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Context: Genetic testing is increasingly used for clinical diagnosis, although variant interpretation
presents a major challenge because of high background rates of rare coding-region variation, whichmay
contribute to inaccurate estimates of variant pathogenicity and disease penetrance.

Objective: To use the Exome Aggregation Consortium (ExAC) data set to determine the background
population frequencies of rare germline coding-region variants in genes associated with hereditary
endocrine disease and to evaluate the clinical utility of these data.

Design, Setting, Participants: Cumulative frequencies of rare nonsynonymous single-nucleotide
variants were established for 38 endocrine disease genes in 60,706 unrelated control individuals. The
utility of gene-level and variant-level metrics of tolerability was assessed, and the pathogenicity and
penetrance of germline variants previously associated with endocrine disease evaluated.

Results: The frequency of rare coding-region variants differed markedly between genes and was correlated
with thedegreeof evolutionary conservation.Genesassociatedwithdominantmonogenic endocrinedisorders
typically harbored fewer rare missense and/or loss-of-function variants than expected. In silico variant
prediction tools demonstrated low clinical specificity. The frequency of several endocrine disease‒associated
variants in the ExAC cohort far exceeded estimates of disease prevalence, indicating either misclassification
or overestimation of disease penetrance. Finally, we illustrate how rare variant frequencies may be used to
anticipate expected rates of background rare variation when performing disease-targeted genetic testing.

Conclusions: Quantifying the frequency and spectrum of rare variation using population-level se-
quence data facilitates improved estimates of variant pathogenicity and penetrance and should be
incorporated into the clinical decision-making algorithm when undertaking genetic testing.
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The advent of high-throughput DNA sequencingmethods has accelerated the identification of
genes responsible for hereditary disorders, and they are increasingly applied in clinical
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practice to guide patient management [1–3]. The potential utility of these approaches are
heralded by ambitious clinical projects, including the United Kingdom’s 100,000 Genomes
Project and the United States‒based Regeneron/Geisinger DiscovEHR collaboration, which
are combining next-generation sequencing with health care data to facilitate gene discovery
and precisionmedicine [4, 5]. However, this accessibility and scope of germline genetic testing
brings many challenges, including inherent difficulties in data interpretation [6, 7]. For
example, failure to identify pathogenic variants in an individual may result in missed op-
portunities for diagnosis and treatment, whereas misclassification of benign variants as
pathogenicmay result in inadvertent harm through unnecessary investigation and treatment
[7]. Thus, appropriate genetic counseling and treatment of patients and their families relies
on accurate estimates of the pathogenicity of genetic variants and their clinical penetrance.
However, it is important to note that frequently these have been overestimated because of
focusing genetic analysis on disease cohorts without adequate investigation of control pop-
ulations; an overreliance on in silico computational tools in predicting variant effects; and
self-fulfilling reporting or ascertainment bias in the literature [8–10].

The detailed genetic characterization of large population cohorts provides an unbiased
resource to reevaluate the role of germline genetic variation in hereditary disease, as il-
lustrated by results from the exome variant server and 1000 Genomes Project cohorts, which
identified a surprising high degree of rare coding-region variation as well as demonstrating
that many disease-associated variants reported as pathogenic were instead observed with
improbably high frequencies in apparently healthy individuals, indicating likely mis-
classification [11–13].

The Exome Aggregation Consortium (ExAC) data set, containing high-resolution exome
sequences from 60,706 unrelated individuals [14], provides the most comprehensive publicly
available catalog of population-level coding-region variation and confirms this remarkable
diversity in rare coding-region variation [i.e., .99% of all single-nucleotide variants (SNVs)
occur with an allele frequency (AF) of ,1%] and that every individual will harbor a large
number of apparently deleterious/pathogenic alleles with imperceptible impacts on health
[14]. The potential utility of this data set to reassess variant pathogenicity and to refine
estimates of disease penetrance (i.e., the proportion of individuals with a particular variant-
expressing disease) has recently been demonstrated for hereditary forms of prion disease and
cardiomyopathy [8, 9, 15]. Indeed, evaluating the frequency of variants identified from clinical
genetic testing in large control populations, such as ExAC, is now mandatory, enabling
the exclusion of variants occurring with AFs above certain thresholds (e.g., AF .0.1% for
dominant disorders) [6, 7]. In contrast, the absence (or very low AF) of a variant from a
population database is often used as supporting evidence of pathogenicity [6]. However, the
background frequency of rare coding-region variation in the gene of interest will potentially
influence the interpretation of the result, although to date, the burden of such rare variation is
typically not considered during variant interpretation.

Germline genetic testing is increasingly used in the field of endocrinology, reflecting
several recent advances in disease-gene discovery [2, 16]. Indications for genetic testing
include the evaluation of individuals at risk for monogenic disease [e.g., multiple endocrine
neoplasia type 1 (MEN1)] [17]; sporadic clinical presentations associated with a high prev-
alence of germline mutations [e.g., pheochromocytoma/paraganglioma (PPGL)] [16]; or in-
vestigative studies for clinical presentations in which a genetic etiology is suspected [2].
Increasingly, genetic testing employs next-generation sequencing approaches, including the
use of disease-targeted gene panels, and it is inevitable that as the genomic content of the test
increases, so does the likelihood of detecting rare coding-region variants, resulting in the
potential for diagnostic uncertainty. Indeed, a failure to account for the background frequency
of rare variants may have contributed to ascertainment bias in earlier genetic studies, re-
sulting in potential variant misclassification as well as inadvertent overestimates of disease
penetrance.

Therefore, to address these challenges, we used the ExAC cohort to quantify the spec-
trum and frequency of rare germline missense and loss-of-function (LOF) SNVs in 38 genes

1508 | Journal of the Endocrine Society | doi: 10.1210/js.2017-00330

http://dx.doi.org/10.1210/js.2017-00330


associated with hereditary endocrine disease and explored the utility of these data when
applied to several clinical settings. Our results demonstrate the value of large control cohorts
such as ExAC and illustrate how estimates of cumulative rare variant frequencies, together
with additional gene- and variant-level factors, may be incorporated into the workflow for
clinical genetic testing.

1. Materials and Methods

A. ExAC Population, Genes, and Variant Classification

Data were obtained from the ExAC browser (Version 0.3.1; http://exac.broadinstitute.org;
accessed March 2016 to October 2017). Details of the contributing populations, sequencing
methods, and variant filtering and calibration methods have been reported [14]. All high-
quality nonsynonymous SNVs were identified in the 38 genes selected for study, including
those predicted to result in missense or nonsense amino acid changes and those directly
disrupting donor or acceptor splice sites. SNVs are described relative to the canonical tran-
script. This analysis was performed on the complete ExAC data set (n = 60,706). However, a
separate subanalysis was performed on the data set with the 7601 germline samples from The
Cancer Genome Atlas (TCGA) cohort removed (further details provided in Supplemental
Table 1 and the Supplemental Materials and Methods). Similarly, although insertions and
deletions (indels) were excluded from the main analysis because of the reduced reliability of
detection and an increased false discovery rate relative to SNVs [14], a separate analysis
evaluated the frequency of LOF indels (i.e., resulting in a frameshift) in each of the 38 genes
(further details are provided in the Supplemental Materials and Methods).

