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The dynamic behavior of memristive neural networks (MNNs), including

synchronization, e�ectively keeps the robotic stability against numerous

uncertainties from the mimic of the human brain. However, it is challenging

to perform projective quasi-synchronization of coupled MNNs with low-

consumer control devices. This is partly because complete synchronization is

di�cult to realize under various projective factors and parameter mismatch.

This article aims to investigate projective quasi-synchronization from the

perspective of the controller. Here, two approaches are considered to find the

event-triggered scheme for lag synchronization of coupled MNNs. In the first

approach, the projective quasi-synchronization issue is formulated for coupled

MNNs for the first time, where the networks are combined with time-varying

delays and uncertainties under the constraints imposed by the frequency

of controller updates within limited system communication resources. It is

shown that our methods can avoid the Zeno-behavior under the newly

determined triggered functions. In the second approach, following classical

methods, a novel projective quasi-synchronization criterion that combines

the nonlinear property of the memristor and the framework of Lyapunov-

Krasovskii functional (LKF) is proposed. Simulation results indicate that the

proposed two approaches are useful for coupled MNNs, and they have less

control cost for di�erent types of quasi-synchronization.

KEYWORDS

event-triggered, memristor, coupled neural networks, projective quasi-

synchronization, uncertainties
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1. Introduction

Recently, memristive neural networks (MNNs) have

attracted much attention because of their widespread

use in various fields, such as signal processing, image

protection, and robotics (Hong et al., 2020; Yuan et al.,

2020). The dynamical behaviors of the MNNs, such as chaos,

synchronization, and stability, play a significant role in the

above-mentioned applications (Duan et al., 2020; Liu H.

et al., 2020). Synchronization is one of the most fundamental

dynamic behaviors of MNNs, i.e., the approaching process

of all interconnected nodes with different initial states in the

systems. Therefore, based on the concept of traditional chaotic

behavior, by using the synchronization of the drive-respond

MNNs for multi-robot systems, the cooperative control issues

of such systems can be redefined as the synchronization

or consensus control issues of multi-agent systems (Wang

C. et al., 2021). Accordingly, investigating the cooperative

control algorithms based on the synchronization of MNNs

is important, and numerous synchronization methods have

been established to support robotic systems (Duong et al.,

2022; Zhang Y. et al., 2022). Therefore, the synchronization

of MNNs has innovative significance and prospects for

multi-robot systems.

As a universal model of MNNs, coupled MNNs can

imitate the human brain more truly than traditional MNNs.

Considering this, the synchronization of coupled MNNs should

be investigated and applied to the field of secure communication

combined with the memristor that can mimic human synapses

(Wang et al., 2019; Chen et al., 2021). A plethora of studies

have been conducted to improve coupled MNNs for potential

applications in image protection (Yuan et al., 2020), social

networks (Zhu et al., 2022), pattern recognition, etc. Coupled

neural networks have a coupled structure. By using the initial

value sensitivity of the memristor, such networks can be applied

to the field of image encryption with larger key space and

higher security. However, when binary digital is extended

to M-nary digital, the problem of faster communication still

exists (Chee and Xu, 2006). To address this issue, projective

synchronization was first introduced by Mainieri and Rehacek

(1999).

In practice, different synchronizations are necessary between

drive-response MNNs, especially for secure communication.

Regarding the impact of the various projective factors

(Chen et al., 2019; Fu et al., 2020; Ding et al., 2022)

on different structures of neural networks, many research

results have been obtained. Fu et al. (2020) studied the

projective synchronization for fuzzy MNNs under a pinning

control scheme. The fix-time projective synchronization with

discrete-time delay was investigated by Chen et al. (2019).

Considering the lag factor and the fractional structure of

neural networks, the lag projective synchronization was studied

by Ding et al. (2022). However, parameter mismatch is

unavoidable in the synchronization mechanism. For time-

varying delayed neural networks with parameter mismatch,

projective synchronization was studied by Kumar et al. (2019).

In Guo et al. (2020), the parameter-mismatch complex-valued

neural networks realize quasi-projective synchronization with

a linear feedback controller. Later, in Yang et al. (2021),

the impulsive effect on weak projective synchronization was

investigated for parameter-mismatch MNNs. However, the

above studies did not consider uncertainty, and different models

should be described to adapt to the complex situation for the

practical requirements. Therefore, it is crucial to introduce

time-varying delays and uncertainties in the modeling (Li

et al., 2021; Rajchakit and Sriraman, 2021; Wu and Huang,

2022). This has inspired the authors to develop a less-

conservative model to explore the synchronization of coupled

MNNs.

Compared with complete synchronization, the error of

synchronization should be allowed within a reasonable range

for the robotic system, while keeping more operation resilience,

and has been widely devoted to many practical applications,

including underactuated robotic systems, underwater vehicles,

and wheeled robots (Tang et al., 2016; Huang et al., 2018; Chen

and Shan, 2019; Yao et al., 2020). Therefore, the investigation of

quasi-synchronization is significant and necessary in theory and

application. In Chen W. et al. (2022), the quasi-synchronization

of a coupled neural network with fractional-order and time-

varying delays was studied. Based on Halanay inequality and

matrix measure techniques, quasi stability of inertial-delayed

MNNs was discussed and implemented in Xin et al. (2022).

In Jin et al. (2022), sufficient criteria of uncertain Lur’e

networks were derived to guarantee the quasi-synchronization

between dynamical systems. In Shi et al. (2022), considering

the coupled heterogeneous harmonic oscillators, an event-

triggered scheme was developed to ensure the quasi-bipartite

synchronization under an undirected communication topology.

In Zhang R. et al. (2022), under deception attacks, the time-

space sampled-data control scheme was proposed to guarantee

the quasi-synchronization for NNs having reaction-diffusion.

However, from the perspective of engineering applications, most

robotic systems are coupled systems with strong couplings

among the master and slave states, therefore, the traditional

control method in such a complex environment will lead

to more energy consumption. Therefore, how to achieve a

better quasi-synchronization effect in an energy-saving manner

is still challenging.

Regarding this problem, an event-triggered scheme has

been proposed to reduce computational costs under limited

communication resources. For this scheme, the controller will

not be updated until a certain triggered condition is satisfied.

That is, the triggered function is the key to the event-triggered

scheme. Apparently, a reasonable event-triggered scheme can

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2022.985312
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yuan et al. 10.3389/fnbot.2022.985312

realize synchronization and task execution with low energy

consumption. In Zhu and Bao (2022), an event-triggered

controller was introduced to explore the synchronization

issue of coupled MNNs. In Cheng (2022), for multi-agent

systems, an event-triggered method was designed to realize the

output synchronization and the Zeno behavior was avoided

effectively. In Li et al. (2022), two event-triggered impulsive

control methods were proposed, and sufficient criteria were

formulated to guarantee the globally exponential stability of

impulsive systems. Till now, several effective event-triggering

schemes for quasi-synchronization have been investigated by

Zhou and Zeng (2019), Yan et al. (2020), and Hu et al.

