with AD screened with the common genes were further annotated 
based on Gene Ontology (GO) database and enriched based on the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database. The protein-protein interaction (PPI) network was constructed based on STRING database to identify 
the hub genes in the network.

Results:  Genes involved in PCD were identified in the hippocampus of AD patients. Functional analysis revealed that 
these genes were mainly enriched in ciliary tissue, ciliary assembly, axoneme assembly, ciliary movement, microtubule 
based process, microtubule based movement, organelle assembly, axoneme dynamin complex, cell projection tis-
sue, and microtubule cytoskeleton tissue. A total of 20 central genes, e.g., DYNLRB2, ZMYND10, DRC1, DNAH5, WDR16, 
TTC25, and ARMC4 were identified as hub genes related to PCD in hippocampus of AD patients.

Conclusion:  Our study demonstrated that AD and PCD have common metabolic pathways. These common path-
ways provide novel evidence for further investigation of the pathophysiological mechanism and the hub genes sug-
gest new therapeutic targets for the diagnosis and treatment of AD and PCD.
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Introduction
As the most common progressive neurodegenerative dis-
order associated with aging [1], Alzheimer’s disease (AD) 
is the main cause of dementia in the elderly people [2]. 
Studies have found that AD is closely related to a variety 
of factors, such as oxidative stress [3], autophagy dysfunc-
tion [4], and diabetes [5]. Although the studies on AD have 
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advanced greatly, the number of AD patients worldwide 
is still increasing dramatically. It is predicted that by 2050, 
there may be four times more patients with AD [6], causing 
significant inconvenience to patients and financial burden 
to the society [7]. Although some drugs have been devel-
oped to target intermediate products, e.g., aggregated Amy-
loid β-protein (A-β), involved in the known developmental 
mechanisms of AD, almost all drugs fail to significantly 
improve patients’ symptoms [8]. Hippocampus is among 
the most important brain structures involved in memory, 
and is a critical site of pathogenesis in dementing illnesses 
such as AD [9]. The hippocampal formation was essential 
for the proper functioning of spatial and episodic memory 
in the early stages of AD [10]. There are also studies on the 
correlation between hippocampal volume and AD, how-
ever, no explicit relationship was revealed [11]. In animal 
experiments, shRNA silenced Egr-1 in the hippocampus 
and improved the cognition of 3xTG AD mouse model 
[12]. Adult hippocampal neurogenesis (AHN) impairment 
contributes significantly to the cognitive decline in patients 
of AD [13], More importantly, hippocampus is also the 
main location for A-β deposition [14]. Therefore, it is cru-
cial to understand the pathological status of hippocampus 
in AD patients in order to study the mechanisms of AD-
related memory impairments [15].

Cilia are dynamic microtubule-based organelles present 
on the surface of many types of eukaryotic cells. Cilia related 
defects underlie a growing list of human disorders, collec-
tively called ciliopathies, with overlapping phenotypes such 
as developmental delays and cognitive and memory deficits 
[16]. It has been reported that Serotonin 5-HT6 receptors 
affect cognition in a mouse model of AD by regulating cilia 
function [17]. Microtubules are an important part of cilia, 
playing an important role in cell division (i.e., beating of cilia 
and flagella) and intracellular transport [18].

Furthermore, aberrant interaction between the micro-
tubule-associated protein Tau and the filamentous actin 
is connected to synaptic impairment in AD [19]. PCD is 
the most representative disease of ciliary dysfunction. It 
is a rare hereditary disease characterized by abnormal 
movement of cilia in human body [20]. When the cilia 
function normally, they beat together, helping to push 
the mucus through the respiratory system to the throat 
area, ultimately expelled by coughing. This process is 
very important for the human body to resist infection 
[21]. Because cilia play important roles in both AD and 
PCD, we hypothesized that AD and PCD share similar 
pathogenesis. It has been reported that there are more 
than 20 kinds of ultrastructural abnormalities in cilia, 
most of which are dynein arm defects and microtubule 
defects. Next generation sequencing has enhanced the 
gene identification, and mutations in more than 40 genes 
have been reported to cause PCD, with many other 

