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Abstract

A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus 

control the most fundamental physiological needs1,2. Nevertheless, a developmental blueprint 

integrating molecular determinants of neuronal and glial diversity along temporal and spatial 

scales of hypothalamus development remains unresolved3. Here, we combine single-cell RNA-seq 

on 51,199 cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with 

GWAS-based disease phenotyping and genetic lineage reconstruction to show that 9 glial and 33 

neuronal subtypes are generated by mid-gestation under the control of distinct GRNs. 

Combinatorial molecular codes arising from neurotransmitters, neuropeptides and transcription 
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factors are minimally required to decode the taxonomical hierarchy of hypothalamic neurons. 

Differentiation of GABA and dopamine but not glutamate neurons relies on quasi-stable 

intermediate states with a pool of GABA progenitors giving rise to dopamine cells4. An 

unexpected abundance of chemotropic proliferation and guidance cues commonly implicated in 

dorsal (cortical) patterning5 was found in the hypothalamus. Particularly, Slit/Robo loss-of-

function impacted both the production and positioning of periventricular dopamine neurons. 

Overall, we uncover molecular principles shaping the developmental architecture of the 

hypothalamus and show how neuronal heterogeneity is transformed into a multimodal neural unit 

to endow a virtually infinite adaptive potential throughout life.

Concentration of a kaleidoscope of neuroendocrine cell modalities into a minimal brain 

volume within the hypothalamus is achieved by sometimes only as few as 1,000s of neurons 

coding essential hormonal output. Therefore, diversification of neuronal subtypes, rather 

than the numerical expansion of single progenies6,7, might underpin the success of 

vertebrate evolution to refine metabolic and adaptive capacity. Functional versatility at the 

level of individual neuroendocrine output neurons is coded by the coincident presence of 

neurotransmitters and neuropeptides1. Therefore, interrogation of the molecular and 

positional diversity of hypothalamic neurons by morphological, circuit and endocrine 

analyses continues to mount a significant challenge. The recent introduction of single-cell 

RNA-sequencing (scRNA-seq)6,8,9 produced precise molecular insights into the existence of 

glutamate, GABA, dopamine and even ‘mixed’ neuronal phenotypes4. However, a question 

of paramount importance that remains systematically unexplored (but see Refs.3,10,11) is 

how cellular subtypes emerge, migrate, and differentiate during hypothalamus development 

for neuroendocrine readiness to ensue by birth.

In contrast to a handful of transcription factors (TFs) being sufficient to mark anatomical 

footprints in cortical structures with a layered organization6,8, the intercalated nature of 

nuclei poses a formidable challenge to establish an anatomical template within the 

hypothalamus. Even more so, the breadth of endocrine command neurons and their ability to 

rapidly undergo cell-state switches (that is, to up-regulate specific hormones or 

neuropeptides in an on-demand fashion) suggest that what is considered terminally 

differentiated in the adult brain is in fact a neuronal anagram primarily dictated by the 

neuronal circuit orchestrating a specific endocrine modality. Therefore, we sought to resolve 

molecular determinants of ectodermal progenies advancing towards terminal neuroendocrine 

differentiation. By using a time series of scRNA-seq across critical periods of intrauterine 

and postnatal hypothalamus development in mouse we read out combinatorial codes for 

GABA, GABA-derived dopamine and glutamate neurons, catalogued GRNs (regulons) and 

their dynamic transitions during neurogenesis, directional migration and morphogenesis, and 

elucidated local chemotropic cues that define anatomical constraints of the hypothalamus.

Results

Emergence of ectoderm-derived cell pools

We addressed the differentiation programs for hypothalamic cell pools by parallel scRNA-

seq on 51,199 dissociated cells at embryonic days (E)15.5 (8,290), E17.5 (11,213), at birth 
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(7,492), and postnatal day (P)2 (12,824), P10 (8,965) and P23 (2,415; Online Methods and 

Supplementary Note). Overall, proto-groups of progenitors (2), tanycytes (2), 

astroependymal cells (2), immature oligodendrocytes (3), cells of the pars tuberalis (3) and 

neurons (33; Figure 1a), reflecting diversity in adult hypothalamus4,8,9, were specified by 

differentially-expressed TFs (Figure ED1) during development (Figure 1b,b1).