(2022). In Hu et al. (2022), for quasi-synchronization, an

event-triggered communicationmechanism under the switching

topology was designed for complex NNs. Then, the hybrid

event-triggered scheme was investigated to solve the quasi-

synchronization problem for delayed MNNs with a novel

threshold function (Zhou and Zeng, 2019; Yan et al., 2020).

The above discussion indicates that the event-triggered scheme

can ensure the controller to update if the variation of

error exceeds the arbitrary threshold. Therefore, it is a

challenging but significant issue to define event-triggered

conditions including the projective factor, uncertainties, and

parameter mismatch.

This article proposed an event-triggered scheme to achieve

projective quasi-synchronization for coupled MNNs with

time-varying delays and uncertainties. The novelties of this

article include:

1. Different from general coupled MNNs, the time-

varying uncertainties are considered by the proposed

model, which is a type of uncertain switching

system. Meanwhile, the definition of projective quasi-

synchronization is first proposed based on such

a system.

2. To effectively reduce energy consumption, the projective

factor and time-varying uncertainties are introduced into

the arbitrary triggered function of an event-triggered

scheme to further extend the time span and decrease the

control cost.

3. The projective quasi-synchronization criteria are

formulated by designing a novel time-dependent and

piecewise LKF. Meanwhile, different types of quasi-

synchronization are illustrated, and an explicit error bound

is provided. Besides, the Zeno behavior can be eliminated

naturally.

For the rest of this article, Section 2 presents the model

of coupled MNNs and the involved definitions, assumptions,

as well as lemmas. Then, in Section 3, the theoretical

analysis results are given, including a theorem and two

corollaries. To validate the main results, two numerical

examples are introduced in Section 4. Section 5 concludes the

whole study.

2. Preliminaries of the neural
networks model

2.1. Coupled MNNs model

Regard a class of delayed MNNs described as follows

cl
dxl(t)

dt
= −

[
(Mflm + Nglm)+

1

Rl

]
xl(t)+

n∑

m=1

Mlm

× sgnlmfm(xm(t))+
n∑

m=1

Nflm × sgnlmfm(xm(t − τ (t)))+ Il(t),

t ≤ 0, l = 1, 2, . . . , n,

(1)

where xl(t) shows the voltage of the capacitor cl; the

memristance of memristor between the feedback function

fm(xm(t)) and xl(t) is illustrated as Mflm; then, Nflm denotes

the memristance between the feedback function fm(xm(t−τ (t)))
and xl(t).Rl is the resistor, and Il(t) is an external bias or input.

Besides, sgnlm = 1 for l 6= m and sgnlm = −1 for l = m.

Simplifying the mathematical model of the memristor is

helpful to obtain the pinched hysteresis feature, so we select a

surrogate model as shown in Figure 1.

Then, the state formula of MNNs with time-varying delays

and uncertainties is shown in Equation (1).

ẋl(t) = −dl(xl(t))xl(t)+
n∑

m=1

(
alm(xl(t))+1alm(t)

)
fm(xm(t))

+
n∑

m=1

(
blm(xl(t))+1blm(t − τ (t))

)
fm(xm(t − τ (t)))+ Il(t),

(2)

where fm(xm(t)) and fm(xm(t − τ (t))) are the neural feedback

functions; 1alm(t) and 1blm(t − τ (t)) are the time-varying

uncertainties that satisfy |1alm(t)| ≤ alm and |1blm(t−τ (t))| ≤
blm; xl(t) is the state of the l − th neuron, and τ (t) is the time-

varying delay that meets 0 ≤ τ (t) ≤ τ . dl(xl(t)) is the lth

neuron self-inhibition, alm(xl(t)) and blm(xl(t− τ (t))) represent
the memristors synaptic connection weights memristor-based

weights, and

dl(xl(t)) =
1

cl

[ n∑

m=1

(Mflm + Nflm)+
1

Rl

]
,

alm(xl(t)) =
Mflm

cl
× sgnlm,

blm(xl(t − τ (t))) =
Nflm

cl
× sgnlm.

(3)

According to the characteristics of memristor, this paper

designs the corresponding connection weights dl(xl(t)),

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2022.985312
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yuan et al. 10.3389/fnbot.2022.985312

FIGURE 1

Typical current-voltage characteristic of a memristor.

alm(xl(t)), and blm(xl(t)) as follows

dl(xl(t)) =





d̂l, xl(t) > 0,

unchanged, xl(t) = 0,

ďl, xl(t) < 0,

alm(xl(t)) =





âlm, xl(t) > 0,

unchanged, xl(t) = 0,

ǎlm, xl(t) < 0,

(4)

blm(xl(t)) =





b̂lm, xl(t) > 0,

unchanged, xl(t) = 0,

b̌lm, xl(t) < 0,

where l,m = 1, 2, . . . , n; d̂l, ďl, âlm, ǎlm, b̂lm, and b̌lm
are constants. The corresponding response system connection

weights dl(yl(t)), alm(yl(t)), and blm(yl(t)) are defined in a

similar way.

On the basis of the solution to such a system by Filippov, let

d̄l = max{|d̂l|, |ďl|}, dl = min{|d̂l|, |ďl|},
ālm = max{|âlm|, |ǎlm|}, alm = min{|âlm|, |ǎlm|},

b̄lm = max{|b̂lm|, |b̌lm|}, blm = min{|b̂lm|, |b̌lm|},

(5)

and there exist measurable functions d̃l(xl(t)) ∈ [d̄l, dl],

ãlm(xl(t)) ∈ [ālm, alm], b̃lm(xl(t)) ∈ [b̄lm, blm].

Combined with the differential inclusion theory and the set-

valued map theory, the drive system (1) with an initial value

x(s) = φ(s) = (φ1(s),φ2(s), . . . ,φn(s))
T ∈ C([−τ , 0],Rn) is

described as follows:

ẋl(t) = −d̃l(xl(t))xl(t)+
n∑

m=1

(
ãlm(xl(t))+1alm(t)

)
fm(xm(t))

+
n∑

m=1

(̃
blm(xl(t))+1blm(t − τ (t))

)
fm(xm(t − τ (t)))

+ Il(t).

