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Abstract

Background: Bed bugs (Cimex lectularius) are blood-feeding insects poised to become one of the major pests in households
throughout the United States. Resistance of C. lectularius to insecticides/pesticides is one factor thought to be involved in its
sudden resurgence. Despite its high-impact status, scant knowledge exists at the genomic level for C. lectularius. Hence, we
subjected the C. lectularius transcriptome to 454 pyrosequencing in order to identify potential genes involved in pesticide
resistance.

Methodology and Principal Findings: Using 454 pyrosequencing, we obtained a total of 216,419 reads with 79,596,412 bp,
which were assembled into 35,646 expressed sequence tags (3902 contigs and 31744 singletons). Nearly 85.9% of the C.
lectularius sequences showed similarity to insect sequences, but 44.8% of the deduced proteins of C. lectularius did not
show similarity with sequences in the GenBank non-redundant database. KEGG analysis revealed putative members of
several detoxification pathways involved in pesticide resistance. Lamprin domains, Protein Kinase domains, Protein Tyrosine
Kinase domains and cytochrome P450 domains were among the top Pfam domains predicted for the C. lectularius
sequences. An initial assessment of putative defense genes, including a cytochrome P450 and a glutathione-S-transferase
(GST), revealed high transcript levels for the cytochrome P450 (CYP9) in pesticide-exposed versus pesticide-susceptible C.
lectularius populations. A significant number of single nucleotide polymorphisms (296) and microsatellite loci (370) were
predicted in the C. lectularius sequences. Furthermore, 59 putative sequences of Wolbachia were retrieved from the
database.

Conclusions: To our knowledge this is the first study to elucidate the genetic makeup of C. lectularius. This pyrosequencing
effort provides clues to the identification of potential detoxification genes involved in pesticide resistance of C. lectularius
and lays the foundation for future functional genomics studies.
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Introduction

"Good night, sleep tight, don’t let the bed bugs bite!" This common

nighttime verse now has become a precautionary catch phrase

around the globe. Bed bugs (Cimex lectularius L.) are flightless,

nocturnal, obligate blood-feeding ectoparasites that preferentially

feed on humans. Bed bug infestations pose grave economic

concerns and quality-of-life issues for households [1]. The

resurgence of bed bugs poses an urgent situation as infestations

are rampant globally, nationally, and locally. The control of these

medicinally important insect pests in urban environments costs

billions of dollars annually and typically requires the use of large

quantities of pesticides/insecticides.

Individuals that are allergic to C. lectularius bites often

experience itching and erythematous or papular urticaria-like

dermatitis, which favors secondary infections like impetigo,

ecthyma and lymphanigites [2–7]. C. lectularius infestations also

result in anxiety, insomnia or worsening of an existing mental

health condition [7–9]. However, the risk of transmission of

human disease by C. lectularius is still not clear [10]. These

ectoparasites are an important public health issue affecting all

socioeconomic classes.

The association of C. lectularius and humans dates back to 1350

B.C. or earlier, as evidenced by well-preserved bed bug remains

recovered from the Workmen’s Village at el-Amarna, Egypt [11].

Bed bugs are not native to North America but rather were

introduced by the early colonists in the 17th century. C. lectularius

were extremely common pests in the United States prior to World

War II, however extensive use of dichloro-diphenyl-trichloroeth-

ane (DDT) and other long-lasting residual insecticides greatly

reduced their numbers [12].

During the past decade or so, the resurgence of C. lectularius has

been recorded across the globe including North America, Europe,

Australia, and Eastern Asia with an estimated 100–500% annual

increase in bed bug populations [13–17]. Survey by the National

Pest Management Association and the U.S. Environmental

Protection Agency (EPA) indicated that C. lectularius stress calls

increased 81% during the last decade; the majority of bed bug

complaints came from occupants of multi-unit apartment

complexes. Furthermore, 76% of pest management companies
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confirmed that C. lectularius were the most difficult pest to control

(www.pestworld.org). Several hypotheses have been proposed to

explain the sudden resurgence of C. lectularius worldwide which

include, but are not limited to, frequent international travel (to/

from areas where C. lectularius remained common), increased

exchange of used furniture, a shift from usage of broad-spectrum

insecticides to more specific/selective control tactics such as baits

for other urban pests, and insecticide resistance within the insect

[18–25].