We then asked when and by which progenitors the various cell types are generated. The 

dynamics of gene expression in hypothalamic progenitors (Figure 1c,c1) to produce 

astrocytes, ependyma, tanycytes and neurons fit a pseudotime scale on a multidimensional 

integrated dataset12 (Figure 1c-d), including a bifurcation in cell transition toward glial 

subtypes or neuronal fates (Figure 1a,c, ED2a,b) that peaked between E15.5-E17.5 (Figure 

1c1). RNA-velocity13 (as well as PAGA12; Supplementary Note) demonstrated that the 

number of neuroblasts (‘bridge cells’) tails off as a factor of age with an appreciable rupture 

of this cell continuum by birth (Figure ED2b). Semi-supervised analysis of 327 genes for 

enrichment (for all raw data see DOI:10.6084/m9.figshare.11867889) highlighted that the 

progression of ‘bridge cells’ relied on the dominance of genes related to the regulation of 

pluripotency (Sox2), neural stem cell differentiation (Hes1, Ascl1, Rbpj, Dll1/Dll3 for Notch 

signalling)14,15, Erk signaling (Sox11), neuronal migration (Dlx1/2/5/6) and morphogenesis 

(Rbfox3; Figure 1d)16,17. Additionally, scRNA-seq suggested an alternative and 

embryonically restricted (<E15.5) pathway of hypothalamic neurogenesis that centered on 

Tbr1+/Eomesodermin (Eomes)+ progenitors that reside at the thalamus-hypothalamus dorsal 

boundary (an Ascl1- territory) and contribute multiple diencephalic neuronal subtypes 

(Figure ED2d,e). The proposed waves of neurogenesis by self-renewing progenitors and 

early neuroblasts that ubiquitously express Ascl1 along the 3rd ventricle (Figure 1d) were 

shown in Ascl1-CreERT2::Ai14 mice at E18.5 with recombination induced during the E12.5-

E16.5 period (Figure 1e) and validated in Ascl1-/- mice presenting a restricted cohort of 

Sox2+ immature precursors (Figure ED2f). tdTomato+ progenies in the many hypothalamic 

subregions confirmed neurogenesis during mid-gestation with gradual declined after E16.5 

(Figure 1e, ED2d). In support of postnatal neurogenesis we show that Sox2+ precursors 

persist in the wall of the 3rd ventricle and generate progenies that progress through Ascl1+ 

and Rbfox3+ (NeuN) stages (Figure 1f, ED2g,h).

Intermediate states for GABA neurons

Within our integrated dataset, ~47% of all cells committed to the neuronal lineage were in 

immature states (#11, #19; Figure 1a and 2a) prior to progressing towards final 

differentiation, as suggested by the expression of homeobox genes thought to determine 

GABA identities (#11: Foxg1 and Nkx2-3; #19: Sox2/11, Gsx1/2, E2f1, Arx and Pbx3; 

Figure ED1). Specifically, cluster #19 contains a continuum of neuroblasts (‘bridge cells’), 

with a normalized contribution of 36.5% (E15.5), 34.6% (E17.5), 13.2% (birth), 9.2% (P2), 

4.8% (P10) and 1.6% (P23), and remains separated from other clusters despite our re-

partitioning efforts (Supplementary Note). Cluster #11 is composed of immature neurons 

that are largely homogeneous with low-level differential gene expression, yet express rate-

limiting enzymes and transporters for GABA neurotransmission (Figure ED1a, 3a). When 

re-partitioning these data, immature GABA neurons were re-assigned to phenotypically-

stable groups, emphasizing the intermediate nature of cluster #11. These findings contrast 
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glutamate neurons, which immediately appear as differentiated and spatially segregated 

groups (Figure 1a) without an intermediate cell pool being detected. Thus, GABA and 

glutamate neurons seem to adopt principally different developmental programs with 

immature GABA cells, rather than pre-formed GABA lineages18, serving as precursors for 

terminal differentiation.

TF and neuropeptide codes of diversity

TF-mediated cell-autonomous differentiation programs are key to neuronal specification6,18. 