(6)

The response system in the initial conditions y(s) = ϕ(s) =
(ϕ1(s),ϕ2(s), . . . ,ϕn(s))

T ∈ C([−τ , 0],Rn) is

ẏl(t) = −d̃l(yl(t))yl(t)+
n∑

m=1

(
ãlm(yl(t))+1a∗lm(t)

)
fm(ym(t))

+
n∑

m=1

(̃
blm(yl(t))+1b∗lm(t − τ (t))

)
fm(ym(t − τ (t)))

+ Ul(t)+ Il(t),

(7)

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2022.985312
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yuan et al. 10.3389/fnbot.2022.985312

where1a∗
lm
(t) and1b∗

lm
(t−τ (t)) are time-varying uncertainties

that satisfy |1a∗
lm
(t)| ≤ a∗

lm
and |1b∗

lm
(t − τ (t))| ≤ b∗

lm
; Ul(t)

represents the appropriate control input to be designed.

The coupled MNNs containing N identical MNNs are

represented as follows

ẋ(t) = −D̃(x(t))x(t)+
(
Ã(x(t))+1A(t)

)
f (x(t))

+
(̃
B(x(t))+1B(t − τ (t))

)
f (x(t − τ (t)))+ σŴWx(t)+ I(t),

(8)

and

ẏ(t) = −D̃(y(t))y(t)+
(
Ã(y(t))+1A∗(t)

)
f (y(t))

+
(̃
B(y(t))+1B∗((t − τ (t))

)
f (y(t − τ (t)))+ σŴWy(t)

+ U(t)+ I(t),

(9)

where x(t) = (x1(t), x2(t), . . . , xN (t))
T and y(t) =

(y1(t), y2(t), . . . , yN (t))
T are the states of the drive and

response system. The response activation functions

are f (x(t)) = (f1(x1(t)), f2(x1(t)), . . . , fN (xN (t)))
T, and

f (y(t)) = (f1(y1(t)), f2(y1(t)), . . . , fN (yN (t)))
T. For the structure

of the coupled system, this article defines a coupled matrix

W = (wij)N×N , i, j = 1, 2, . . . ,N, which satisfies H1: If there

is a direct edge from j to i, then wij = 1; otherwise, wij = 0;

H2: For i, j = 1, 2, . . . ,N, the diffusive coupling conditions are

satisfied as wij = −
∑N

j=1,j 6=i wij. σ > 0 denotes the coupling

strength, and Ŵ refers to the inner couple matrix.

The projective synchronization error is defined as ε(t) =
(y1(t) − αx1(t), y2(t) − αx2(t), . . . , yN (t) − αxN (t))

T =
(ε1(t), ε2(t), . . . , εN (t))

T ∈ C([−τ , 0],Rn, where α represents

the projective factor.

Then, the synchronization issue can be regarded as the

stability of the error system:

ε̇(t) = y(t)− αx(t)
= −D̃(y(t))y(t)+ αD̃(x(t))x(t)+

(
Ã(y(t))+1A∗(t)

)
f (y(t))

− α
(
Ã(x(t))+1A(t)

)
f (x(t))+ σŴWy(t)− ασŴWx(t)

+
(̃
B(y(t))+1B∗((t − τ (t))

)
f (y(t − τ (t)))

− α
(̃
B(x(t))+1B(t − τ (t))

)
f (x(t − τ (t)))+ U(t)

= −D̃(y(t))ε(t)+
(
Ã(y(t))+1A∗(t)

)
f (ε(t))+ ασŴWε(t)

+
(̃
B(y(t))+1B∗((t − τ (t))

)
f (ε(t − τ (t)))+ U(t)+9(t),

(10)

where 9(t) =
(
Ã(y(t)) + 1A∗(t)

)
f (αx(t)) − α

(
Ã(x(t)) +

1A(t)
)
f (x(t)) +

(̃
B(y(t)) + 1B∗((t − τ (t))

)
f (αx(t − τ (t))) −

α
(̃
B(x(t)) + 1B(t − τ (t))

)
f (x(t − τ (t))), f (ε(t)) = f (y(t)) −

f (αx(t)).

Then, the controller U(t) is designed as follows

U(t) = Kε(tk−1)+
∞∑

k=1

(µk − 1)ε(t)δ(t − tk), k ∈ N+,µk 6= 0,

(11)

where K = (K1,K2, . . . ,KN )
T represents the gain of state-

feedback controller, µk ∈ R represents the impulse strength,

and δ(t) represents the Dirac function. This article defines the

initial time as t0 = 0, and the subsequent events determine the

sequence of impulsive instants {t1, t2, t3, . . . }.

Remark 1. Enlighten by Zhou and Zeng (2019), we take

the time-varying uncertainties and delays of information

transmission into account of designing the triggered function.

As a result, it is more accurate to describe the various influences

from the external environment on the networks by using the

variable of the uncertainties. On the other hand, the quasi-

synchronization scheme for MMNs was presented by Zhou and

Zeng (2019). However, in order tomeet the practical application,

more types of synchronization are considered. Therefore, the

event-triggered rules in Yang et al. (2018), Liu et al. (2019), Liu J.

et al. (2020), and Wang W. et al. (2021) can be derived from the

newly developed event-triggered scheme in (11). Consequently,

the proposed scheme is more universal and can be applied

to more complex communication environments than other

methods.

Assume that ε(t) is right continuous at t = tk, i.e., ε(tk) =
ε(t+

k
). Therefore, the solution to the error system (10) is jumping

discontinuously at t = tk, which indicates that the error system

can change the state variables at t = tk with the control method

(11). Thus, the system (10) under a hybrid event-triggered

impulse can be represented as:





ε̇(t) = −D̃(y(t))ε(t)+
(
Ã(y(t))+1A∗(t)

)
f (ε(t))+ ασŴWε(t)

+
(̃
B(y(t))+1B∗((t − τ (t))

)
f (ε(t − τ (t)))

+9(t)+Kε(tk−1), t ∈ [tk−1, tk), k ∈ N+,
ε(t+

k
) = µkt

−
k
,µk 6= 0, (12)

where t ≥ 0. The impulse control scheme only works at t = tk.

Then, the measurement error of the error system (12) can be

expressed as

e(t) = ε(tk−1)− ε(t), t ∈ [tk−1, tk)k ∈ N+, (13)

where e(t) = (e1(t), e2(t), . . . , eN (t))
T.

Remark 2. The event-triggered scheme for the proposed

couple MNNs is illustrated in Figure 2 Comparing the currently

available results, the projective factor for quasi-synchronization

and uncertainties are taken into account for designing the

triggered function, which determines the triggered instant tk. At

each instant tk, the information εi(tk) exchange is realized from
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FIGURE 2

The event-triggered scheme for the proposed couple MNNs.

the sensors to the event generators and actuators. At the same

time, the designed event-triggered scheme is activated and the

sampled has occurred in the event-generators. Then the control

input ui(tk) works for coupled MNNs and the system enters the

new loop according to the updated events.