genes likely to be discovered [22]. Although studies have 
demonstrated that genes related to PCD such as dynein 
axonemal intermediate chain 1 (DNAI1) play an impor-
tant role in AD [23], no studies in-depth have been con-
ducted. To date, studies on the association between AD 
and PCD are sparse. Therefore, it is necessary to study 
the relationship between AD and PCD, especially at the 
molecular and genetic levels.

To date, the analysis of weighted gene co-expression 
network (WGCNA) is a well-established advanced 
method applied to investigate the molecular mechanism 
of genes and reconstruct gene co-expression network 
through transforming the adjacency matrix into a topo-
logical overlap matrix [24]. In this study, we have iden-
tified the gene set related to PCD in the hippocampus 
of AD patients based on WGCNA analysis and further 
investigated the association between PCD and AD.

Materials & Methods
Data preparation
Gene expression profiles of AD were downloaded from 
Gene Expression Omnibus (GEO) database (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/) [25]. The dataset of GSE48350 [26] 
based on GPL570 [HG-U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array contained microarray data 
from normal controls (aged 20–99 years) and AD cases 
from 4 brain regions, including hippocampus, entorhi-
nal cortex, superior frontal cortex, and post-central gyrus. 
Expression levels of synaptic and immune related genes 
were assessed to investigate the age-related changes, AD-
related changes, and region-specific patterns of changes. A 
total of 19 samples of AD and 43 samples of normal con-
trols of hippocampus tissues were included in this study. To 
validate the results of our analysis, the transcriptomic pro-
files of the human AD hippocampus GSE36980, GSE1297, 
GSE28146, GSE29378 datasets were used.

Differential gene analysis
All differential gene analyses were performed by R foun-
dation for statistical computing (2020) version 4.0.3. The 
dataset used for differential gene analysis was retrieved 
from GEO database with the format of MINIML. Limma 
package (version: 3.40.2) of R software was used to inves-
tigate the differential expression of mRNAs. The effect of 
remove the batch was performed by using the ‘remove 
Batch Effect’ command in Limma package. The adjusted 
P-value was analyzed to correct the false positive results 
in GEO datasets. The parameters “Adjusted P < 0.05 and 
Log (Fold Change) >1 or Log (Fold Change) < −1” were 
defined as the thresholds for the screening of differential 
expression of mRNAs. The box plot was generated by the 
R software package ggplot2. The heatmap was displayed 
by the R software package pheatmap.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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GO annotation and KEGG pathway enrichment analysis
To further confirm the underlying functions of potential 
target genes identified by differential gene analysis, these 
genes were analyzed by functional enrichment based on 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) databases [27]. GO is a widely 
used tool for annotating genes with functions in three 
categories, including molecular function (MF), biological 
pathways (BP), and cellular components (CC). KEGG is a 
practical resource for analytical study of gene functions 
and associated high-level genome functional informa-
tion. To better understand the function of mRNAs, Clus-
ter Profiler package (version: 3.18.0) in R was employed 
to further analyze the GO functions of potential target 
genes and the enrichment of the KEGG pathway. FDR is a 
common term in statistics. It is translated as false discov-
ery rate. The expected value of the ratio. In the enrich-
ment results, P < 0.05 or false discovery rate (FDR) < 0.05 
was considered to be enriched to a meaningful pathway.

