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ABSTRACT Chitinimonas spp. are Gram-negative bacilli that are observed in fresh-
water and soil sources. A number of Chitinimonas species have been characterized,
including the green-pigmented Chitinimonas viridis. The isolate described here,
BJB300, was obtained from a freshwater source in the Hudson Valley, NY. BJB300 is
the first Chitinimonas isolate expressing violacein, a pigment with biotherapeutic po-
tential.

Chitinimonas bacteria are Gram-negative, motile bacilli that are found in freshwater
and soil and include Chitinimonas koreensis, Chitinimonas taiwanensis, and Chitini-

monas viridis (1–3). Isolates are often associated with chitin or organisms with chitinous
carapaces (2). Chitinimonas spp. are capable of producing chitinases, whose production
in other organisms is regulated by quorum sensing (4).

Hudson Valley (NY) freshwater samples were cultured at 22 to 25°C on Reasoner’s 2A
(R2A) medium, and they displayed vibrantly colored bacterial isolates, including violet
colonies (5). The pigment violacein is produced via the expression of a five-gene
biosynthetic operon, vioABCDE (6). Since its initial characterization, violacein has been
studied for its utility in biotherapeutics, most notably for its killing effect on invasive
chytrid isolates (7).

Chitinimonas sp. strain BJB300 was isolated from a freshwater source on R2A agar
and incubated at 22 to 25°C for 48 hours. The isolate grew as diffuse, irregularly shaped,
violet-pigmented colonies that could be maintained successfully on R2A agar and 1%
tryptone yet is unable to grow on Lennox lysogeny broth (8).

Genomic DNA extraction was completed with a Puregene yeast/bacteria kit (Qia-
gen). A 150-bp paired-end Illumina library was generated and sequenced on an
Illumina HiSeq 4000 sequencer (Wright Labs, Huntington, PA), resulting in 2 Gbp of
sequence. DNA was also isolated using the DNeasy blood and tissue kit (Qiagen), and
a library was constructed (see SRA accession numbers), without shearing, using the
Nanopore rapid sequencing kit (catalog number SQN-RAD004; Oxford). The library was
sequenced with the Nanopore MinION device (Oxford), yielding 18.5 million bases.
Reads from both sequencing runs were archived through the NCBI and uploaded to the
Galaxy Web platform, using the public server at http://usegalaxy.eu, for analysis (Ta-
ble 1). All programs were run on Galaxy-EU using standard installations except where
noted. Illumina sequences were analyzed with FastQC (9) and trimmed using fastp (10),
while Nanopore adapters were trimmed using Porechop (11). Unicycler (v. 0.4.6) was
used for assembly, removing contigs shorter than 500 bp in length (12, 13). Sequences
were mapped back to the assembly using Bowtie 2 and visualized with Tablet, with all
contigs having least 230� coverage (14, 15).

The draft genome is 111 contigs. The N50 value of the assembly is 246,315 bp. The
genome size is predicted to be 5.04 Mbp, with a G�C content of 54.56%. The G�C
percentages in the literature for Chitinimonas species range from that for C. viridis
(59.8% G�C) to that for C. koreensis (65.0% G�C) (1, 3). Analysis with PlasFlow identified

Citation Jude BA. 2019. Draft genome
sequence of a Chitinimonas species from
Hudson Valley waterways that expresses
violacein pigment. Microbiol Resour Announc
8:e00683-19. https://doi.org/10.1128/MRA
.00683-19.

Editor Julie C. Dunning Hotopp, University of
Maryland School of Medicine

Copyright © 2019 Jude. This is an open-access
article distributed under the terms of the
Creative Commons Attribution 4.0
International license.

Address correspondence to bjude@bard.edu.

Received 10 June 2019
Accepted 14 August 2019
Published 29 August 2019

GENOME SEQUENCES

crossm

Volume 8 Issue 35 e00683-19 mra.asm.org 1

https://orcid.org/0000-0003-0384-8173
http://usegalaxy.eu
https://doi.org/10.1128/MRA.00683-19
https://doi.org/10.1128/MRA.00683-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:bjude@bard.edu
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.00683-19&domain=pdf&date_stamp=2019-8-29
https://mra.asm.org


33 potential plasmid sequences, many with G�C contents divergent from the reported
average (16).

Contigs were annotated using Prokka (v. 1.13.3) (17), RASTtk (https://www.patricbrc
.org) (18, 19), and the NCBI Prokaryotic Genome Annotation Pipeline (20) Annotations
averaged 4,652 coding sequences (CDS). A BLAST search of the 16S rRNA found that it
was 94% identical to that of C. koreensis. As expected, the violacein operon was
identified, describing the purple colony pigmentation. Additionally, a chitinase gene
was noted, pointing to a functional ability to degrade chitin similar to that of other
Chitinimonas isolates.

This report places Chitinimonas into a group of strains capable of producing violacein,
enlarging the cohort of bacterial strains available for bioremediation and biotherapeutic
purposes. Further analysis of this strain and its biological properties is ongoing.

Data availability. SRA files for Illumina sequencing (SRA accession number
SRS2670610) have been deposited, as well as those for Nanopore sequencing (SRA
accession number SRX6461400). This whole-genome shotgun project has been depos-
ited at DDBJ/ENA/GenBank under the accession number VDCU00000000. The version
described in this paper is the second version, VDCU02000000.
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