Rare SNVs were further categorized into three nonexclusive groups: those with an
AF ,0.5% (i.e., affecting ,1 in 100 individuals); those with an AF ,0.05% (i.e., affect-
ing,1 in 1000 individuals); and singletons (i.e., variants observed only once in the ExAC
cohort). SNVs were excluded if the AF exceeded the category cutoff in any of the defined
ethnic subpopulations or if ,10,000 alleles were captured. Cumulative frequencies of
each category of rare variant (i.e., AF,0.5%, AF,0.05%, or singleton) were estimated for
each gene by accruing individual SNV frequencies to establish population-level carriage
rates and were subsequently converted to a “number needed to sequence,” representing
the mean number of individuals sequenced for each rare SNV identified. A separate
subanalysis of only LOF SNVs was performed (i.e., single-nucleotide substitution pre-
dicting either a nonsense amino acid change or directly affecting a donor or acceptor splice
site).

The relationship between the gene-specific cumulative rare variant frequencies and amino
acid length of the encoded protein was evaluated by linear regression. Cumulative variant
frequencies were subsequently corrected for coding-region nucleotide length and normalized
to an arbitrarily selected gene cell division cycle 73 (CDC73). To investigate the influence of
evolutionary conservation, pairwise amino acid alignment scores were established for known
orthologs (http://www.ncbi.nlm.nih.gov/homologene) (Supplemental Table 2). Genes were
ranked in increasing order of size-corrected cumulative SNV frequency and in decreasing
order of evolutionary conservation as defined by the degree of amino acid conservation be-
tween human and zebrafish (Danio rerio) orthologs, selected to represent an evolutionary
distant species for which a near-complete data set could be generated, and were evaluated by
Spearman rank correlation.

B. Constraint Metrics and Computational Tools of Variant Pathogenicity

Missense (z-score) and LOF [probability of LOF intolerance (pLI)] constraint metrics were
obtained directly from the ExAC browser (Supplemental Table 3). Detailed descriptions of
these metrics are reported elsewhere, and a brief overview is provided in the Supplemental
Appendix [14]. SIFT, Polyphen2, and Combined Annotation Dependent Depletion (CADD)
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scores were evaluated for all missense SNVs with an AF ,0.5% in a subset of 12 genes
(downloaded from http://cadd.gs.washington.edu/) [18]. Additional details of these tools are
provided in the Supplemental Appendix. Variants were categorized as deleterious if they
met all of the following criteria: AF ,0.5%; SIFT score #0.05; a Polyphen2 description of
probably damaging; and a scaled CADD score .20. Variants were considered possibly del-
eterious when they had an AF ,0.5% and either a SIFT score #0.05 and/or a Polyphen2
classification of probably damaging or possibly damaging.

C. Prevalence of Disease-Associated Variants in the ExAC Cohort

The presence of SNVs previously reported to be disease causing for six penetrant monogenic
conditions [familial hypocalciuric hypercalcemia (FHH),MEN1,multiple endocrine neoplasia
type 2 (MEN2), hyperthyroidism-jaw tumor syndrome, neurofibromatosis type 1 (NF1), and
von Hippel-Lindau (VHL) syndrome] were evaluated in the ExAC cohort. Disease-associated
mutations were identified from publicly available sources (details are provided in Supple-
mental Appendix). In a separate analysis, the ExAC data set was screened for actionable
variants inMEN1, RET, VHL, SDHB, SDHC, SDHD, and SDHAF2 (as recommended by the
American College of Medical Genetics and Genomics (ACMG) guidelines) [19]. For each
analysis, it was established whether variants had arisen in samples from the TCGA cohort.

D. Prevalence of Missense Aryl Hydrocarbon Interacting Protein (AIP) SNVs in the ExAC and
Sporadic Pituitary Tumor Cohorts

Individual and cumulative frequencies of all missense AIP SNVs with an AF ,0.5% were
established for the ExAC cohort and compared with those observed in 1866 individuals with
apparently sporadic pituitary tumors reported in nine earlier studies. Odds ratios with 95%
confidence intervals were established.

E. Prediction of Background Rare Variant Frequencies in Clinically Relevant Gene Panels

Four disease-targeted gene panels were formulated to model estimated background fre-
quencies of raremissense andLOFSNVswhenundertakingmultiple-gene sequencing. These
represented PPGL, calcium-/parathyroid-related disorders, pituitary tumor disorders, and
MEN syndromes. Cumulative rare variant frequencies were used to establish the likelihood
that a given individual would harbor a rare variant in at least one of the panel genes.

2. Results

A. Rare Variant Frequencies and Evolutionary Conservation

Thirty-eight genes were selected for study, representing a range of endocrine disorders re-
ported to be associated with heterozygous germlinemissense and/or LOFSNVs (Table 1). The
identification of all nonsynonymous SNVs (i.e., single-nucleotide substitutions resulting in
missense or nonsense amino acid changes or directly affecting donor or acceptor splice sites) in
each of the 38 genes revealed that the overwhelmingmajority were rare, with ~60% occurring
as singletons (i.e., observed only once in the ExAC cohort), whereas ~92% of gene-specific
SNVs had an AF ,0.05% (i.e., observed in #1 in 1000 individuals) (Fig. 1A). The cumulative
frequency of rare nonsynonymous SNVs differed markedly between genes (Table 2). For
example, chromodomain helicase DNA-binding protein 7 (CHD7) and neurofibromin (NF1)
demonstrated the highest frequencies of singleton variants (affecting approximately one in
100 and approximately one in 200 of the cohort, respectively), whereas the lowest frequency
was observed for adaptor-related protein complex 2 sigma 1 subunit (AP2S1) (affecting ap-
proximately one in 12,000 individuals). Of note, removal of the TCGA subgroup (n = 7601)
from the analysis had a minimal impact on cumulative rare SNV frequencies of the genes
evaluated (i.e., those associated with hereditary endocrine tumor syndromes), with the
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Table 1. Details of the 38 Genes Studied and Their Associated Endocrine Disorders

Gene
Disorder(s) Associated With

Germline Mutation Mutation Type
Inheritance

Pattern Canonical Transcript

AIP Familial isolated pituitary adenoma Het (LOF, MS) AD (RP) ENST00000279146
Sporadic pituitary adenomas Het (LOF, MS) Sporadic