Gene set enrichment analysis
Gene Set Enrichment Analysis (GSEA, https://​www.​
gseam​sigdb.​org/​gsea/​index.​jsp) was applied to iden-
tify the significant pathways in dataset GSE48350. This 
method determines whether a priori defined set of genes 
show statistically significant differences or not between 
two biological states (e.g. phenotypes) [28]. The coef-
ficients of Spearman correlation between genes and 
sample labels were defined as the weight of genes [29]. 
Statistical significance was assessed by comparing the 
enrichment score with the enrichment results gener-
ated from 1000 random permutations of the gene sets to 
obtain nominal P values. The significant level of pathways 
was determined by the levels of normalized enrichment 
score (NES) ≥ 1.0, FDR ≤ 0.25, and P ≤ 0.05.

Weighted gene co‑expression network analysis
Weighted Gene Co-expression Network and co-expression 
modules were constructed by Weighted Gene Co-expres-
sion Network Analysis (WGCNA), which was performed 
using the WGCNA package in R [30]. The hippocampus 
regions of the microarray data of GSE48350 were applied 
as a primary source of data for the WGCNA analysis. The 
network construction started by calculating robust correla-
tions between all genes across in all relevant samples. The 
correlation adjacency matrix was increased to the power 
β = 18 based on scale-free topology criterion. The power 
parameter was selected to amplify the strong connections 
between genes and to penalize the weak connections. The 
first principal component was considered as the module 
eigen gene (ME), representing the highest percent of vari-
ance for all the genes in a module. Module membership 
(kME) measured the correlations between each gene and 

each ME. The within-module connectivity (kin) for each 
gene was determined by summing the connectivity of that 
gene with each of the other gene set in the same module 
[31, 32], showing significant correlations with MEs and 
high within-module connectivity, and were considered as 
hub genes of the modules. The hub genes were verified by 
using Cytoscape’s cytoHubba plugin [33]. In order to ana-
lyze the correlation between module and phenotype, we 
transformed the classified variables into numerical vari-
ables. Specifically, female was defined as 0 and male as 1; 
non-AD patients under 80 years old were defined as 0 and 
non-AD patients above 80 years old as 0.5; and AD positive 
as 1. In this study, a total of 3 phenotypes were analyzed 
using Spearman method to calculate the correlation.

Protein‑Protein Interaction (PPI) analysis
All common genes from the selected modules were fur-
ther analyzed by the online Search Tool for the Retrieval of 
Interacting Genes (STRING) database (Version 11.0; http://​
string-​db.​org/) to establish the network through protein-
protein interaction (PPI) analysis [34]. A combined score of 
more than 0.4 was applied to build the PPI network, which 
was visualized by the Cytoscape software (version 3.8.2, 
http://​cytos​cape.​org/) [35]. The common genes in networks 
were screened by the degree of the gene nodes. The genes 
with the most interactions were considered as hub genes, 
which may play important roles in the disease’s pathogenesis.

Gene analysis by Venn diagram
Venn diagrams are used to show logical connections 
between different groups of things (sets). In addition to 
Hub genes, the other two sites involved are Genecards 
database (https://​www.​genec​ards.​org) and Disgenet data-
base (https://​www.​disge​net.​org/).

Gene interaction heatmap
Gene correlation can be used to observe the relationship 
between different genes and to study the relationship between 
an unknown gene and a known gene in order to predict the 
function of the unknown gene. The negative and the positive 
correlations between two genes suggest that these genes may 
cooperate or antagonize with each other, respectively.

Prediction of miRNAs of hub genes
miRecords, which is an integrated resource of 11 established 
miRNA target prediction programs [36], was used to identify 
the stem loop miRNAs of hub genes. The miRNAs predicted 
by at least four programs were regarded as the stem loop 
miRNAs of hub genes. The predicted results are imported 
into Cytoscape software for a more intuitive display.

https://www.gseamsigdb.org/gsea/index.jsp
https://www.gseamsigdb.org/gsea/index.jsp
http://string-db.org/
http://string-db.org/
http://cytoscape.org/
https://www.genecards.org
https://www.disgenet.org/
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Statistical analysis
GraphPad Prism (version 8.0.0) was utilized to perform 
the statistical analysis. The normality test and homogene-
ity of variance test were performed on data extracted from 