Then, some definitions, assumptions, as well as lemmas

are presented to investigate projective quasi-synchronization for

systems (8) and (9).

2.2. Some useful definitions and
assumptions

Assumption 1. (Fu et al., 2020) Assume that the solution

to (8) is bounded for any initial values x(s) = φ(s) =
(φ1(s),φ2(s), . . . ,φn(s))

T ∈ C([−τ , 0],Rn), there is a positive

constantM such that |xi(t)| ≤ M for all t ∈ [−τ ,∞).

Assumption 2. (Zhou and Zeng, 2019) The activation function

fm(·) is Lipschitez continuous, and there exists a constant fm > 0

such that

|fm(s1)− fm(s2)| ≤ fm|s1 − s2|, (14)

for all s1, s2 ∈ R, and fm(0) = 0.

Definition 1. (Tang et al., 2018) Systems (8) and (9) achieve

projective quasi-synchronization with an error bound ǫ > 0

if the error ε(t) = y(t) − αx(t) exponentially converges into

a compact set D : = ψ(s) = {(ε1(s), ε2(s), . . . , εN (s))T ∈
C([−τ , 0],RN )|

∑N
i=1 ε

2
i (t) ≤ ǫ} as t → ∞, where x(t)

represents the solution to system (8) that has an initial value of

φ(s), and y(t) represents the solution to system (9) that has an

initial value of ϕ(s).

Definition 2. (Zhu et al., 2017) The error system (10) can

eliminate Zeno behaviors if a constant ρ > 0 exists such that

inf
k∈N+

{tk − tk−1} ≥ ρ > 0. (15)

Lemma 1. Assuming that the real matrices P and Q have

appropriate dimensions, a positive number α exists such that

PTQ+ QTP ≤ αPTQ+ α−1QTP (16)

Lemma 2. (Zhang et al., 2009) Let ν1(t) and ν2(t) ∈ PC be

jumping discontinuously at t = tk, t ≥ 0, for ν1(t
−
k
) and ν2(t

−
k
),

there is ν1(t
−
k
) = ν1(t

+
k
) and ν2(t

−
k
) = ν2(t

+
k
). If there are

constants β1 > 0, β2 > 0, and µ > 0 such that

{
D+ν1(t) ≤ β1ν1(t)+ β2ν1(t − τ (t)), t 6= tk, t ≥ 0

ν1(t
+
k
) ≤ µν1(t

−
k
), k ∈ N+,

(17)

and
{
D+ν2(t) > β1ν2(t)+ β2ν2(t − τ (t)), t 6= tk, t ≥ 0

ν2(t
+
k
) ≤ µν2(t

−
k
), k ∈ N+,

(18)

and ν1(t) ≤ ν2(t) for−τ ≤ t ≤ 0, then ν1(t) ≤ ν2(t) for t > 0.
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3. Main results

Here, this article presents the solution to the exponential

projective quasi-synchronization of delayed uncertain coupled

MNNs under the proposed event-triggered strategy.

For convenience, we make A = (alm)n×n, A
∗ = (a∗

lm
)n×n,

B = (blm)n×n, B
∗ = (b∗

lm
)n×n, F = diag{f1, f2, ..., fn}, D̄ =

diag{d̄1, d̄2, ..., d̄n}, D = diag{d1, d2, ..., dn}, Ā = (ālm)n×n,

A = (alm)n×n, B̄ = (b̄lm)n×n, B = (blm)n×n, Ŵ3 = B̄+ B∗.

Theorem 1. According to Assumptions 1 and 2,

systems (8) and (9) achieve exponentially projective quasi-

synchronization with the control law (11), if there are constants

ρ1 > 0, αi > 0 (i = 1, 2, 3), α̃ > 0, ω > 0 such that

µ2k ≥ 1, (19)

3 < 0, (20)

−
( lnµ̃
ρ1

− ω
)
> µ̃β > 0, (21)

α̃ − 1

2
α2α1 −

1

2
α2Ŵ

T
3 Ŵ3 −

1

2
αK2 > 0, (22)

η(t) < 0, t ∈ [tk−1, tk) (23)

where k ∈ N+,3 = α̃+ω−λmax
(
Ā−D̄+B̄A∗+B∗+σŴW+K

)
,

β = 1
2α

−1
2 F2, µ̃ = max

k
{µ2

k
}.

In this article, the triggered function is designed as

η(t) = ||e(t)||2 − 2α2|ε(t)|
(
α̃ − 1

2
α2α1 −

1

2
α2Ŵ

T
3 Ŵ3 −

1

2
αK2)

|ε(t)|
(24)

The triggered instant tk depends on the following event-

triggered condition

tk = inf
t
{t ∈ (tk−1,∞)|η(t) ≥ 0}. (25)

Proof: For system (12), the nonnegative Lyapunov function is

adopted

V(t) = 1

2
εT(t)ε(t). (26)

By differentiating V(t) and the solution to (12) for the

[tk−1, tk),k ∈ N+, there is

D+V(t) = εT(t)ε̇(t). (27)

Combining (12) and (27), there is

D+V(t) = εT(t)
[
− D̃(y(t))ε(t)+

(
Ã(y(t))+1A∗(t)

)
f (ε(t))

+
(̃
B(y(t))+1B∗((t − τ (t))

)
f (ε(t − τ (t)))+ ασŴWε(t)

+9(t)+Kε(tk−1)
]

(28)

Consider Assumption 2, we have

f (ε(t))− f (0) ≤ Fε(t). (29)

Then, taking the parameters mismatched rules and

uncertainties of systems (8) and (9), we have

D+V(t) ≤ |εT(t)|D|ε(t)| + |εT(t)|(Ā+ A∗)F|ε(t)| + |εT(t)|σ

ŴW|ε(t)| + |εT(t)|(B̄+ B∗)F|ε(t − τ (t))| + |εT(t)|9(t)

+ |εT(t)|K|ε(t)+ e(t)|.
(30)

For9(t), by Assumptions 1–2 and Lemma 1, there are

1B∗(t)f (αx(t − τ (t)))− α1B(t − τ (t))f (x(t − τ (t))) ≤ α(B∗ − B)M.

D̃(x(t))αx(t)− D̃(y(t))αx(t) ≤ α(D̄− D)M,

Ã(y(t))f (αx(t))− αÃ(x(t))f (x(t)) ≤ α(Ā− A)M,

B̃(y(t))f (αx(t − τ (t)))− αB̃(x(t))f (x(t − τ (t))) ≤ α(Ā− B)M,

1A∗(t)f (αx(t))− α1A(t)f (x(t)) ≤ α(A∗ − A)M.

(31)

As mentioned above, there is

9(t) ≤ Ŵ2αM, (32)

where Ŵ2 = D̄+ Ā+ B̄+ A∗ + B∗ − D− A− B− A− B.