AP2S1 Familial hypocalciuric hypercalcemia Het (MS) AD ENST00000263270
ARMC5 Familial macronodular adrenal

hyperplasia
Het (MS) AD (RP) ENST00000268314

Sporadic macronodular adrenal
hyperplasia

Het (MS) Sporadic

CASR Familial hypocalciuric hypercalcemia Het (MS) AD ENST00000498619
Familial isolated

hyperparathyroidism
Het (MS) AD

Autosomal dominant hypocalcemia Het (MS) AD
CDC73 Hyperparathyroidism-jaw tumor

syndrome
Het (LOF, MS) AD ENST00000367435

Sporadic parathyroid carcinoma Het (LOF, MS) Sporadic
CDKN1Aa Sporadic parathyroid adenoma Het (MS) Sporadic ENST00000405375
CDKN1B Multiple endocrine neoplasia type 4 Het (LOF, MS) AD ENST00000228872

Sporadic parathyroid and pituitary
adenoma

Het (MS) Sporadic

CDKN2Ba Sporadic parathyroid adenoma Het (MS) Sporadic ENST00000276925
CDKN2Ca Sporadic parathyroid adenoma Het (MS) Sporadic ENST00000262662
CHD7 Hypogonadotropic hypogonadism

type 5/CHARGE
Het (LOF, MS) AD (RP) ENST00000423902

EGLN1 Sporadic pheochromocytoma/
paraganglioma

Het (MS) Sporadic ENST00000366641

EPAS1 Sporadic pheochromocytoma/
paraganglioma

Het (MS) Sporadic ENST00000263734

FGF23 Autosomal dominant
hypophosphatemic rickets

Het (MS) AD ENST00000237837

FH Hereditary leiomyomatosis/renal cell
carcinoma

Het (LOF, MS) AD ENST00000366560

Sporadic pheochromocytoma/
paraganglioma

Het (MS) Sporadic

GATA3 Hypoparathyroidism/deafness/renal
dysplasia

Het (LOF, MS) AD ENST00000379328

GHR Laron dwarfism Homo (LOF, MS) AR ENST00000230882
Idiopathic short stature Hetb (LOF, MS) AD (?)

GNA11 Familial hypocalciuric hypercalcemia Het (MS) AD ENST00000078429
Autosomal dominant hypocalcemia Het (MS) AD

GNAS Pseudohypoparathyroidism type 1a Het (LOF, MS) ADc ENST00000371100
GPR101a Sporadic acromegaly Het/Hemi (MS) Sporadic ENST00000298110
KAL1 Hypogonadotropic hypogonadism

type 1
Hemi (LOF, MS) XLD ENST00000262648

KCNJ5 Familial hypertension Het (MS) AD ENST00000529694
KIF1B Familial pheochromocytoma/

paraganglioma
Het (MS) AD ENST00000263934

Sporadic pheochromocytoma/
paraganglioma

Het (MS) Sporadic

MAX Familial pheochromocytoma/
paraganglioma

Het (LOF, MS) AD (RP) ENST00000358664

Sporadic pheochromocytoma/
paraganglioma

Het (LOF, MS) Sporadic

MEN1 Multiple endocrine neoplasia type 1 Het (LOF, MS) AD ENST00000337652
NF1 Neurofibromatosis Het (LOF, MS) AD ENST00000358273
PHEX X-linked hypophosphatemic rickets Het/Hemi (LOF, MS) XLD ENST00000379374
PRKAR1A Carney complex Het (LOF, MS) AD ENST00000589228
PRLR Hereditary hyperprolactinemia Het (MS) AD ENST00000382002
RET Multiple endocrine neoplasia type 2 Het (MS) AD ENST00000355710

Familial medullary thyroid cancer Het (MS) AD
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exception of von Hippel-Lindau (VHL), for which reduced sequence coverage of part of the
gene reduced the reliability of the estimates (Supplemental Table 4).

Although a positive correlationwas observed between rare nonsynonymous SNV frequency
and coding-region nucleotide length (e.g., for singleton SNVs, r2= 0.84; P , 0.0001) (Sup-
plemental Fig. 1), marked differences persisted after correcting for gene size (Supplemental
Fig. 2). Furthermore, a significant correlation was observed between rare nonsynonymous
SNV frequency and the degree of amino acid sequence identity between orthologs of the
encoded protein, with the most highly conserved genes (e.g., AP2S1, CDC73) demonstrating
the lowest rates of rare variation (Fig. 1B; Supplemental Table 2).

B. Hereditary Endocrine Genes Demonstrated Reduced Tolerance of Rare Variation

To further investigate gene-level differences in rare variant frequency, we evaluated the
utility of recently reportedmetrics of constraint, which aim to quantify the deviation between
observed and expected numbers of rare nonsynonymous SNVs resulting in either a missense
amino acid change or an LOF (i.e., nonsense or donor/acceptor splice site change) (Supple-
mental Table 3). Of the 38 genes, 20 (53%) were categorized as missense and/or LOF

Table 1. Continued

Gene
Disorder(s) Associated With

Germline Mutation Mutation Type
Inheritance

Pattern Canonical Transcript

SDHA Familial pheochromocytoma/
paraganglioma

Het (LOF, MS) AD (RP) ENST00000264932

Sporadic pheochromocytoma/
paraganglioma

Het (LOF, MS) Sporadic

SDHAF2 Familial pheochromocytoma/
paraganglioma

Het (MS) AD (RP) ENST00000301761

Sporadic pheochromocytoma/
paraganglioma

Het (LOF) Sporadic

SDHB Familial pheochromocytoma/
paraganglioma

Het (LOF, MS) AD (RP) ENST00000375499

Sporadic pheochromocytoma/
paraganglioma

Het (LOF, MS) Sporadic

SDHC Sporadic pheochromocytoma/
paraganglioma

Het (LOF, MS) Sporadic ENST00000367975

SDHD Familial pheochromocytoma/
paraganglioma

Het (LOF, MS) AD (RP)c ENST00000375549

Sporadic pheochromocytoma/
paraganglioma

Het (LOF, MS) Sporadic

THRA_1d Thyroid hormone resistance Het (LOF,d MS) AD ENST00000450525
THRA_2d Thyroid hormone resistance Het (MS) AD ENST00000264637
THRB Thyroid hormone resistance Het (LOF, MS) AD ENST00000396671
TMEM127 Familial pheochromocytoma/

paraganglioma
Het (LOF, MS) AD (RP) ENST00000258439

Sporadic pheochromocytoma/
paraganglioma

Het (LOF, MS) Sporadic

VHL Von Hippel-Lindau (VHL) Het (LOF, MS) AD ENST00000256474
Sporadic pheochromocytoma/