GEO datasets. Data that passed these two tests underwent 
t-testing for comparisons between two groups. Spear-
man test was used to investigate the correlation between 
module and phenotype in WGCNA analysis. The Gene 

Fig. 1  Differential gene analysis of GSE48350. A Box plots based on unnormalized data. B Box plots based on normalized data. C Volcano plots 
constructed using fold-change values and adjusted P values. The red dots represent the over-expressed mRNAs and the blue dots indicate the 
down-expressed mRNAs with statistical significance. D Hierarchical clustering analysis of differentially expressed mRNAs between AD and normal 
tissues
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Interaction Heatmap was used to assess the correlation of 
gene set between AD and PCD. Venn diagram was applied 
to find the similarity between data sets. P values less than 
0.05 were considered statistically significant.

Results
Screening of differentially expressed genes (DEGs)
The gene expression data (GSE48350) on 19 patients with 
AD were compared with those of 43 control samples (CTs) 

from GEO database (Tables S1). All samples were hip-
pocampus tissues. After the run of ‘remove Batch Effect’ 
command in Limma package, the expression level of 
genes was basically at the same level, which was selected 
for downstream difference analysis (Fig.  1A, B; Table S2). 
Based on the cutoff criteria, a total of 88 DEGs (24 up-reg-
ulated and 64 down-regulated) were identified in AD sam-
ples (Fig. 1B). Heatmap was used to show gene expression 
levels (Fig. 1C). According to the absolute value of Log, top 

Fig. 2  The enriched KEGG signaling pathways and GO analysis demonstrating the primary biological functions of major potential mRNAs. A The 
KEGG pathway of up-regulated genes. B The GO function of up-regulated genes. C The KEGG pathway of down-regulated genes. D The GO function 
of down-regulated genes
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Fig. 3  Gene Set Enrichment Analysis (GSEA) of all genes in the array showing the results of the top four GSEA terms based on normalized 
enrichment scores in the AD. A Enrichment plot of CHR2Q13 (NES = 1.9267, nominal p-value = 0.0, FDR q-value = 0.0867). B Enrichment plot of 
CHR4P14 (NES = 1.9218, nominal p-value = 0.0036, FDR q-value = 0.0121). C Enrichment plot of CHR19P12 (NES = 1.7553, nominal p-value = 0.0154, 
FDR q-value = 0.2317). D Enrichment plot of KRAS.PROSTATE_UP.V1_DN (NES = 1.8564, nominal p-value = 0.0, FDR q-value = 0.0482).NES, Normalized 
Enrichment Score; AD, Alzheimer’s disease; CN, cognitively normal

Fig. 4  Cluster dendrogram of genes identified by WGCNA. A Clustering of samples to detect outliers. Scale-free topology model (left) and mean 
connectivity (right) were applied to identify the soft-thresholding power. The power selected is 18. B Tom diagram of module relationship. C The 
relationship between modules and genes in the modules, the horizontal axis represented the correlation coefficient of gene and module, which 
was mainly used to observe the distribution of correlation coefficient between gene expression in each module and within the module

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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10 genes included LTF, SLC17A6, CFAP126, TMEM155, 
CALB1, SLC47A2, ANKIB1, NWD2, CP, and MRAP2.

GO Annotation and KEGG pathway enrichment analysis
To further confirm the underlying functions of potential 
target genes, DEGs were analyzed by functional enrich-
ment (Fig. 2, Table S3). The up-regulated genes were sig-
nificantly enriched in KEGG pathways of complement 
and coagulation cascades and pertussis, and in the GO 
functions of negative regulation of endopeptidase activ-
ity, negative regulation of peptidase activity, response to 
molecule of bacterial origin, and negative regulation of 

proteolysis. The down-regulated genes were significantly 
enriched in the KEGG pathways of nicotine addiction 
and neuroactive ligand-receptor interaction, and in the 
GO functions of vesicle-mediated transport in synapse, 
synaptic vesicle cycle, neurotransmitter transport, and 
synapse organization.