Resistance to pyrethroids (e.g., deltamethrin and lambda-

cyhalothrin) appears to be widespread within U.S. populations

of C. lectularius [23]. Pesticide resistance in C. lectularius is purported

to result from point mutations in the open reading frames of

voltage-sensitive sodium channel genes compared to pesticide

susceptible populations [26]. However, the role of cytochrome

P450s and glutathione S-transferases (GSTs) has yet to be

established in pesticide resistance of C. lectularius. In many insects,

both cytochrome P450s and GSTs have been shown to metabolize

synthetic chemicals (insecticides/pesticides) and host plant allelo-

chemicals [27–31]. The cytochrome P450 and GST detoxification

systems catalyze physiological reactions that modify toxic com-

pounds into water-soluble, non-toxic compounds that are excreted

by insects.

Despite the high-impact status of C. lectularius, very little is

known about this blood-feeding insect at the molecular level.

The next generation sequencing methods (Roche 454, Solexa/

Illumina, etc.) provide a unique opportunity for genomic

exploration in non-model insect species wherein little or no

molecular knowledge is available [32]. In particular, 454-

sequencing technology based on the pyrosequencing principle

has recently enabled the application of functional genomics to a

broad range of insect species including Melitaea cinxia [33], Zygaena

filipendulae [34], Chyrsomela tremulae [35], Aphis glycines [36]; Manduca

sexta [37,38], Laodelphax striatellus [39], Stomoxys calcitrans [40],

Dermacentor variabilis [41], Erynnis propertius and Papilio zelicaon [42],

and Agrilus planipennis [43]. In the current study we applied 454

technology to build a sufficiently large expressed sequence tag

(EST) database for C. lectularius. Our results will allow for a better

understanding of the physiology-driven molecular processes in C.

lectularius and the identification of candidate genes potentially

involved in insecticide resistance.

Results and Discussion

Transcriptomic analysis
Roche 454 pyrosequencing of adult C. lectularius yielded a total

of 216,419 transcriptomic reads with 79,596,412 bp, which were

assembled into 35,646 ESTs (3,902 contigs and 31,744 singletons)

(Figure 1) using the Roche Newbler program. The length of the

contigs varied from 60–4,615 bp with an average contig length of

759 bp and totaling 2,962,366 bp. The singletons ranged from

50–863 bp with an average length of 313 bp and totaling

9,919,703 bp. From the current C. lectularius transcriptomic

database, 29.6% transcripts showed significant similarity (E value

,1e25) to proteins in the GenBank nr database. As expected, the

majority of the sequences (85.9%) were matched to insect proteins

Figure 1. Summary of Cimex lectularius transcriptomic sequences. The contig sequences are represented by shaded bars and the singleton
sequences by clear bars.
doi:10.1371/journal.pone.0016336.g001
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and the remaining were matched to non-insect eukaryotes

(11.16%), fungi (1.78%), bacteria (1.21%), viruses (0.04%),

Archaea (0.02% sequences) and artificial sequences (0.03%

sequences) (Figure 2).

Comparative analysis
The comparison of C. lectularius transcriptomic sequences to the

draft protein sequences of three insect species [44,45] revealed that

the majority of sequences (46.1%, 16,367 of 35,505) were similar

to Pediculus humanus (body louse) followed by Acyrthosiphon pisum (pea

aphid), (45%) and Drosophila melanogaster (fruit fly) (23.6%) (Figure 3).

High sequence similarity of C. lectularius with P. humanus might be

due to their similar diet, i.e., blood. A significant percentage of

transcripts (44.8%) were found to be unique to C. lectularius and

perhaps could be attributed to the presence of novel genes.