paraganglioma
Het (LOF, MS) Sporadic

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; Hemi, hemizygous; Het, heterozygous; MS,
missense; RP, reduced penetrance; XLD, X-linked dominant.
aGenes reported to be associated with endocrine disease, although evidence supporting pathogenicitymay be limited.
bEvidence supporting heterozygous GHR mutations in idiopathic short stature remains unclear.
cDiseases associated with genomic imprinting.
dTHRA_1 refers to THRA isoform 1 encoded by the noncanonical transcript ENST00000450525. Disease-associated
nonsense and missense mutations in final exon of isoform 1 are reported. THRA_2 refers to THRA isoform 2 encoded
by the canonical transcript (ENST00000450525), in which a missense mutation, also present in isoform 1, has been
reported.
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Figure 1. Rare variant frequency, evolutionary conservation, and constraint metrics of genes
associated with hereditary endocrine disease. (A) Proportion of all nonsynonymous SNVs
occurring in the selected genes as singletons or with an AF ,0.05%. Across the 38 genes, an
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intolerant (Fig. 1C), including the majority of genes associated with monogenic autosomal
dominant (e.g., MEN1, NF1) or X-linked‒dominant disorders [phosphate regulating endo-
peptidase homolog, X-linked (PHEX)], thereby indicating appropriate constraint against
nonsynonymous heterozygous variation. In contrast, many disease-associated genes were
categorized as missense and/or LOF tolerant, including several in which the role of het-
erozygous variation and endocrine disease is less established [e.g., growth hormone receptor
(GHR)] or was previously associated with reduced disease penetrance [e.g., succinate de-
hydrogenase A (SDHA), succinate dehydrogenase B (SDHB)]. For other genes in the tolerant
groups [e.g., cyclin-dependent kinase inhibitor 1B (CDKN1B)], their small size reduced the
reliability and utility of the respective constraint metrics (Fig. 1C).

To further quantify the variability in LOF SNV frequency (i.e., resulting in a nonsense
amino acid change or disrupting donor/acceptor splice sites), the cumulative estimates of LOF
SNV allele frequencies were established for each gene (Supplemental Table 5). Although
many genes displayed an absence or very low number of LOF SNV alleles consistent with
their known haploinsufficiency function (e.g., MEN1, CDC73), some genes harbored cumu-
lative LOF SNV frequencies considerably higher than the associated disease phenotype (e.g.,
SDHA and PPGL), indicating a reduced penetrance of such variants. For other genes, (e.g.,
NF1), the apparent high LOFSNV frequency observedwas consistent with the known disease
prevalence (e.g., NF1 prevalence: 1:3000). Similarly, small indels resulting in an LOF (i.e.,
frameshift) were absent or very rare in the majority of genes (i.e., 21 of 38 genes harboring#1
affected individual), although higher frequencies were observed in several genes in which
LOF indels would be anticipated to be disease causing, including NF1 (~1:5000 individuals),
CASR (~1:15,000 individuals), SDHB (~1:30,000), and CDC73 (~1:30,000) (Supplemental
Table 6). However, it is important to note that the reliability of indel variant calls is most
likely reduced compared with SNVs, whereas larger indels will not be identified by capture-
based sequencing methods.

C. Computational Tools Had Low Specificity in Predicting Variant Pathogenicity

Computational tools are frequently used to predict the functional effects of missense SNVs
on protein function and are often used as an adjunct alongside other clinical and genetic
data to provide supporting evidence of variant pathogenicity (e.g., as part of the ACMG
algorithm for interpretation of sequence variants). To assess the potential utility of such

average of 59.8% (range, 42.6% to 100%) of individual missense/LOF SNVs occurred as
singletons, whereas 91.8% (range, 83% to 100%) had an AF ,0.05%. (B) Rare SNV frequency
was correlated with evolutionary conservation of the encoded protein. Individual genes were
ranked according to both their size-corrected cumulative SNV frequency (for SNVs with AF
,0.05%) and the degree of amino acid conservation between human and zebrafish (Danio
rerio) orthologs. A significant correlation was observed (r = 0.69; P , 0.0001), such that genes
with a high degree of conservation harbored the lowest rates of rare SNVs. Of note, a marked
overlap was observed between genes with high conservation/low variation and those
categorized as intolerant of both missense/LOF variation using constraint metrics (genes
marked with open circles). All other genes are represented by closed circles. (C) Missense and
LOF constraint metrics for the study genes. A z score .3.09 is reported to represent
significant missense intolerance, whereas a pLI score .0.9 is indicative of extreme LOF
intolerance and suggestive of a haploinsufficient function (i.e., gene intolerant to heterozygous
LOF). Of note, 45% (17 of 38) of study genes could be classified as extreme LOF intolerant,
whereas 32% (12 of 38) were missense intolerant. Several genes in which both missense and
LOF mutations were responsible for penetrant monogenic disorders (e.g., MEN1, CDC73, and
NF1) clustered in the combined LOF/missense intolerant group. In contrast, several genes in
which the role of heterozygous germline variation in disease pathogenesis was less well
defined were categorized as LOF (pLI score ,0.1) and/or missense tolerant (e.g., CDKN1A,
SDHA, and GPR101). However, the reliability of the pLI constraint metric was reduced for
genes of small size where few LOF variants were predicted (e.g., ,10), and these genes are
identified by an open circle (e.g., CDKN1B, VHL). All other genes are represented by closed
circles. pLI, probability of LOF intolerance.
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tools, we analyzed SIFT, Polyphen2, andCADD scores of all raremissense SNVs in a subset
of 12 genes. In total, an average of 21% of all rare SNVs in each gene were categorized as
deleterious using criteria encompassing all three tools, whereas 53% were described as
possibly deleterious (Fig. 2A). The frequency of gene-specific rare missense SNVs classified
as deleterious was typically orders of magnitude higher than the prevalence of the as-
sociated disorder, indicating that such tools typically have low clinical specificity. For
example, ~1:2000 ExAC individuals harbored a rare MEN1 missense SNV predicted to be

Table 2. Gene-Level Estimates of Cumulative Rare Nonsynonymous SNV Carrier Frequencies in the
Control Cohort

Gene

Protein
Size
(AAs)

SNV Group:
AF <0.5%

SNV Group:
AF <0.05%

SNV Group:
Singleton

Population
Frequency (%)

Number
Needed to

Sequence (n)
Population

Frequency (%)

Number
Needed to

Sequence (n)
Population

Frequency (%)

Number
Needed to

Sequence (n)