Gene Set Enrichment (GSEA) Analysis
GSEA is a computational method that determines 
whether an a priori defined set of genes shows statis-
tically significant, concordant differences between two 
biological states. We further analyzed the microarray 
data with the software ‘Gene Set Enrichment Analysis’ 
[28, 37]. Three up-regulated gene sets in AD including 
CHR2Q13, CHR19P12, and KRAS.PROSTATE_UP. V1_
DN and one down-regulated gene set CHR4P14 were 
justified. Three positional gene sets (i.e., CHR2Q13, 
CHR19P12, and CHR4P14) were enriched in differ-
ent locations of different chromosomes. CHR2Q13 is 
a gene set containing Ensembl 103 genes in cytoge-
netic band CHR2Q13, CHR19P12 and CHR4P14 are 
identical to it. As the oncogenic signature gene set, 
the KRAS.PROSTATE_UP. V1_DN could be down-
regulated in epithelial prostate cancer cell lines over-
expressing an oncogenic form of KRAS gene. No 
pathway associated with PCD was identified (Fig.  3, 
Figs. S1, S2, S3 and S4).

WGCNA and key module identification
All genes in the array were used to conduct WGCNA 
(Figs.  4 and 5). By setting the soft-threshold power as 

Fig. 5  Key modules correlated with AD identified by WGCNA. A Clustering of all modules. The red line indicates the height cutoff (0.25). B Heatmap 
showing the relationships between different modules and clinical traits. Non-clustering DEGs in the grey module

Table 1  Module and the number of genes in each module

The color of module Number of 
genes in the 
module

Grey60 27

Greenyellow 71

Purple 74

Magenta 154

Lightcyan 160

Pink 174

Red 266

Green 302

Yellow 343

Brown 551

Turquoise 7090

Grey 11,337
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18 (scalefree R2 = 0.9, blockSize = 7000, minModule-
Size = 20, deepSplit = 2, mergeCutHeight = 0.25, hub_
cut = 0.9, net_threshold = 0, slope = − 0.96; Fig.  4A), we 
acquired a total of 12 modules (Fig.  5A; Table S4). The 
Tom diagram of the relationship between gene clustering 
and modules in each module of WGCNA was shown in 
Fig. 4B. The relationship between modules and genes in 
the modules was shown in Fig. 4C. The correlation coef-
ficient between grey module and gene expression in the 
module was the lowest. The number of genes in each 

module was provided in Table 1. Based on the heatmap 
of module-trait correlations, the key module contain-
ing a total of 160 genes was identified as the most posi-
tively correlated with AD (correlation coefficient = 0.40, 
P = 0.01; Fig. 5B).

Selection of hub genes
All the common genes from the selected modules were 
further analyzed by the online STRING database to con-
struct the network. After the PPI analysis, cytoscape was 

Fig. 6  Hub gene set of the key module and interaction network of genes in the key module. Green circles represent genes in the lightcyan module. 
Red circles represent hub genes in the module
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used for visualization and the plug-in cytohubba was 
used to screen hub genes. The top 20 genes identified 
were defined as hub genes (Fig. 6; Table 2).

Gene analysis by Venn diagram
In order to verify the reliability of the predicted results, we 
used the Venn diagram to intersect the DEGs, the related 
genes from WGCNA analysis, and the genes related to 
AD in Genecards database. The results showed that there 
were 59 common genes between DEGs and AD related 
genes in Genecards and 57 common genes between genes 
in lightcyan module and AD related genes in Genecards, 
indicating that the diagnostic efficiency of the two meth-
ods was comparable (Fig. 7A, B). Therefore, we used the 
method of WGCNA to identify the gene module related 
to AD and PPI to identify the hub genes. Then, we used 
Venn diagram to intersect the hub genes and the genes 
related to PCD in Disgenet database. The results showed 
that 16 out of the 20 hub genes were duplicated, indicating 
that these hub genes were closely related to PCD. In order 
to investigate the functions of these hub genes, we further 
annotated these genes based on GO and KEGG databases. 
Results of GO annotation showed that these genes were 
closely associated with the axoneme and cilium (Fig. 7C, 
Table S5). The results of the enrichment analysis based on 
KEGG database showed that these hub genes were closely 
related to Huntington’s disease, which shares many medi-
cal similarities with AD.