Alternatively, the derived transcripts may be from the cDNA of

untranslated regions, chimerical sequences (assemblage errors) and

non-conserved areas of proteins where homology is not detected,

which is in agreement with several other transcriptomic studies

[43,46,47].

Gene Ontology assignments
In total 8,363 transcripts of C. lectularius were assigned for Gene

Ontology (GO) terms based on BLAST matches with sequences

whose function is previously known (Figure 4, Table S1). These

transcripts were assigned for biological process (7,066 sequences,

Figure 4a), cellular component (5,549 sequences, Figure 4b) and

molecular function (6,290 sequences, Figure 4c). Among the

molecular function assignments, a high percentage of genes were

assigned for Binding (49.1%), predominantly heat shock proteins

(Hsp). In a recent study of C. lectularius, the transcript levels for

Hsp70 and Hsp 90 were observed to be elevated when bugs were

subjected to various stress factors (heat, cold and dehydration)

suggesting that these proteins may play an important role during

environmental stress and could potentially play a role in control

strategies [1,8,13,48]. The cellular component terms showed a

significant percentage of genes assigned to cell part (53%) whereas

the biological process terms were associated predominantly with

cellular processes (32%) such as proteolysis, carbohydrate

metabolic processes and oxidation reduction utilization. Similar

observations for metabolic processes were reported in transcrip-

tomic studies of other insects [38,43,49].

KEGG analysis
The KEGG metabolic pathways presented in the current EST

database of C. lectularius were Nucleotide Metabolism (569

transcripts), Protein Metabolism (560), Lipid Metabolism (346),

Alkaloid Metabolism (329), Carbohydrate Metabolism (295),

Detoxification by cytochrome P450 (91), and Vitamin Metabolism

(82) (Table S2). Taken together, the putative KEGG pathways

identified in the current study shed light on specific responses and

functions involved in the molecular processes of C. lectularius.

Protein Domains
A total of 6,752 protein domains were identified in 6,286 C.

lectularius transcripts using HMMER3 software (Table S3). Among

these domains, lamprin proteins were the highest with a total of

223 (Table 1). Lamprin proteins are a unique family of

hydrophobic self-aggregating proteins consisting of GGLGY

tandem pentapeptide repeats reported in lamprey cartilage

proteins, mammalian and avian elastins, and various insects (silk

moth chorion protein and spider dragline silk) [50–53]. Protein

kinase (82) and protein tyrosine kinase (55) were among the other

top Pfam domains in our study. Both proteins are involved in

signal transduction pathways, development, cell division and

metabolism in higher organisms [54,55]. Approximately 60

cytochrome P450 domains were predicted in the derived

transcriptomic sequences of C. lectularius. Insect cytochrome

P450s are reported in the metabolism of xenobiotics, wherein

induced levels are correlated with resistance to synthetic

insecticides and plant allelochemicals [56,57].

In total, 58 RNA recognition motifs (RRMs) were predicted in

the C. lectularius sequences. These domains are also referred to as

RNA-binding domain (RBD), consensus sequence RNA-binding

domain (CS-RBD), ribonulceoprotein domain (RNPD), and RNP

consensus sequence (RNP-CS). These proteins are involved in pre-

mRNA processing and transport, regulation of stability and

translational control [58,59]. RRMs are reported to be involved in

male courtship and vision in D. melanogaster [61,62]. Mutations in

D. melanogaster RRMs resulted in reduced viability, female sterility

with abnormal wing and mechanosensory bristle morphology [58].

From the C. lectularius database we predicted 54 protein domains

belonging to the Ras family, which are thought to be involved in

insect development especially in cell differentiation and prolifer-

ation [62]. A high number of WD domains were identified in this

Figure 2. A pie chart showing species distribution of the top BLAST hits of the Cimex lectularius sequences to various insect species.
doi:10.1371/journal.pone.0016336.g002
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study (Table 1), which are primarily involved in protein-protein

interactions [36]. Sugar transporters (52) that are associated with

transport of nutrients, and domains of mitochondrial carrier

proteins (47), which are primarily involved in transport of

metabolite intermediates, were also among the top ten domains

predicted in the C. lectularius sequences [63,64]. The later proteins

are recognized by their unique signature motif P-X-[D/E]-X-X-

[R/K] and the presence of six helical transmembrane segments

made up of three tandem repeated sequences [65].