CHD7 2997 5.2 19 3.0 34 0.9 115
NF1 2839 2.1 47 1.5 67 0.5 187
GNAS 1037 2.6 38 1.4 71 0.5 208
KIF1B 1770 2.0 51 1.2 81 0.4 226
RET 1114 3.0 34 1.4 71 0.4 231
ARMC5 935 2.8 35 1.2 82 0.3 289
EPAS1 870 2.1 47 1.1 87 0.3 310
CASR 1078 1.5 67 0.7 149 0.3 354
FH 510 0.9 117 0.5 191 0.3 392
VHLa 213 0.7 138 0.5 206 0.2 429
GHR 638 1.7 58 0.7 141 0.2 474
PRLR 622 1.6 61 0.5 190 0.2 504
PHEXb 749 0.8 132 0.5 199 0.2 514
SDHA 664 1.3 78 0.9 110 0.2 516
KAL1b 680 2.4 42 0.8 131 0.2 536
EGLN1a 426 0.6 180 0.3 294 0.2 545
GATA3 444 0.5 181 0.3 286 0.2 644
MEN1 615 0.4 254 0.4 270 0.1 658
KCNJ5 419 0.5 195 0.4 228 0.1 734
GPR101b 508 2.0 50 0.7 138 0.1 809
FGF23 251 0.5 213 0.3 288 0.1 891
AIP 330 1.4 70 0.4 272 0.1 923
THRB 461 0.6 156 0.3 379 0.1 963
THRA_2c 490 0.3 283 0.3 367 0.1 1034
SDHB 280 0.6 168 0.4 319 0.1 1048
CDKN1B 198 0.9 109 0.4 264 0.1 1124
CDC73 531 0.2 468 0.2 468 0.1 1208
TMEM127a 238 0.4 258 0.2 544 0.1 1217
CDKN2B 138 0.6 161 0.2 439 0.1 1336
THRA_1c 410 0.2 517 0.1 679 0.1 1509
PRKAR1A 381 0.2 432 0.1 828 0.1 1514
GNA11 359 0.1 691 0.1 802 0.1 1594
CDKN1A 164 1.4 69 0.3 358 0.1 1598
SDHAF2 166 0.4 227 0.2 502 0.05 1890
SDHD 159 0.2 433 0.1 659 0.04 2245
CDKN2C 168 0.2 593 0.1 728 0.04 2302
SDHC 169 0.2 625 0.2 625 0.04 2757
MAX 160 0.1 837 0.1 1380 0.03 3318
AP2S1 142 0.01 12,066 0.01 12,066 0.01 12,066

The number needed to sequence (NNS) equates to the mean number of individuals (reported to the nearest whole
number) requiring sequencing to identify a rare variant of each type (i.e., AF ,0.5%, AF,0.05%, or singleton). This
was determined by taking the reciprocal of the estimated cumulative variant frequency for each category of rare
variant per individual (i.e., taking into account the presence of two alleles per gene). Genes are arranged in decreasing
frequency of singleton variants.
Abbreviation: AA, amino acid.
aMissing data for part of gene and/or reduced reliability of estimates due to reduced exon coverage.
bFor X-linked disorders, the NNS is stated for females (i.e., accounting for each allele).
cTwo transcripts are reported for THRA as described in the footnote in Table 1.
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Figure 2. Utility of computational tools to predict rare variant effects and frequency of
disease-associated RET alleles in the ExAC cohort. (A) Graph shows the proportion of rare
SNVs (AF ,0.5%) predicted to result in deleterious effects using common computational
prediction tools. The number of rare SNVs evaluated for each gene is shown above the
respective gene column. In the subset of 12 genes, a mean of 20.5% (range, 9.5% to 37.9%) of
gene-specific rare SNVs were categorized as deleterious (i.e., meeting the criteria: AF ,0.5%,
SIFT ,0.05, Polyphen2 probably damaging, and scaled CADD .20), whereas 52.7% (range,
37.9% to 73.7%) were categorized as possibly deleterious (i.e., AF ,0.5% and either SIFT
#0.05 or Polyphen2 probably damaging or possibly damaging). (B) Frequency of RET alleles
reported as pathogenic in the ExAC cohort. Twenty-two individuals harbored eight different
MEN2/familial medullary thyroid cancer‒associated RET mutations corresponding to
a prevalence of approximately one in 1750 (accounting for incomplete genotyping at the
Val804Met locus). Only established MEN2/familial medullary thyroid cancer‒associated RET
mutations were included in the analysis (Supplemental Table 7). Of these alleles, the
majority are classified as moderate risk in the 2015 American Thyroid Association Medullary

1516 | Journal of the Endocrine Society | doi: 10.1210/js.2017-00330

http://dx.doi.org/10.1210/js.2017-00330


deleterious using all three tools, compared with the estimated population prevalence of
MEN1 of 1:30,000.

D. High Prevalence of Disease-Associated Variants in the ExAC Cohort

Having established the frequency and spectrum of rare nonsynonymous SNVs across the 38
genes, we next evaluated the clinical utility of these data. First, we examined theExAC cohort
for variants previously reported as disease-causing in six genes associated with penetrant
monogenic disorders (i.e., FHH, MEN1 and MEN2, hyperparathyroidism-jaw tumor syn-
drome, NF1, and VHL). This analysis revealed that for several genes, the frequency of alleles
reported as pathogenic far exceeded the reported prevalence of the associated disease
(Supplemental Table 7), giving rise to four possible explanations: The prevalence of disease
is higher than reported; prior reports of SNV pathogenicity are incorrect (i.e., variant mis-
classification); the gene- or allele-specific disease penetrance is lower than reported; or the
cohort is unknowingly enriched for hereditary endocrine disorders. For example, approxi-
mately one in 1750 individuals was observed to harbor a pathogenic ret proto-oncogene (RET)
allele (Fig. 2B), compared with an estimated prevalence of MEN2/familial medullary thyroid
cancer of approximately one in 80,000 [20]. Thirteen of 22RETmutation carriers harbored the
moderate-risk p.Val804Met variant, indicating that this allele is likely associated with low
disease penetrance [20–22]. Excluding the p.Val804Met variant, approximately one in 6000
individuals carried moderate- or high-risk RET mutations, indicating that the disease
penetrance of these alleles may also require reevaluation.

An apparent similar overrepresentation of disease alleles was observed for the calcium
sensing receptor (CASR), in which approximately one in 3500 individuals harbored a variant
previously associated with FHH type 1 (estimated prevalence: 1:15 to 30,000), although in
this setting it is plausible that the condition is more prevalent than currently recognized
because of its typically asymptomatic phenotype [23]. In contrast, the higher-than-expected
occurrence of potentially pathogenic MEN1 and VHL variants in the ExAC cohort indicates
that several of these variants were likely misclassified. However, it is important to note that
in the case of VHL, four of the six likely pathogenic variants occurred in individuals from the
TCGAcohort, which included 344 patientswith a history of sporadic renal clear cell carcinoma
whomay be at an increased risk of harboring such germline variants (Supplemental Table 7).

Next, theExAC cohortwas evaluated for individuals harboring clinically-actionable variants
in one of seven hereditary endocrine tumor predisposition genes currently included in the
ACMG guidelines [19]. Only previously reported pathogenic/likely pathogenic variants were
included. This analysis revealed that approximately one in 900 individuals in the ExAC cohort
harbored such a clinically actionable variant (Supplemental Table 8). Of note, this collection of
disease-associated SNVsdid not demonstrate a significant excess of alleles originating from the
TCGA cohort (P . 0.1) (Supplemental Table 8).