Then, considering Lemma 1, there is

|εT(t)|9(t) ≤ |εT(t)|Ŵ2αM

≤ 1

2
α2α1|εT(t)||ε(t)| +

1

2
α−1
1 MTŴT2 Ŵ2M.

(33)

Let Ŵ3 = B̄+ B∗, then there is

|εT(t)|Ŵ3F|ε(t − τ (t))|

≤ 1

2
α2|εT(t)|ŴT3 Ŵ3|ε(t)| +

1

2
α−1
2 |εT(t − τ (t))|F2|ε(t − τ (t))|,

(34)

and

|εT(t)|K|ε(t)+ e(t)|

= |εT(t)|K|ε(t)| + 1

2
α3|εT(t)|K2|ε(t)| + 1

2
α−1
3 |eT(t)||e(t)|

= |εT(t)|(K+ 1

2
α3K

2)|ε(t)| + 1

2
α−1
3 |eT(t)||e(t)|.

(35)
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Substituting (28)–(35) into (27) yields

D+V(t) ≤ |εT(t)|
[
− D+ Ā+ B̄+ A∗ + B∗ + σŴW

+ 1

2
α2α1 +

1

2
α2Ŵ

T
3 Ŵ3 +K+ 1

2
α3K

2]|ε(t)|

+ 1

2
α−1
2 |εT(t − τ (t))|F2|ε(t − τ (t))|

+ 1

2
α−1
3 |eT(t)||e(t)| + 1

2
α−1
1 MTŴT2 Ŵ2M.

(36)

According to (22) and (23), there is

D+V(t) ≤ |εT(t)|
[
− D+ Ā+ B̄+ A∗ + B∗ + σŴW +K+ α̃

]

|ε(t)| + 1

2
α−1
2 |εT(t − τ (t))|F2|ε(t − τ (t))| + κ ,

(37)

where κ = 1
2α

−1
1 MTŴT2 Ŵ2M.

From Lemma 2, the following observation can be obtained

D+V(t) ≤ −ωV(t)+ βV(t − τ (t))+ κ . (38)

When t = tk, k ∈ N+, consider (27),

V(t+
k
) = (µkε(t

−
k
))T(µkε(t

−
k
)) = µ2kV(t

−
k
). (39)

When δ > 0, ν(t) is developed as a unique solution to the

proposed coupled MNNs, i.e.,





D+ν(t) = −ων(t)+ βν(t − τ (t))+ δ + κ , t 6= tk, t ≥ 0,

ν(t+
k
) = µ2kν(t

−
k
), k ∈ N+,

ν(t) = ||ε(t)||2,−τ ≤ t ≤ 0.

(40)

According to Lemma 2,

V(t) ≤ ν(t), t ≥ 0. (41)

Then,

ν(t) = W(t)+
∫ t

0
W(t)(β1ν(s− τ (s))+ δ + κ)ds, t ≥ 0, (42)

whereW(t) represents the Cauchymatrix for Equations (17) and

(18), i.e.,

{
D+ν(t) = −ων(t), t 6= tk, t ≥ 0.

ν(t+
k
) = µ2kν(t

−
k
), k ∈ N+,

(43)

then we haveW(t) = e−ω(t−s)
5

s≤tk≤t
µ2
k
.

Considering Theorem 1, there is inf
k∈N+

{tk− tk−1} > 0, and a

constant ρ1 satisfies inf
k∈N+

{tk − tk−1} ≥ ρ1 > 0. Then, we have

W(t) ≤ e−ω(t−s)µ̃
( t−s
ρ1

+1) ≤ µ̃e
( lnµ̃
ρ1

−ω)(t−s)
, (44)

Require:t = t0,k ∈ N+,tk−1 = t0

Ensure:D̃,Ã,B̃,41,42

1: for l,m to n do

2: // Determine D̃, Ã, and B̃ by (4) using initial

values x(t0) and y(t0);

3: end for

4: // Denote ε(t) = ε(tk−1)

5: while t < T, // T is the complete time of the

entire system. do

6: for l,m to n do

7: // Determine D̃, Ã, and B̃ by (4) using

initial values x(tk−1) and y(tk−1);

8: end for

9: // Compute 41 and 42,

10: // t̃k = t̃k−1 + 1
42

ln
(
1+ 42

41

√
ℓ(ε(t))

)

11: if t = t̃k // which means the system is

triggered. then

12: // Update k = k+ 1; tk−1 = t; ε(t) = ε(tk−1)

13: end if

14: end while

Algorithm 1. Self-triggered algorithm.

and µ̃ = max
k

{µ2
k
}.

Substituting (44) into (42) yields

ν(t) ≤ µ̃e
( lnµ̃
ρ1

−ω)t||ε(0)||2 +
∫ t

0
µ̃e

( lnµ̃
ρ1

−ω)(t−s)

[
β1ν(s− τ (s))+ δ + κ

]
ds, (45)

that is,

ν(t) ≤ ζ e
( lnµ̃
ρ1

−ω)t+
∫ t

0
e
( lnµ̃
ρ1

−ω)(t−s)
[
µ̃β1ν(s−τ (s))+µ̃δ+κ

]
ds,

(46)

where ζ = µ̃ sup
τ≤t≤0

{||ε(t)||2}.

Let ℓ(ρ) = 2ρ + lnµ̃
ρ1

− ω + µ̃βe2ρτ . For the continuous

function ℓ(ρ), according to (21), ℓ(0) < 0, ℓ(+∞) > 0, and

ℓ̇(ρ) = 2+ 2τ µ̃βe2ρτ > 0. Besides, a unique solution ρ > 0 to

ℓ̇(ρ) = 0 exists. If −τ ≤ t ≤ 0, r > 0, µ̃ ≥ 1, ρ > 0, and δ > 0

hold, we have

ζ e
( lnµ̃
ρ1

−ω)t ≤ µ̃||ε(t)||2e(
lnµ̃
ρ1

+̟1)t ≤ µ̃||ǫ(t)||2e−2ρt = ζ e−2ρt .

(47)
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FIGURE 3

The chaotic dynamic behavior of systems (8) and (9). (A) Time evolutions of systems in a complex space. (B) State curves of systems in a

complex plane.

and

∫ t

0
e
( lnµ̃
ρ1

−ω)(t−s)
[
µ̃βν(s− τ (s))+ µ̃(δ + κ)

]
ds

≤
∫ t

0
e
( lnµ̃
ρ1

−ω)(t−s)
eµ̃β(t−s)ds+

∫ t

0
µ̃(δ + κ)e(

lnµ̃
ρ1

−ω)(t−s)
ds

= − 1

lnµ̃
ρ1

− ω + µ̃β
+ e

( lnµ̃
ρ1

−ω+µ̃β)

lnµ̃
ρ1

− ω + µ̃β
− µ̃(δ + κ)

lnµ̃
ρ1

− ω

+ µ̃(δ + κ)
lnµ̃
ρ1

− ω
e
( lnµ̃
ρ1

−ω) ≤ − 1

lnµ̃
ρ1

− ω + µ̃β
− µ̃(δ + κ)

lnµ̃
ρ1

− ω

≤ µ̃(δ + κ)
−( lnµ̃ρ1 − ω)− µ̃β

.