Gene interaction heatmap
Because of the application of different chip platforms in 
investigating the expression of genes, many genes were 
not detected in GPL570 [HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 Array. Therefore, the top 
30 genes were selected and defined as the genes most 
closely related to AD. These results suggested that hub 
genes showed varied degrees of correlation with genes 
related to AD (Fig. 8; Table S6).

Prediction of miRNAs of hub genes
After importing hubgenes into miRecords, we removed 
four genes that were not included in the website, and 
then we got 37 related miRNAs (Fig. 9).

Discussion
As people’s average life expectancy has increased due to 
the further improvement of modern medicine and sci-
ence, the number of patients with AD will be increased 
as well [38]. Genome-wide association studies have 
identified numerous genomic loci associated with AD, 
while the causal genes and variants are still being con-
tinuously identified [39]. Most of the conventional 
methods of differential gene analysis focus on the dif-
ferential expression of a single gene, i.e., the greater the 
difference of a single gene expression, the more impor-
tant the role the single gene plays [40]. In our study, 
we identify the genes with the highest changes in the 
expression in the hippocampus of AD patients. We fur-
ther investigate these genes with functional enrichment 
analysis. Studies have shown that LTF can increase the 
α-Secretase-Dependent amyloid precursor protein pro-
cessing via the ERK1/2-CREB and HIF-1α pathways in a 
mouse model of AD [41]. Furthermore, loss of SLC17A6 
is correlated with cognitive decline in AD [42]. Although 
cilia and flagella associated protein (CFAP) is essentially 
important for sperm flagellum biogenesis [43], no asso-
ciation has been revealed between CFAP126 and AD. In 
the APP/PS1 mouse model of AD, showing anxiety-like 
behavior, the photo stimulating the pBLA-vCA1 circuit 
ameliorated the anxiety in a Calb1-dependent manner 
[44]. Similar to these genes, many of the DEGs identi-
fied in our study are related to AD with only one gene 
related to cilia. The KEGG functional enrichment analy-
sis reveal that these DEGs are involved in pathways of 
nicotine addiction, neuroactive ligand-receptor inter-
action, vesicle-mediated transport in synapse, synaptic 
vesicle cycle, neurotransmitter transport, and synapse 
organization. The KEGG pathway of nicotine addiction 
is associated with neurological diseases [45], and other 
pathways are related to synapse, whereas no association 
with cilia has been identified.

Table 2  The Hub genes related to PCD

Data retrieved from the Disgenet database (https://​www.​disge​net.​org/)