We predicted 45 insect cuticle proteins in the derived C.

lectularius sequences. Insect cuticle is a complex structure consisting

of chitin embedded in a protein matrix that lacks cysteine residues

but is characterized with conserved R&R domain (G-x(7)-[DEN]-

G-x(6)-[FY]-x-A-[DGN]-x(2,3)-G-[FY]-x-[AP] [66–68]. The R&R

consensus is further classified into RR1 (soft cuticle), RR2 (hard

cuticle) and extended R&R consensus chitin binding domain [66].

The other highly abundant domains identified in the present study

include Miro-like protein (39), Major Facilitator Superfamily (38),

ADP-ribosylation factor family (35), Immunoglobulin I-set domain

(34) and TCP_1/cpn60 chaperonin family (33). Interestingly, we

didn’t find PAZ and PIWI domains, which are believed to be

important components of the RNA induced silencing complex.

The lack of these domains in our current database of C. lectularius

could be attributed to insufficient coverage of the transcriptome.

Genes of Interest
We have mined the current transcriptomic database to obtain

genes putatively involved in insecticidal resistance of C. lectularius

(Table 2). Given that one of the factors responsible for C. lectularius

resurgence is purported to be pyrethroid resistance during the last

decade, we are specifically interested in genes that participate in

generalized insect defense. Metabolic resistance in insects has been

attributed to induced levels of cytochrome P450 monoxygenases

(CYPs), glutathione S-transferases (GSTs), superoxide dismutases

(SODs), catalases (CATs), glutathione peroxidases (GPXs), carboxyl

choline esterases and ascorbate peroxidases [69,70]. Intriguingly,

the majority of the cytochrome P450s identified in the C. lectularius

transcriptome database belonged to the CYP3 clade (includes

CYP3, CYP6 and CYP9 members) compared to other CYP clades,

which is in agreement with other insect systems [56].

Although pesticide resistance in C. lectularius is thought to be via

point mutations in voltage-gated sodium channels [24,26], the role

of the detoxification and antioxidant enzymes is poorly under-

stood. Hence, from the current database, we profiled the transcript

levels for a cytochrome P450 (CYP9) and a GST (Delta-epsilon) in

different developmental stages (early-instar nymphs, late-instar

nymphs and adults) of pesticide-susceptible and pesticide-exposed

C. lectularius populations. Quantitative real-time PCR (qPCR)

analysis of the CYP9 showed higher mRNA levels for all

developmental stages in pesticide-exposed populations compared

to pesticide-susceptible populations (Figure 5A). In particular, the

highest transcript levels for CYP9 were observed in early instars of

the pesticide-exposed population. Similar observations were

reported in Heliothis viriscens and M. sexta wherein CYP9A1 and

CYP9A2 were over-expressed in response to insecticidal treat-

ments [71,72]. More recently, CYP9M10 of Culex quinquefasciatus

was shown to be involved in pyrethroid detoxification [31]. Based

on these studies, the CYP9 profiled in C. lectularius could also be

induced upon pesticide exposure; however further functional

studies (gene expression and RNAi) are required to elucidate the

role of CYP9 in C. lectularius.

GSTs are thought to be potential secondary detoxification

agents and are majorly involved in DDT resistance [73].

Expression analysis of a candidate GST retrieved from the current

EST database revealed highest mRNA levels in the late-instar

nymphs from pesticide-exposed C. lectularius populations compared

to those of the pesticide-susceptible populations (Figure 5B).

However, there was no significant difference in GST activity for

adults from the two populations, an observation previously

reported for adult bed bugs [26].