(48)

According to (22), taking (47) and (48) into account, for

t > 0, the following inequality holds

υ(t) < ζ e−2ρt + µ̃(δ + κ)
−( lnµ̃ρ1 − ω)− µ̃β (49)

For t > 0, Equation (49) will be testified. Thus, if

Equation (49) does not hold, there is t∗ > 0 such that

ν(t∗) ≥ ζ e−2ρt∗ + µ̃(δ + κ)
−( lnµ̃ρ1 − ω)− µ̃β

, (50)

and

ν(t) < ζ e−2ρt + µ̃(δ + κ)
−( lnµ̃ρ1 − ω)− µ̃β

, t < t∗. (51)

Combining Equations (50) and (51), there is

ν(t∗) ≤ ζ e
( lnµ̃
ρ1

−ω)t∗ +
∫ t∗

0
e
( lnµ̃
ρ1

−ω)(t∗−s)

[
µ̃βυ(s− τ (s))+ µ̃(δ + κ)

]
ds,

< e
( lnµ̃
ρ1

−ω)t∗
{
ζ + µ̃(δ + κ)

−( lnµ̃ρ1 − ω)− µ̃β

+
∫ t∗

0
e
−( lnµ̃

ρ1
−ω)s[

µ̃βυ(s− τ (s))+ µ̃(δ + κ)
]
ds

}
.

(52)

When t < t∗, there is

ν(t) < ζ e−2ρt + µ̃(δ + κ)
−( lnµ̃ρ1 − ω)− µ̃β

. (53)

Because s ∈ (0, t∗), therefore we obtain

ν(s− τ (s)) < ζ e−2ρ(s−τ (s)) + µ̃(δ + κ)
−( lnµ̃ρ1 − ω)− µ̃β

. (54)
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FIGURE 4

The state trajectories produced by systems (8) and (9) without the controller. (A) The state curves of drive system (8). (B) The state curves of

response system (9).

Then, we have the following conclusion

ν(t∗) ≤ ζ e
( lnµ̃
ρ1

−ω)t∗
{
ζ + µ̃(δ + κ)

−( lnµ̃
ρ1

− ω)− µ̃β

+
∫ t∗

0
e
−( lnµ̃

ρ1
−ω)s[

µ̃β
(
ζ e−2ζ (s−τ (s)) + µ̃(δ + κ)

−( lnµ̃
ρ1

− ω)− µ̃β
)
+ µ̃(δ + κ)

]
ds

}

≤ ν(t∗)ζ e(
lnµ̃
ρ1

−ω)t∗
{
ζ + µ̃(δ + κ)

−( lnµ̃
ρ1

− ω)− µ̃β

+ µ̃(δ + κ)β
−( lnµ̃

ρ1
− ω + 2ρ)

e2ρτ
[
e
−( lnµ̃

ρ1
−ω+2ρ)t∗ − 1

]

+ µ̃(δ + κ)
−( lnµ̃

ρ1
− ω)− µ̃β

[
e
−( lnµ̃

ρ1
−ω)t∗ − 1

]}

= ζ e−2ρt∗ + µ̃(δ + κ)
−( lnµ̃

ρ1
− ω)− µ̃β

.

(55)

It can be seen that Equation (55) contradicts

Equation (50). Then, Equation (49) holds for

t > 0. When δ > 0, based on Equation (41),

there is

V(t) ≤ ν(t) ≤ ζ e−2ρt∗ + µ̃κ

−( lnµ̃ρ1 − ω)− µ̃β
, t > 0. (56)

Setting δ → 0, according to Equation (55), there is

V(t) ≤ ν(t) ≤ ζ e−2ρt = µ̃ max
τ≤s≤0

{||ψ1(t)||2e−2ρt}. (57)

Combining Equation (27) and Equation (55), we have

||ε(t)|| ≤
√√√√ζ e−2ρt + µ̃κ

−( lnµ̃ρ1 − ω)− µ̃β

≤
√√√√ µ̃κ

−( lnµ̃ρ1 − ω)− µ̃β
+

√
ζ e−ρt , t ≥ 0.

(58)

Consider Definition 1, the projective quasi-synchronization

of systems (8) and (9) is realized by the event-

triggered control method. For the error system (12),

its trajectory exponentially converges into the compact

set D with a convergence rate ρ of t → +∞. D can be

expressed as

D =
{
ε(t) ∈ RN | ||ε(t)|| ≤

√√√√ µ̃κ

−( lnµ̃ρ1 − ω)− µ̃β

}
(59)

The proof is complete.

Remark 3. It should be noticed that continuous communication

between the drive-response systems is always required to

monitor the triggered condition (25). Therefore, the self-

triggered method is designed to solve this problem.

Then, this article investigates the lower bound of inter-

execution time to eliminate the Zeno behavior for the error

system (12). The following theorem indicates that the system

avoids the Zeno behavior under the bound of tk − tk−1 > 0.

Theorem 2. The triggered instants tk(k ∈ N+) can be calculated

under the error system (12) and control method (11). Meanwhile,

if there is a positive constant ρ1 that satisfies inf
k∈N+

{tk − tk−1} ≥

ρ1 > 0, then the error system (12) can avoid Zeno behaviors.
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FIGURE 5

The synchronization state trajectories produced by systems (8) and (9). (A) The state curves of the drive system (8). (B) The state curves of the

response system (9). (C) The synchronization errors ε(t) = y(t)− x(t) without control. (D) The synchronization errors ε(t) = y(t)− x(t) under the

event-triggered scheme (11).

Proof: For [tk, tk−1), according to Assumptions 1–2, there is

D+||e(t)|| ≤ ||ė(t)|| = ||ε̇(t)||
≤ || − D̃(y(t))ε(t)+

(
Ã(y(t))+1A∗(t)

)
f (ε(t))

+
(̃
B(y(t))+1B∗((t − τ (t))

)
f (ε(t − τ (t)))+ ασŴWε(t)

+9(t)+Kε(tk−1)||
≤

[
λmax(D̄)+ λmax(F)λmax(Ā+ A∗)+ σλmax(Ŵ)λmax(W)

]

× ||e(t|| +
[
λmax(D̄)+ λmax(F)λmax(Ā+ A∗)

+ σλmax(Ŵ)λmax(W)+ λmax(K)
]
||ε(tk − 1)|| + ||Ŵ4||,

(60)

where K = diag{|K1|, |K2|, . . . , |KN |}, and Ŵ4 =
[
(2α +

1)λmax(B̄) + λmax(A) + (α + 1)λmax(Ā + B∗) + αλmax(B +
A∗)

]
λmax(M).