PCD Primary Ciliary Dyskinesia

DPI Disease Pleiotropy index for the gene

Score: Gene-Disease Association Score

Gene Full Name DPI Score

DNAI1 dynein axonemal intermediate chain 1 0.692 0.6

DNAAF3 dynein axonemal assembly factor 3 0.731 0.59

CCDC114 coiled-coil domain containing 114 0.5 0.53

CCDC65 coiled-coil domain containing 65 0.5 0.52

DNAH5 dynein axonemal heavy chain 5 0.692 0.4

RSPH1 radial spoke head component 1 0.5 0.36

CCDC39 coiled-coil domain containing 39 0.615 0.35

ZMYND10 zinc finger MYND-type containing 10 0.731 0.35

DNAI2 dynein axonemal intermediate chain 2 0.5 0.34

DNAAF1 dynein axonemal assembly factor 1 0.654 0.33

ARMC4 armadillo repeat containing 4 0.615 0.32

DRC1 dynein regulatory complex subunit 1 0.654 0.32

FOXJ1 forkhead box J1 0.577 0.32

HYDIN HYDIN axonemal central pair apparatus 
protein

0.538 0.31

TTC25 tetratricopeptide repeat domain 25 0.538 0.31

TEKT1 tektin 1 0.308 0.01

https://www.disgenet.org/
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GSEA uses the pre-defined gene set to rank the genes 
based on the degree of differential expression. This 
analysis has been used to identify key transcriptome 
biomarkers in AD [46]. The results of our GSEA analy-
sis show that the genes have implications for disease are 
enriched in four gene sets, i.e., CHR2Q13, CHR19P12, 
CHR4P14, and KRAS.PROSTATE_UP. V1_DN. The dif-
ferences of the three gene sets of CHR2Q13, CHR19P12 
and CHR4P14 suggest that there may be lesions on 
chromosomes 2, 4 and 19 in the hippocampus of AD 
patients. The differences in the KRAS.PROSTATE_
UP.V1_DN. gene set suggest that the changes of genes in 
the hippocampus of AD patients are similar to those of 
epithelial prostate cancer cell lines. The gene TUBAL3 

related to cilia is identified only in KRAS.PROSTATE_
UP. V1_DN. AD is often referred to as an immortal 
cancer, and some studies suggest it is indeed linked to 
cancer, of 8097 AD patients, the HR (Hazard Ratio) for 
all subsequent cancers was 0.822 (95% CI, 0.728–0.928; 
P  = 0.002). Among them, three specific cancers were 
associated with AD: lung cancer (HR, 0.656; 95% CI, 
0.494–0.871; P = 0.004), prostate and testicular cancer 
(HR, 0.414; 95% CI, 0.202–0.847; P = 0.016), and lym-
phoma (HR, 2.202; 95% CI, 1.005–4.826; P  = 0.049) 
[47]. We hope to find a link between the two diseases 
in this paper with this approach, but unfortunately, our 
idea failed. Then we analyze the reasons for this failure, 
mainly because PCD is a relatively rare disease, and it is 

Fig. 7  Venn diagram of different gene sets and Path analysis diagram of hub genes. A Venn diagram of DEGs showing genes in lightcyan Model 
and AD related genes in Genecards database. B Venn diagram of hub genes and PCD genes in Disgenet database. (C) GO analysis diagram of hub 
genes



Page 12 of 16Xia et al. BMC Neurology          (2022) 22:198 

not included in the disease-related gene set analyzed by 
GSEA. In the future, with the continuous improvement 
of this method, maybe our idea is likely to succeed.

With the development of bioinformatics technol-
ogy, more and more advanced and adequate methods 
have been developed and applied in life sciences [48]. 
At present, WGCNA is a well-established method and 
applied in various studies of human diseases [28]. In 
our study, the results of the WGCNA analysis show that 
12 modules are related to AD, and the lightcyan mod-
ule showing the highest correlation with AD contained 

a total of 160 genes. Based on the PPI network, 20 hub 
genes are identified to play important roles in the net-
work associated with PCD [49–52]. We rank the hub 
genes following the Score obtained in the DisGeNET 
database, and the results reveal that the top four genes 
include DNAI1, DNAAF3, CCDC114, and CCDC65. 
Studies have shown that DNAI1 is strongly linked 
to the ciliary beat pattern variations [49], while the 
DNAAF3 variation in respiratory cilia has been found 
uniformly immotile due to their defected dynein arms 
[50]. CCDC114 is located at the basal body of a cilium 