E. Role of Germline Missense AIP Variants in Sporadic Pituitary Tumors

Germline mutations in AIP are reported in familial isolated pituitary adenoma kindreds but
are associated with reduced penetrance, making it difficult to differentiate between hered-
itary and sporadic forms [24]. Germline AIP variants have also been reported in individuals
with apparent sporadic pituitary tumors, although ascribing pathogenicity may be chal-
lenging because several AIP variants are observed in both disease and control populations
[24]. To investigate the role of AIP in this setting, we compared the frequencies of rare

Thyroid Cancer Guidelines, whereas the two variants predicted to affect the cysteine residue
at codon 634 (Cys634Arg, Cys634Phe) are categorized as high risk [27]. The Val804Met
variant (observed 13 times) arose in four different ethnic populations. Excluding the
Val804Met variant, approximately one in 6000 individuals in the ExAC cohort harbored
a pathogenic RET mutation. *Two different SNVs predicted a Leu790Phe amino acid
substitution.
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germline missense AIP variants in 1866 individuals with sporadic pituitary adenomas (re-
ported in nine previous studies; Supplemental Table 9) with those observed in the ExAC
cohort. Prior analysis demonstrated the predicted frequency of likely cases in the ExAC
control population to be negligible (Supplemental Table 10). Of note, only a small excess of
raremissenseAIP variants was observed in the tumor cohort compared with the ExAC cohort
(odds ratio, 1.4; confidence interval: 1.0 to 2.0), whereas no overall excess was identified when
compared with the European ExAC subpopulation, selected to represent the most relevant
cohort for comparison (Table 3). Furthermore, no overrepresentation of several missense AIP
variants previously reported as pathogenic (e.g., Arg304Gln) were observed in the tumor
group, indicating that such variants are most likely benign or associated with very low
penetrance (i.e.,,1%). A small but notable excess of novel singleton SNVswas observed in the
tumor group, predominantly in patients with acromegaly, suggesting genuine enrichment of
pathogenic variants in this subgroup (Table 3).

F. Predicting Background Frequencies of Rare Variation Employing Disease-Targeted
Gene Panels

Finally, the gene-level estimates of rare SNV frequency were used to model expected rates of
background variation likely to be observed when performing simultaneous sequence-analysis
of multiple genes (i.e., as occurs with disease-targeted gene panels). Thus, modeling of four
disease-targeted gene panels (representing hypercalcemia/parathyroid disorders, pituitary
tumors, PPGL, and MEN syndromes) revealed high cumulative estimates of identifying rare
variants for each panel (Table 4). For example, the pretest likelihood of identifying at least one
rare missense/LOF SNV (AF ,0.5%) when employing a 15-gene panel for PPGL was esti-
mated at ~14% (i.e., one in every seven individuals), with ~3% of control individuals
harboring a novel singleton variant (i.e., one in every 31 individuals). Such estimates were
then modified to allow direct comparison with literature reports. For example, a recent study
evaluating 14 genes in patients with sporadic PPGL reported a rare germline mutation
frequency of 7%, which did not exceed the background frequency predicted from our analysis
of the ExAC cohort [25].

3. Discussion

The accurate interpretation of germline genetic variants is essential to provide appropriate
patient care but remains imprecise and may lead to diagnostic uncertainty [6, 7]. Recent
studies have highlighted the occurrence ofwidespread variantmisclassification in association
with several disorders, which have frequently arisen as a result of ascertainment and
reporting bias, a failure to genetically characterize sufficiently large patient and control
cohorts, and an overreliance on SNV rarity per se and computational tools in predicting
pathogenicity [7–9]. Furthermore, inaccurate estimates of disease penetrance are also
widespread, as illustrated by recent reports of apparently healthy individuals carrying large
numbers of disease-associated alleles [14, 15, 26].

In this study, we used the ExAC cohort to quantify the spectrum and frequency of rare
nonsynonymous germline variants occurring in a broad range of genes associated with he-
reditary endocrine diseases and illustrate the potential utility of this information for im-
proved variant interpretation, both in ascribing potential pathogenicity and in reevaluating
estimates of disease penetrance. Of note, we observed marked differences in the frequency or
rare nonsynonymous SNVs between genes after correcting for coding-region length, and this
was correlated with the degree of evolutionary conservation. The observation that the lowest
rare SNV frequencies were observed in genes with the highest degrees of evolutionary
conservation is not unexpected, as several of the most highly conserved genes regulate es-
sential cellular functions (e.g., CDC73, AP2S1, and PRKAR1A). Therefore, these genes are
likely to be under strong evolutionary selection pressure to conserve key cellular processes,
thereby resulting in a relative intolerance to variation.
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Table 3. Comparison of Frequencies of Missense Germline AIP Variants Reported in 1866 Individuals
With Sporadic Pituitary Tumors and the ExAC Cohort

TotalMissense
AIP Variants
With AF <0.5%

(n)
Arg9Gln

(n)
Arg16His

(n)
Arg304Gln

(n)
Ala299Val

(n)

ExAC
Othera

(n)

Novel
Singletonb

(n)

All (n = 1866)
Observed in sporadic

pituitary tumor cohorts
38 2 12 9 0 7 8

Predicted from Global ExAC
variant frequencies

26.7 0.8 7.3 5.4 1.6 9.4 2.0

Odds ratio (95% CI) observed
vs predicted

1.4 (1.0–2.0) — 1.6 (0.9–2.9) 1.6 (0.8–3.2) — — 4.1 (1.9–8.5)

Observed in sporadic pituitary
tumor cohorts

38 2 12 9 0 7 8

Predicted from European ExAC
variant frequencies

30.2 1.1 11.2 9.1 2.5 4.7 1.6

Odds ratio (95% CI) observed
vs predicted

1.2 (0.9–1.7) — 1.1 (0.6–1.9) 1.0 (0.5–1.9) — — 5.2 (2.3–11.4)

Acromegaly (n = 935)
Observed in acromegaly cohort 18 0 6 5 0 1 6
Predicted from global ExAC

variant frequencies
13.2 0.4 3.6 2.7 0.8 4.7 1

Odds ratio (95% CI) observed
vs predicted

1.3 (0.8–2.1) — — — — — —

Observed in acromegaly cohort 18 0 6 5 0 1 6
Predicted from European ExAC

variant frequencies
15.1 0.5 5.6 4.6 1.2 2.4 0.8

Odds ratio (95% CI)
observed vs predicted

1.2 (0.7–1.9) — — — — — —

Prolactinoma (n = 359)
Observed in prolactinoma cohort 13 1 1 3 0 6 2
Predicted from global ExAC