Then, according to e(tk−1) = 0, there is

||e(t)|| ≤ 41

42
×

[
exp(42(t − tk−1))− 1

]
, (61)

and 41 =
[
λmax(D̄) + λmax(F)λmax(Ā + A∗) +

σλmax(Ŵ)λmax(W) + λmax(K)
]
||ε(tk − 1)|| + ||Ŵ4||,

42 = λmax(D̄)+ λmax(F)λmax(Ā+ A∗)+ σλmax(Ŵ)λmax(W).

According to the event-triggered condition (25), we have

√
ℓ(ε(t)) ≤ 41

42
×

[
exp(42(t − tk−1))− 1

]
, (62)

and ℓ(ε(t)) = −2α2|ε(t)|
(
α̃− 1

2α
2α1− 1

2α2Ŵ
T
3 Ŵ3−

1
2αK

2
)
|ε(t)|.

For Tk−1 = tk − tk−1, t ∈ [tk−1, tk), k ∈ N+, there is

Tk−1 ≥ 1

42
ln

(
1+ 42

41

√
ℓ(ε(t))

)
. (63)
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FIGURE 6

The anti-synchronization state trajectories produced by systems (8) and (9). (A) The state curves of the drive system (8). (B) The state curves of

the response system (9). (C) The anti-synchronization errors ε(t) = y(t)+ x(t). (D) The anti-synchronization errors ε(t) = y(t)+ x(t) under the

event-triggered scheme (11).

Thus, it can be derived that there is a lower bound of the

inter-execution time, and Tk−1 = tk − tk−1 > 0. The error

system (12) can avoid Zeno behaviors.

The completion of the proof is shown above.

Although the systems between (8) and (9) can achieve

projective quasi-synchronization, the triggered condition (25)

is always monitored during the continuous communication

process. To address this issue, this article develops a self-

triggered mechanism to update the trigger sequence without

monitoring the triggered condition. In this way, there is no

need to use the self-triggered mechanism to obtain the state

information continuously from Theorem 2 if Tk−1 satisfies

Equation (63). Thus, the triggered instant should satisfy the

following condition:

t̃k = t̃k−1 +
1

42
ln

(
1+ 42

41

√
ℓ(ε(t))

)
. (64)

The sampling and control instants are calculated by

Equation (64) during the self-triggered process as shown in self-

triggering Algorithm 1. It is demonstrated that the instants of

the controller will not update if the triggered condition is more

comprehensive than the second term of Equation (64).

Theorem 3. Combining the control method (11) and error

system (12) and using the self-triggered mechanism, the drive

and response systems (8) and (9) can achieve projective

quasi-synchronization according to the triggered sequence {t̃∞
k
}

produced by Equation (64). Meanwhile, the error system (12) can

avoid the Zeno behavior.

Proof: The self-triggered instants meet Equation (64).

According to Equation (63), we have tk ≥ t̃k. Then, the event-

triggered condition is illustrated in Equation (64). Meanwhile,

we have t̃k−1 < t̃k because
1
42

ln
(
1 + 42

41

√
ℓ(ε(t))

)
> 0 always

holds. Therefore, the self-triggered mechanism Equation (64)

guarantees the projective quai-synchronization between (8) and
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FIGURE 7

The events with event-triggered control. (A) Instants for synchronization ε(t) = y(t)− x(t). (B) Instants for anti-synchronization ε(t) = y(t)+ x(t).

FIGURE 8

The states of event-triggered controller (11). (A) Instants for synchronization ε(t) = y(t)− x(t). (B) Instants for anti-synchronization ε(t) = y(t)+ x(t).

(9) through (11). Also, the error system (12) avoids the Zeno

behavior. The proof is completed.

4. Numerical simulation

4.1. Conclusions proof

Numerical simulations are conducted to verify the

correctness of the theoretical analysis results. Systems (8) and

(9) including three (N = 3) nodes are considered. Each node

has three (n = 3) dimensions of information. Additionally,

x11 means the 1st dimension of Node 1. For the coupling

framework, the coupling strength σ = 1.5; the inner connecting

matrix Ŵ and coupled matrixW are set as

Ŵ =



1 0 0

0 1 0

0 0 1


 ,W = (wij)3×3 =



−2 1 1

1 −1 0

1 0 −1


 .

For systems (8) and (9), the time-varying delay can be

represented as τ (t) = et/(et + 1). Considering Assumptions

1 and 2, this article sets Lf = 1 and Mi = 1(i = 1, 2, 3).

In this example, the following initial values are taken: x1(0) =
[−1.55, 1.05, 5.12]T, x2(0) = [0.35,−6.98, 0.34]T, x3(0) =
[3.25,−1.15, 7.1]T, y1(0) = [0.82,−0.43,−0.53]T, y2(0) =
[0.09,−0.58,−0.42]T, y3(0) = [−1.67,−0.88, 0.15]T.
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FIGURE 9

The state trajectories produced by systems (8) and (9) under a self-triggered scheme (11). (A) The state curves of systems (8) and (9) with α = 1.

(B) The synchronization errors ε(t) = y(t)− x(t). (C) The state curves of systems (8) and (9) with α = −1. (D) The anti-synchronization errors

ε(t) = y(t)+ x(t).

The parameters of the systems are as follows:

D =



1.5 1 1

1.3 1.2 1

1.2 1 1


 , Ā1 =



1.8 2.8 2.9

1.3 1.7 1.6

1.2 2.0 1.4


 , Ā2 =



1.8 2.7 2.0

1.4 1.5 1.4

1.2 2.0 1.4


 ,

Ā3 =



2.0 3.0 0.9

1.5 1.9 1.5

1.3 2.1 1.1


 , B̄1 =



3.8 3.0 0.9

0.4 0.3 0.6

3.4 3.8 1.9


 ,

B̄2 =



3.7 2.8 2.9

0.5 0.4 0.9

3.2 3.1 2.0


 , B̄3 =



3.5 2.8 1.2

0.6 0.4 0.9

3.4 3.8 1.9


 ,

The uncertainties of the proposed systems are

1A = 0.1sin(t)



1 1 1

1 1 1

1 1 1


 ,1B = −0.2sin(t− τ (t))



1 1 1

1 1 1

1 1 1


 .