Wolbachia. In the current transcriptome database of C.

lectularius, we found 59 sequences showing similarity with Wolbachia

Figure 3. Comparative summary of Cimex lectularius transcriptomic sequences with the protein sequences of Drosophila
melanogaster, Pediculus humanus and Aphis pisum.
doi:10.1371/journal.pone.0016336.g003
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Figure 4. Gene ontology (GO) terms for the transcriptomic sequences of Cimex lectularius. (A) biological process, (B) cellular component
and (C) molecular function.
doi:10.1371/journal.pone.0016336.g004
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(Table 2, Table S4). As an endosymbiont, Wolbachia is reported in

nearly 70% of all insect species [74–76]. Besides their role in

nutrition, these are thought to play an important role in

manipulating the host reproductive system through reproductive

parasitism, i.e., feminization of genetic males, parthenogenesis and

cytoplasmic incompatibilities, thereby increasing the frequency of

Table 1. Summary of top 15 domains predicted in Cimex lectularius sequences.

Domain accession Domain name Domain description Occurrence

PF06403.4 Lamprin Lamprin 223

PF00069.18 Pkinase Protein kinase domain 82

PF00067.15 p450 Cytochrome P450 60

PF00076.15 RRM_1 RNA recognition motif (a.k.a. RRM, RBD, or RNP domain) 58

PF07714.10 Pkinase_Tyr Protein tyrosine kinase 55

PF00071.15 Ras Ras family 54

PF00400.25 WD40 WD domain, G-beta repeat 53

PF00083.17 Sugar_tr Sugar (and other) transporter 52

PF00153.20 Mito_carr Mitochondrial carrier protein 47

PF00379.16 Chitin_bind_4 Insect cuticle protein 45

PF08477.6 Miro Miro-like protein 39

PF07690.9 MFS_1 Major facilitator superfamily 38

PF00025.14 Arf ADP-ribosylation factor family 35

PF07679.9 I-set Immunoglobulin I-set domain 34

PF00118.17 Cpn60_TCP1 TCP-1/cpn60 chaperonin family 33

doi:10.1371/journal.pone.0016336.t001

Table 2. Genes of interest in Cimex lectularius.

Candidate genes #Occurrence Family members with corresponding numbers

Cytochrome P450

Cyp2 clade

CYP18 01 CYPXVIIIA1

CYP307 03 CYPCCCVIIA1

CYP314 03 CYPCCCXIVA1

CYP3 clade

CYP3 05 CYPIIIA1 (2), CYPIIIA12 (1), CYPIIIA13 (1), CYPIIIA31 (1)

CYP6 35 CYPVIA2 (1), CYPVIA13 (5), CYPVIA14 (9), CYPVIA18 (2), CYPVIA21 (3), CYPVIB2
(1), CYPVIB4 (1), CYPVID2 (2), CYPVID4 (1), CYPVID5 (4), CYPVIJ1 (4), CYPVIK1 (2)

CYP9 05 CYPIXE2

CYP4 clade

CYP4 17 CYPIVC1 (5),CYPIVF8 (1),CYPIVG1 (2),CYPIVG15 (9)

Mitochondrial CYP clade

CYP 301 04 CYPCCCIA1

Glutathione S-transferases 14

Superoxide dismutases 06

Catalases 02

Peroxidases (GPX and PhGPX) 03

Voltage gated sodium channel 01

Wolbachia 59

doi:10.1371/journal.pone.0016336.t002
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infected females in the host population [77–82]. In a recent study,

Wolbachia was shown to be essential for C. lectularius’ synthesis of B

vitamins, which are deficient in blood meals. Antibiotic-

supplemented blood meals for C. lectularius resulted in delayed

adult emergence and egg deposition; however, normal adult

emergence and egg development was restored when the blood

meal containing antibiotic was supplemented with B vitamins

[82].