variant frequencies
5.1 0.2 1.4 1 0.3 1.8 0.4

Odds ratio (95% CI)
observed vs predicted

2.6 (1.5–4.5) — — — — — —

Observed in prolactinoma cohort 13 1 1 3 0 6 2
Predicted from European ExAC

variant frequencies
5.8 0.2 2.1 1.8 0.5 0.9 0.3

Odds ratio (95% CI)
observed vs predicted

2.2 (1.3–3.9) — — — — — —

Germline missense variants reported in 1866 individuals (representing 3732 alleles) with apparently sporadic pi-
tuitary tumors in whom the AIP gene was sequenced. Patient groups represented in the respective studies include
those with sporadic child gigantism, sporadic acromegaly presenting in young adulthood and sporadic acromegaly
presenting at any age, and individuals with other forms of apparently sporadic pituitary adenomas [including
prolactinomas (predominantly macroprolactinomas), nonfunctioning adenomas, and Cushing disease]. This analysis
did not include AIP sequence analysis from those individuals with apparent familial isolated pituitary adenoma
syndromes or those individuals with MEN1-like disorders. A separate subanalysis comparing allele frequencies
between the pituitary tumor cohort and just the European subset of the ExAC cohort (n 5 33,370 individuals) was
performed, deemed to be the most suitable comparator group for the disease cohorts reported in the literature.
Estimates of odds ratios and CIs were calculated at http://www.hutchon.net/confidor.htm. For individual variants,
odds ratios are provided only where sufficient numbers of alleles were observed to enable meaningful comparison.
Some of the studies included in the analysis, reported individuals with unclassified pituitary tumor subtypes. These
individuals are not included in the subgroup analysis of prolactinoma and acromegalic cases.
Abbreviation: CI, confidence interval.
aExAC other: Observed at least once in theExAC cohort butwith anAF,0.5%and excludingR9Q, R16H, R304Q, and
A229V variants. AIP variants occurring as singletons in ExAC are also reported in this group.
bNovel Singleton: not observed in the ExAC cohort. Predicted number deduced from prevalence of singletons in the
ExAC cohort.
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Although consensus guidelines have been established by the ACMG for the clinical in-
terpretation of germline sequence variants, inmany instances an unambiguous assignment of
pathogenicity is not possible [6]. In the absence of strong supporting evidence for pathoge-
nicity (e.g., identification of the LOF allele in genes in which LOF is known to result in
disease), current analyses often use a combination of variant-level features, such as the
absence of a variant in a control population, as well as predictions from computational tools
[6]. Although these approaches in isolation do not provide sufficient evidence to categorize
variants as pathogenic/likely pathogenic (i.e., enabling categorization only as a variant of
uncertain significance), they are frequently cited as supporting evidence of pathogenicity and
may ultimately result in a patient being managed as if the variant is disease causing. Our
analyses indicate that variant rarity (i.e., the absence or very low AF of a variant in a control
database) together with computational prediction tools frequently have a low specificity for
ascribing clinically relevant effects and that relying on such features likely overestimates
pathogenicity. For example, we observed that across the 38 genes, the majority of individual
variants were observed only once in the ExAC cohort and that a similar majority of rare SNVs
were classified as potentially deleterious by at least one of the computational tools evaluated.
However, our studies also demonstrated how the use of additional gene-specific factors,
including cumulative rare variant frequencies together with metrics of missense and LOF
constraint, may provide important additional context when incorporated into the variant
interpretation workflow (Fig. 3). For example, variants in genes associated with very low
rates of rare variation and intolerant constraint metrics aremore likely to be pathogenic than
those in genes with greater tolerance of variation, and such information may be useful to the
clinician in deciding how to counsel/follow-up a patient with an ambiguous test result (e.g., a

Table 4. Predicted Population-Level Prevalence of Rare Nonsynonymous SNVs Employing Disease-
Relevant Gene Panels

Disease-Targeted Gene
Panel

SNV Group: AF <0.5% SNV Group: AF <0.05%
SNV Group:
Singletons

Population
Prevalencea

(%)

Number
Needed to

Sequence (n)

Population
Prevalencea

(%)

Number
Needed to

Sequence (n)

Population
Prevalencea

(%)

Number
Needed to

Sequence (n)

Pheochromocytoma/
paraganglioma

EGLN1,b EPAS1,b FH,
KIF1B,b MAX, MEN1,
NF1, RET, SDHA,
SDHAF2,b SDHB,
SDHC, SDHD,
TMEM127, VHL

13.9 7.2 8.7 11.6 3.0 32.8

Pituitary tumor
AIP, CDKN1B, GPR101,
MEN1, PRKAR1A

4.9 20.5 1.9 51.3 0.54 185

Hypercalcemia/
hyperparathyroid

AP2S1, CASR, CDC73,
CDKN1A, CDKN1B,
CDKN2B, CDKN2C,
GNA11, MEN1, RET

8.1 12.3 3.8 26.6 1.3 77.9

Multiple endocrine
neoplasia

CDKN1B, MEN1, NF1,
PRKAR1A, RET, VHL

6.3 15.8 3.8 26.1 1.4 70.8

Hypothetical gene panel to include sequencing of coding region of all genes listed under each respective heading. The
number needed to sequence represents an estimation of the average number of individuals requiring sequencing to
identify a variant in each relevant group.
aCalculation based on occurrence of a rare variant (of the relevant frequency classification) in at least one of the genes
in the respective panel.
bGermline variants reported in a single or a very low number of individuals/kindreds.
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Figure 3. Illustrative workflow outlining considerations for genetic testing and variant
interpretation in clinical and research settings. Evaluating the spectrum and frequency of
rare variations in large population cohorts may enhance the process of genetic testing at
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variant of uncertain significance). Indeed, it is plausible that in the future such gene-specific
constraint metrics and/or estimates of rare variant burden may be incorporated into bio-
informatic or clinical computational algorithms to improve estimates of variant pathogenicity
and/or disease penetrance.

Furthermore, we demonstrated how quantifying the burden of rare variation in a given set
of genes may be used to derive an expected frequency of background rare variants that should
be anticipated when using disease-targeted gene panels. Of note, these studies illustrate
how a failure to consider the high frequency of background rare variation arising from the use
of such gene panels is likely to contribute to diagnostic uncertainty andmay have confounded
earlier genetic studies.

In the current study, we observed improbably high frequencies of variants reported as
pathogenic in several genes (e.g., RET, VHL, and MEN1), indicating their likely prior
misclassification and/or overestimates of disease penetrance. Indeed, the need to define
allele-specific estimates of disease penetrance is an important concept, as recently illustrated
for prion disease in which the disease-penetrance of individual PRNP variants ranged
from,0.1% to ~100% [15]. Our studies suggest that similar dynamic ranges of penetrance are
likely to occur for alleles associated with endocrine disease (e.g., RET), and quantifying these
is essential to enable appropriate patient care (e.g., appropriate guidance on the timing/
requirement for prophylactic thyroidectomy in individuals withRET variants associatedwith
MEN2/familial medullary thyroid cancer [27].