Hence, we screened TFs that distinguished hypothalamic cell clusters. We applied a 

supervised approach sampling stationary states (that is, genes that are spatially-restricted in 

both pre- and postnatal brains; Figure 1d, ED1) and integrated stages of fate-transition and 

branching-off of differentiated neurons. Arginine-vasopressin (Avp)+ (#26) and oxytocin 

(Oxt)+ (#43) magnocellular as well as parvocellular neuroendocrine clusters destined to the 

paraventricular nucleus (PVN; including Trh+ and Crh+ cells (#24)) exhibited spatial 

convergence (Figure 2a), and were separated by differentially expressed genes from their 

non-PVN counterparts: e.g., Mbnl3, Pgf, Irs4, Gpr101, Nr3c2 and Agtr1 demarcated Trh+ 

neurons in the PVN, whereas Trh+ neurons prospectively populating the dorsomedial 

hypothalamus (#15) labelled for Onecut2/Onecut3 and Cartpt, and mapped distantly.

Subsequently, we selected pro-opiomelanocortin (Pomc)+ neurons to test if scRNA-seq-

based temporal profiling of gene expression allows for the reconstruction of neuronal 

differentiation. Besides cataloguing Pomc-specific TFs (Figure 2a), we show that, e.g., 

Prdm12 and Nhlh2, both placed by in situ hybridization into Pomc-GFP+ neurons (Figure 

2b), are transiently expressed at early developmental stages followed by gradual 

expressional decay (pseudotime; Figure 2b). In contrast, Cited1 expression was restricted 

late gestation when neuronal morphogenesis commences19. Cumulatively, our scRNA-seq 

data reliably resolved neuronal fate progression along both pseudotime and real-time scales.

Beside fast neurotransmission by GABA and glutamate, dopamine and neuropeptides are 

chief signalling units in the adult hypothalamus20. Here, we assigned 27 neuropeptides 

slecifically to GABA, glutamate and dopamine neuronal subtypes (Figure 2c,d and ED3b-e). 

Our data demonstrate a transient increase in e.g., Sst, Tac1, Bdnf, Adcyap1, Pnoc, Nmu, Trh 
in juvenile mice (P10)21 (Figure 2c) along with the rapid induction of their cognate receptors 

during the early postnatal window (Figure 2d). Finally, we used OxtrVenus/+ mice to 

demonstrate that the onset of Venus expression (used as a surrogate for Oxtr) in e.g., Pomc+ 

neurons in Arc22, DMH and VMH is ~E18 with a gradual increase postnatally (Figure 2e, 

ED3f). These findings substantiate the precision of scRNA-seq in resolving hormone 

receptor expression in even the smallest neuronal contingents.

Regulons typify cell type specificity

Cellular identities are shaped by developmentally-timed GRNs (‘regulons’) centred on a 

‘master’ TF activating its targets through DNA-binding and transcriptional induction23. 

Therefore, we assigned regulons to each ectodermal cluster by combining 1,962 TF-ChIP-

seq for gene interactions and our scRNA-seq data23 (Figures 3a, ED4), yielding positive 

interactions within 395 active regulons and estimating their prevalence per cell. Pleiotropic 
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regulons with the highest representation define to which major cell lineage a progenitor was 

destined to: e.g., Hes5, Sox9 and Nfia for prospective astroglia vs. Dlx(1/2/5/6) and 

Sox11/12 for neurons (Figure 3a). Accordingly, Nfia-/- mice showed impaired formation of 

hypothalamic tanycytes and astrocytes but not neurons at E18.5 (Figure 3b). Subordinate 

cell group-specific regulons define select cell clusters (Figure 3a). Co-existent regulons at all 

levels (e.g. the Pura and Fosl2 regulons in Oxt+ neurons) can produce combinatorial codes 

for cellular fate decisions (Figure 3a shows at least three, from general to particular 

developmental processes).

We then evaluated the robustness and penetrance of hypothalamic regulons by testing if their 

mutations (at all gene levels) manifest as clinical perturbations by focusing on metabolic and 

psychiatric diseases9,24 in the GWAS of the UK biobank (738 phenotypes; Figure ED5a). 

We adapted existing methods in adult9 by replacing stationary cell identities with regulons. 

By selecting multiple genes that co-define particular regulons as input we significantly 

reduced selection bias due to strongly deleterious mutations (‘survivorship bias’25). 