1A* = 0.2tanh(t)



1 1 1

1 1 1

1 1 1


 ,1B* = −0.2tanh(t−τ (t))



1 1 1

1 1 1

1 1 1


 .

The nonlinear activation function F(xi(t))(i = 1, 2, 3) is

given as:

F(xi(t)) =



f1(xi1 (t))

f2(xi2 (t))

f3(xi3 (t))


 =




|xi1+1|−|xi1−1|
2 − 1

|xi2+1|−|xi2−1|
2 − 1

|xi3+1|−|xi3−1|
2 − 1


 ,

As discussed above, Figure 3 represents the chaotic behavior

of (8) and (9) under different initial conditions. And Figure 4

shows the states of (8) and (9) without controller. Then,

this article defines the projector factor α = 1, i.e., the

synchronization error ε(t) = y(t) − x(t). For Lemma 4, this

article sets α1 = α2 = α3 = 0.01. Figure 5 shows the trajectory

of (8) and (9) without control.
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FIGURE 10

The events with self-triggered control. (A) Instants for synchronization ε(t) = y(t)− x(t). (B) Instants for anti-synchronization ε(t) = y(t)+ x(t).

The gain matrix of the controller is

K = 30



1 1 1

1 1 1

1 1 1


 .

This article chooses µk = 0.9, and it can easily testify that all

the rules in Theorem 1 hold, which indicates that systems (8) and

(9) can achieve quasi-synchronization with the projective factor

α = 1.

When the projective factor α = −1, anti quai-

synchronization can be also achieved between systems (8) and

(9). Considering Lemma 4, this article sets α1 = 1000, α2 =
1000, α3 = 0.01. Figure 6 shows the effectiveness of Theorem 1.

For systems (8) and (9), Figures 5, 6 represent the state

trajectory and the synchronization error under event-triggered

control for different projective factors. Also, the synchronization

error norm is illustrated. Figures 7, 8 present the state-feedback

controller and events under event-triggered control. Figures 9,

10 demonstrate the performance of the self-triggered scheme.

The comparison between Figures 7, 10 indicates that the lower

bound of the event-triggered time interval is set to the update

time for the self-triggered scheme. Therefore, the self-triggered

scheme has a higher update frequency than the event-triggered

one. Meanwhile, the information exchange and deterioration are

increased within limited network resources.

4.2. Existing achievements comparison

Now, we make our proposed event-triggered mechanism

of coupled MNNs compared with some exciting methods to

illustrate our designed method’s superiority in synchronization,

especially in the situation of limited bandwidth. Due to the

TABLE 1 Performance comparison of event-triggered examples.

Control method
Mean time interval

1 2 3 4

WangW. et al. (2021)

0.0198 0.0198 0.0198 –

Yang et al. (2018)

0.0127 0.0119 0.0151 –

Liu J. et al. (2020)

0.0114 0.0116 0.0117 0.0046

Liu et al. (2019) 0.0153 0.0114 0.0160 0.0214

Theorem 1

(Synchronization)

0.0140 0.0131 0.0215 –

Theorem 1(Anti-

synchronization)

0.1008 0.2481 0.1645 –

different types of neural networks, we set the interval as

[0.0, 1.0] to conduct the contrast simulations as shown in

Table 1, in which the mean time interval means the average

update frequency between each trigger. It is noticed that

the lowest value of our method is 0.013 s, which indicates

the control input can complete more than 76.92 updates/s

in general.

Remark 4. Compared with some existing results (Yang

et al., 2018; Liu et al., 2019; Liu J. et al., 2020; Wang

W. et al., 2021), it can be seen that our event-triggered

method relies on fewer triggering events from Table 1.

Meanwhile, it is less likely to trigger than other methods,

indicating that, in the control process, our method

consumes remarkably less energy for data calculation

and detection.
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TABLE 2 Performance comparison of periodic sampling control and proposed scheme.

Agents Node 1 Node 2 Node 3

Dimension 1 2 3 1 2 3 1 2 3

Traditional method 400 400 400 400 400 400 400 400 400

Our method (Syn) 369 364 338 389 381 378 191 262 261

Max time interval 0.7043 0.0849 0.0673 0.4968 0.5077 0.4985 2.3849 1.0406 1.2634

Mean time interval 0.0136 0.0137 0.0148 0.0129 0.0131 0.0262 0.0191 0.0132 0.0192

Traditional method 150 150 150 150 150 150 150 150 150

Our method (Anti-syn) 49 45 56 134 33 9 69 32 19

Max time interval 1.2503 1.4696 2.4314 2.3156 3.8352 0.1149 2.5068 3.0734 0.0912

Mean time interval 0.1020 0.1111 0.0893 0.0373 0.1515 0.5556 0.0725 0.1563 0.2632

The proposed method in this article is the event-triggered

scheme, which means the control input information exchange

and update which depends on the designed triggered function.

When the proposed method did not work, the proposed

scheme will become the traditional time-sampled scheme, and

the control updating instants just rely on the fixed interval.

Therefore, the proposed method is more general and flexible

than other methods, especially in the situation of limited

network resources.

Remark 5. From Table 2, comparing the different types of

synchronization, we can detect that by changing the value of the

projective factor α and Lipschitz parameters α1,α2, and α3, (for

synchronization, we make α = 1, α1 = α2 = α3 = 0.01, for

anti-synchronization, α = −1, α1 = α2 = 1, 000,α3 = 0.01),

the control updating instants can be changed. It is clearly noticed

that the updating frequency of the controller for synchronization

is faster than anti-synchronization. That is to say, altering the

values of parameters can not only affect the updating frequency.

5. Conclusion

A fresh event-triggered impulsive control scheme for a class

of time-varying uncertain coupled MNNs has been proposed in

this article. Considering the parameter mismatch and coupled

structure of the proposed system, the event-triggered impulsive

scheme has been constructed to solve the problem of projective

quasi-synchronization. Accordingly, the established triggered

functions with uncertainties and projective factors make the

quasi-synchronization criteria more universal than conventional

neural networks. Besides, the Zeno behavior can be naturally

escaped through the design of proper triggered conditions.

Furthermore, the proposed mechanism has been employed

to deal with projective quasi-synchronization, which can

not only expand the types of synchronization but also

avoid unnecessary energy consumption. As shown in the

simulation, the designed self-triggered algorithm is reasonable

in terms of avoiding Zeno behavior. However, just quasi-

synchronization and quasi-anti-synchronization are considered,

from the projective factor point of view, the time-varying factor

is more universal for application, especially in social networks

(Cheng et al., 2022), object/scene reconstruction (Tang et al.,

2021), and 3D object recognition (Chen Y., 2022) etc. Therefore,

in future study, the obtained scheme will be developed for

projective quasi-synchronization with time-varying projective

factors and more practical networks will be considered.
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