However, differentiating benign from low-penetrance alleles remains challenging, even
with large disease and control cohorts [15]. For example, the failure to demonstrate en-
richment of several individualAIP variants (e.g.,Arg304Gln) in a large pituitary tumor cohort
compared with the ExAC population cannot exclude an etiological role in disease, although it
suggests that any disease relationship is associated with extremely low penetrance and that
the overwhelmingmajority of such variant carriers will notmanifest clinical features. Indeed,
establishing accurate estimates of disease penetrance should be a priority, and it is evident
that for several hereditary endocrine genes, penetrancemay have been overstated (e.g., SDHx
genes) because of unintentional ascertainment bias and/or the inclusion of index cases in such
estimates [28].

different stages of the clinical workflow. For example, as the content of genetic testing
increases, the likelihood of identifying rare coding variants increases (e.g., VUSs and IFs).
The current study illustrates how gene-specific cumulative rare variant frequencies may be
used to establish pretest estimates for identifying such variants. This information could be
incorporated into the informed consent process to alert patients to the likelihood of
ambiguous test results. Although guidelines exist to standardize the process of ascribing
pathogenicity to germline variants, these typically focus on variant-specific features. The
current study highlights how gene-level factors, including estimates of rare missense/LOF
variation together with metrics of constraint, may aid variant classification. For example,
when the cumulative frequency of LOF variants in the control population exceeds the
prevalence of the disease under investigation, the likelihood that such a variant is a high
penetrance disease-allele is substantially reduced. Conversely, variants in genes with very
low rare variation burden potentially have a higher likelihood of pathogenicity. In the future,
it is possible that this information may contribute to Bayesian models for disease in which
the likelihood of variant pathogenicity and/or disease expression is adjusted according to
clinical factors as well as gene- and variant-level metrics. Furthermore, for potential disease
alleles, refined estimates of disease penetrance may be established by evaluating the
frequency of the variant in disease and control populations, and such accurate estimates are
essential for appropriate genetic counseling (e.g., to determine the value of implementing
treatment/surveillance programs and/or screening of first-degree relatives). In addition, when
ambiguous test results have been obtained (e.g., VUSs), further refinement of risk may be
established by relating the test result to both the pretest estimate of detecting such variation
and constraint metrics, which together may aid the clinician and patient in making informed
decisions regarding future care. Finally, these studies illustrate the need for transparent and
accurate reporting of genetic data coupled to phenotypes (i.e., avoiding positive reporting
bias) to improve the accuracy of existing disease/mutation databases. IF, incidental finding;
NGS, next-generation sequencing; VUS, variant of uncertain significance.
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However, for accurate estimates of penetrance to be established, it is essential that the
control population used be closely matched to the study population, thereby avoiding con-
founding from population-specific differences in variant frequencies (e.g., the presence of
founder mutations in local populations). For example, although ExAC offers large numbers
of individuals from specific ethnic groups (e.g., European ancestry), other populations are
underrepresented, and for these groups, it may not provide a suitable comparator group.

Periodic clinical, biochemical, and/or radiological screening is generally recommended for
carriers of pathogenic alleles associated with hereditary endocrine tumor syndromes (e.g.,
MEN1, RET, and SDHB) [17, 27, 29]. Our results reveal that approximately one in 900 in-
dividuals in theExAC cohort harbored an apparent clinically actionablemissense/LOFSNV in
one of seven endocrine tumor predisposition genes currently included in the ACMG guidelines
for the reporting of incidental genetic findings in clinical exome and genome data, which is
considerably higher than the combined prevalence of the associated disorders (estimated to be
1:10,000). Furthermore, the approximately one in 900 figure likely represents an underesti-
mate because the current analysis was limited to SNVs reported as pathogenic in existing
databases and excluded other potentially deleterious alleles, including indels, which were
observed in a small number of additional individuals (e.g., in SDHB and SDHD). This not only
highlights the potential clinical burden that increased genetic testing may bring but also
emphasizes the need for accurate estimates of variant pathogenicity and penetrance because
the potential for patient harmarising through tumor surveillance programs is not insignificant
[19, 30]. Furthermore, it is plausible that future decisions regarding the implementation of
screening protocols may be determined by defined thresholds of variant penetrance.

Our analysis has several potential limitations. First, although not knowingly enriched for
hereditary endocrine disorders, the ExAC cohort will contain individuals with these diseases
as well as controls with polygenic disorders with accompanying disease-associated alleles.
However, the inclusion of a broad range of genes and associated conditions reduced the
likelihood of widespread enrichment for relevant disease phenotypes. For example, one
potential concern was that the inclusion of germline samples from the TCGA cohort might
result in an overrepresentation of alleles in genes associated with hereditary endocrine
tumors; although this cohort does not include endocrine tumors relevant to the genes under
study (e.g., PPGL, medullary thyroid cancer), it was reassuring that the TCGA samples did
not contribute an excess of rare SNVs or likely pathogenic alleles in the genes investigated,
with the possible exception of VHL, in which the inclusion of renal carcinoma cases may have
introduced a risk of bias.

A further limitation of the current study is that individual rare variants were considered in
isolation in our analysis, and potential interactions between variants or other modifying in-
fluences (e.g., cis-acting elements) could not be evaluated. In addition, high-quality SNV calls
were assumed to be accurate, and although the performance of the ExAC variant calling
pipelines has been extensively validated (e.g., SNV sensitivity of 99.8% and false discovery rate
of 0.06%), confirmatory sequencing of individual variants was not undertaken. Furthermore,
caution is required in interpreting SNVs in regionswith reduced sequence coverage (e.g., exon 1
ofVHL) or those presenting difficulties in the sequencing pipelines. For example, the reliability
of sequence data for geneswithmultiple pseudogenes (e.g., SDHA) may be reduced, although in
these instances, visual inspection of individual sequence reads covering regions adjacent to the
SNVs enabled increased confidence in the variant call (Supplemental Fig. 3).

Another limitation of our study is that we excluded indels from the main analysis because
of their reduced reliability of detection [31]; although we quantified the frequency of small
LOF indels in a separate analysis, the accuracy of such estimates may be reduced compared
with SNVs. Of note, the current study could not evaluate the frequency of medium- and large-
sized indels because the current methodology does not detect such changes, although future
studies employing whole-genome sequencing may help to address these deficiencies. Finally,
it is important to note that our study has two other limitations. First, the analysis was limited
to the 38 genes selected, and it is possible that additional genes not included in this list may
contribute to some of the clinical phenotypes, thereby reducing the accuracy of estimates of
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disease prevalence and/or penetrance. Second, theExACdata set does not allow an evaluation
of epigenetic changes that may contribute to specific disease phenotypes (e.g., alterations in
methylation at the GNAS locus in pseudohypoparathyroidism Ib).

In summary, these studies demonstrate how quantifying rare germline variations in a
large control cohort such as ExAC may be exploited to improve variant interpretation and
clinical decision-making. Furthermore, this information may be incorporated into different
stages of the clinical genetic testing workflow (Fig. 3) and may provide important context
when communicating uncertain test results to patients. Finally, as genetic testing moves
increasingly into the mainstream, these studies highlight the need for increased vigilance in
the undertaking and reporting of genetic studies to improve estimates of variant pathoge-
nicity and penetrance, thereby enabling clinicians and patients to make informed decisions
regarding their care.
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