Putative Molecular Markers
We predicted a total of 296 putative single nucleotide

polymorphisms (SNPs) wherein 96 were transversions and 200

were transitions (Table 3, Table S5). Additionally, we identified 370

simple sequence repeats (SSRs or microsatellites), of which 69%

were trinucleotide repeats, followed by 27% dinucleotide and 4%

tetranucleotide repeats (Table 4, Table S6). Molecular markers

identified in the current study could lay a platform for better

understanding the adaptation/ecology of C. lectularius as reported in

other insect systems [83]. However all the predicted molecular

markers need to be validated to rule out false positives and

sequencing errors.

Conclusions
This study is the first to obtain fundamental molecular

knowledge of C. lectularius. Some noteworthy results of this study

are 1) a significant number of putative defense pathways were

identified within the derived sequences; 2) a number of SNPs and

microsatellite markers were predicted, which upon validation

could facilitate the identification of polymorphisms within C.

lectularius populations; and 3) high transcript levels for a

cytochrome P450 (CYP9) in pesticide-exposed C. lectularius

populations provide initial clues to metabolic resistance. These

characteristic features along with the recovered sequences of

Wolbachia provide new insights into the biology of C. lectularius.

Materials and Methods

Insect material
C. lectularius populations used in this study include the pesticide-

susceptible strain ‘‘Harlan’’ which has been in laboratory culture

since 1973 and hence has not experienced pesticide exposure for

several decades. Pesticide-exposed bed bugs from Columbus, OH,

were collected during 2009 and 2010 from an apartment that had

undergone repeated insecticide treatments without successful bed

bug control. These bed bug populations were reared in the

laboratory as previous described [21]. Samples of the above-

mentioned collections were transported to the Ohio Agricultural

and Research Development Center (OARDC, Wooster, OH) and

were categorized into different developmental stages as per

Usinger [84].

RNA isolation, cDNA library construction and 454
sequencing

Total RNA was extracted using TRIzolH reagent (Invitrogen)

from a total of 15 individual insects of various developmental stages

(1st-instar nymph– adult) of the Harlan strain. Approximately 10 mg

of the extracted RNA was shipped to the Purdue Genomics Core

Facility (West Lafayette, IN) for cDNA library construction and

subsequent 454 sequencing. The cDNA library was constructed

using the SMART cDNA library construction kit and following the

manufacturer’s protocol with a few modifications to enhance

sequencing: i) a modified CDSIII/39 primer (59-TAG AGG CCG

Figure 5. Quantitative PCR analysis of candidate defense genes in Cimex lectularius early- and late-instar nymphs and adults. (A)
mRNA levels for a cytochrome P450 (CYP9) in pesticide-exposed (blue bars) and pesticide-susceptible populations (red bars). (B) mRNA levels for a
glutathione-S-transferase (GST) in pesticide-exposed (blue bars) and pesticide-susceptible populations (red bars). An EF-1alpha was used as the
internal reference gene. Standard error of the mean for three technical replicates is represented by the error bars.
doi:10.1371/journal.pone.0016336.g005

Table 3. Predicted single nucleotide polymorphisms (SNP) in
Cimex lectularius sequences.

SNP type Counts

Transition 200

A-G 91

C-T 109

Transversion 96

A-C 21

A-T 31

C-G 16

G-T 28

doi:10.1371/journal.pone.0016336.t003
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AGG CGG CCG ACA TGT TTT GTT TTT TTT TCT TTT

TTT TTT VN-39; PAGE purified) and SuperScript II reverse

transcriptase (Invitrogen, Carlsberg, CA) were used for first-strand

cDNA synthesis, and ii) cDNA size fractionation was excluded and

final products were cleaned and eluted using a QIAquick PCR

purification kit (Qiagen, Valencia, CA). Following agarose gel

electrophoresis and extraction of DNA from gels, DNA bands (500-

800 bp) were purified, blunt ended followed by ligation with

adapters and finally immobilized on beads. Single stranded DNA

isolated from the beads was characterized for correct size using a

LabChip 7500. The concentration and the proper ligation of the

adapters were examined using qPCR. One-quarter of a pico-titer

plate was sequenced following manufacturer’s protocol using the

Roche 454 GS FLX Titanium chemistry (Roche Diagnostics,

Indianapolis, IN).