Fig. 8  Gene interaction heatmap between hub genes and key genes related to AD. The hub genes identified (genes with incomplete information 
were deleted) were used as the vertical axis and the top 30 genes with the highest correlation with AD in Disgenet database was set as the 
horizontal axis. and the color bar represents correlation coefficients with red representing positive correlation, blue negative correlation, and 
darker color strong correlation. Asterisks represent levels of significance (* p < 0.05; ** p < 0.01). A Gene Interaction Heatmap of GSE1297. B Gene 
Interaction Heatmap of GSE36980. C Gene Interaction Heatmap of GSE29378. (D) Gene Interaction Heatmap of GSE28146
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and the knockdown of CCDC114 could affect the for-
mation of cilia in hRPE1 cells [51]. CCDC65 is a central 
hub gene for assembly of the nexin-dynein regulatory 
complex and other regulators of ciliary and flagellar 
motility [52]. The results of both the GO and KEGG 
analyses show that these hub genes are not only related 
to the regulation of axonemal dynein complex assembly 
and cilium movement, but also play an important role 
in Huntington’s disease. It is worth noting that both the 
axonemal dynamic complex and cilium movement are 
relevant to neurological diseases [53].

Gene interaction heatmap shows that the hub genes are 
associated with AD related key genes. In such network, 
highly connected genes are called hub genes, which are 
expected to play an important role in understanding the 
biological mechanism of response under stresses/condi-
tions. Gene interaction is used to predict the function of 
the unknown gene [54]. Our results indicate a relation-
ship between PCD and AD. Although we found some 
connections between genes using sequencing results, the 
underlying reasons for these connections still need to be 
verified by experiments such as RT-PCR.

Fig. 9  Prediction of miRNAs of hub genes related to AD. The yellow diamond in the figure represents the hub gene, and the blue rectangle 
represents the miRNA associated with it
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Many miRNAs have been used as tools for the diagno-
sis and treatment of AD [55], but miRNAs for PCD are 
rarely mentioned. We obtain these miRNAs through the 
prediction of hub gene. Since these genes are related to 
both AD and PCD, maybe these miRNAs It can be used 
for the diagnosis and treatment of these two diseases in 
the future.

The role of Aβ in AD development has been widely 
recognized with its deposition as one of the main symp-
toms of AD. Studies show that the Aβ inhibition of mito-
chondrial axonemal transport is associated with the early 
pathophysiology of AD [56–58]. Furthermore, it has 
been reported that the Aβ is transmitted through neu-
ronal connections on the axon membrane [59]. PCD is 
a multiple inherited disorder caused by ciliary structural 
defects [60]. Evidently, PCD is directly related to ciliary 
movement. Moreover, studies have shown that the motor 
protein of axons is related to PCD [61, 62]. These results 
suggest that AD and PCD are linked by the functions of 
cilia and axons.

We have applied not only the conventional meth-
ods of differential gene analysis, but also the GSEA 
and WGCNA to analyze the experiment data and to 
identify the gene sets related to PCD in the hippocam-
pus of AD patients. We have withdrawn the following 
conclusions. First, most genes obtained by conven-
tional differential gene analysis have been confirmed 
by our results. The GO and KEGG analyses further 
verify that these genes are related to AD. However, 
both the enrichment and GSEA analyses fail to iden-
tify any association between AD and PCD. Second, 
PCD related modules in hippocampus of AD patients 
are discovered by WGCNA. Third, the gene interaction 
heatmap shows that hub genes are bound to AD related 
key genes. These results indicate that the hub genes are 
involved in the regulation of axonemal dynein complex 
assembly and the regulation of cilium movement, both 
of which played important roles in AD as well. These 
results strongly suggest that both AD and PCD were 
related in the functions of cilia and axons.

Conclusion
Based on the results of establishing the key gene net-
work through WGCNA, our findings suggest that AD 
and PCD may share the pathogenesis, mainly reflect in 
the functions of cilia and axons. These commonalities 
indicate strongly the association between AD and PCD, 
providing theoretical foundations for further explo-
ration of the pathogenesis and treatment of these two 
human diseases.
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