Bioinformatic analysis
The sequences were assembled using NEWBLER software

package (a de novo sequence assembly software) after the removal

of adapter sequences. For attaining better results, the contigs and

singletons were renamed in the format of ‘‘BB454ONE000001’’

where ‘‘BB’’ stands for the bed bug species, ‘‘454’’ for 454

sequencing technology, ‘‘ONE’’ for the first trial, and ‘‘000001’’

for an arbitrarily assigned number. All the contigs and singletons of

C. lectularius were analyzed using BLASTx algorithm [85] against

GenBank non-redundant database at National Center for Biotech-

nology Information (NCBI) (http://www.ncbi.nlm.nih.gov/). Using

BLASTx algorithm we also compared the sequences to the insect-

specific protein sequences. To examine the protein domain all the

sequences were searched against the Pfam database [86] by

HMMER v3 program [87]. The Blast2GO software [88,89] was

used to predict the functions of the sequences, assign Gene Ontology

terms, and predict the metabolic pathways in Kyoto Encyclopedia of

Genes and Genome [90–92]. SSRs were identified using Msatfinder

version 2.0.9 program [93] whereas SNPs were predicted using

gsMapper software (Roche Diagnostics) with an arbitrary criterion

of at least 4 reads supporting the consensus or variant.

Gene mining and quantitative real time PCR
Total RNA was extracted from different development stages

(early instars, late instars, and adults) using TRIzolH following the

manufacturer’s protocol. The total RNA obtained was re-

suspended in 40 ml of nuclease-free water and the concentration

was measured using Nanodrop (Thermo Scientific Nanodrop

2000). About 0.5 mg of total RNA was used as template to

synthesize first-strand cDNA using Superscript II Reverse

Transcriptase kit (Invitrogen) following the manufacturer’s proto-

col. The resultant cDNA was diluted to 20 ng/ml for further use in

qPCR. Genes of interest included CYP9 and a GST that were

subjected to qPCR analysis. Primers were designed using Beacon

Designer 7 software (primer sequences upon request). The cycling

parameters were 95uC for 5 min followed by 40 cycles of 95uC for

10 s and 60uC for 30 s ending with a melting curve analysis (65uC
to 95uC in increments of 0.5uC every 5 s) to check for nonspecific

product amplification. Relative gene expression was analyzed by

the 2-DDCT method (User Bulletin #2: ABI Prism 7700 Sequence

Detection System vide supra (http://www3.appliedbiosystems.

com/). An elongation factor 1-alpha (EF1-a) of C. lectularius was

used as the internal reference gene, as has been used in other

insect systems [94].

Data deposition
The Roche 454 reads of C. lectularius were submitted to NCBI

Sequence Read Archive under the accession number of

SRA024509.1.

Supporting Information

Table S1 Gene Ontology of C. lectularius sequences.

(XLSX)

Table 4. Summary of microsatellite loci predicted in Cimex lectularius sequences.

Number of repeats Dinucleotide repeats Trinucleotide repeats Tetranucleotide repeats

5 - 151 12

6 - 58 01

7 - 21 02

8 41 10 -

9 26 04 -

10 10 03 -

11 06 02 -

12 02 01 -

13 03 - -

14 - 03 -

15 02 01 -

16 03 01 -

17 03 - -

20 01 - -

21 01 - -

22 01 - -

35 01 - -

Subtotal 100 255 15

doi:10.1371/journal.pone.0016336.t004
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Table S2 KEGG summary of C. lectularius sequences.

(XLSX)

Table S3 Pfam domain search of C. lectularius sequences.

(XLSX)

Table S4 Predicted Wolbachia sequences of C. lectularius.

(XLS)

Table S5 Putative SNPs in C. lectularius sequences.

(XLSX)

Table S6 Putative microsatellite loci in C. lectularius sequences.

(XLSX)
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