Regulons driven by pro-neurogenic genes were characterized by the lowest rate of mutated 

master genes (Figure ED5b) with the Foxo4 (#29) and Onecut3 (#18) clusters completely 

depleted in mutations (Figure 3a,c). Meanwhile, the Onecut2/3 regulons correlated 

positively with the incidence of obesity (Figure 3d).

Next, we confirmed that Nr4a2, Ptfmb1a, Sncg, Lancl3 and Zic5, genes in the mutual 

Onecut2/Onecut3 regulon, co-existed with Onecut3 in differentiated neurons yet restricted to 

PeVN cell groups (Figure ED6a-c). Additionally, Onecut3 overexpression in Neuro2A cells 

in vitro caused the cessation of cell proliferation (Figure ED6d-e), substantiating its role in 

neuronal fate progression. Cumulatively, these data assign regulon screens as a prime 

strategy to functionally annotate hypothalamic neurons and predict their linkages to 

metabolic (and psychiatric) disorders. The identification of a spatially-restricted Onecut3+ 

regulon to the PeVN suggests that neurons specified by the Onecut3 regulon could be 

sensitive to developmental signalling cues that shape midline structures.

Regulons instruct chemotropic signalling

Within laminated structures, progenitor-to-committed progeny transitions occur in a 

sequential unidirectional order7,26. We asked if similar gene sets14,16,17, intercellular 

interactions and spatial arrangements could apply to the non-laminar hypothalamus. Early-

expressed glial genes (Hes1, Fabp7, Slc1a3, Vim) marked progenitors (e.g. Sox2, Dll1/3) in 

the innermost (‘ventricular’) zone of the 3rd ventricle at E14.5-E15.5 (Figure 1c and 

ED7a,b). Committed progeny then unidirectionally distanced themselves laterally (Figure 

ED2d-g) and expressed protogenes for neuronal migration (Dlx1/2/5/6, Rbfox3; Figure 1d). 

Plotting regulons along developmental age assigned Sox2 to progenitors (#6,#9), Sox11 to 

‘bridge neurons’ (#19) and Dlx1/2 to both ‘bridge’ and immature neurons (#11,19)); Figure 

3e), confirming function determination16. These data suggest the temporal and spatial 

segregation of regulons in an onion skin-like layered configuration (Figure 3e).

Next, we interrogated the complexity of chemotropic signalling systems27 that facilitate 

neuronal positioning and differentiation, with evidence for Eprinh-ErB, Cbln1/Cbln2, 

semaphorin-plexin-neuropilin, neurotrophin (Bdnf, Gdnf, Cntf), draxin, netrin (Ntng1/
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Ntng2) and endocannabinoids. Unexpectedly, we noted the widespread expression of the 

Slit(1,2)/Robo(1,2) signalling cassette (Figure 3e,f), which dictates direct (vs. indirect) 

neurogenesis in antagonism with Dll126, and long-range axonal patterning in dorsal 

(cortical) structures5. Reconstruction of mRNA expression placed Slit2 into neural 

progenitors at early developmental stages (Figure 3f). Conversely, pseudotime analysis 

suggested Slit1 expression to dominate early in postmitotic neuroblasts (Figure 3f). 

Coincidently, Robo2 expression defined a developmental trajectory specific for neurons 

(Figure 3f). To genetically tie temporal variations in Slit/Robo signalling to neuronal 

differentiation, we show that major regulons include Slit2 ligand synthesis for cell 

proliferation and gliogenesis (in the Sox2/Dbx1/Rfx2/3/Myc regulons specific to glia and 

progenitors) and Slit1 for neuronal migration and morphogenesis (Dlx1/2/Rbpj regulon). 

Meanwhile, the Sox11 regulon is a chief determinant of both Robo1 and Robo2 expression 

as early as in ‘bridge neurons’ (#11, #19). At the level of terminal differentiation, Lhx5/
Emx2/Lhx1 and Nkx2-1/Otp/Isl1 controlled Robo1 and Robo2 expression, respectively 

(Figure 3e). In situ hybridization confirmed the reciprocal distribution of Slit2 and Slit1, 

with the former being restricted to ventricular progenitors (Figure ED7b). Moreover, Slit2 
(and to a lesser extent Slit1) gene expression concentrated in the VMH by E17.5 or later 

(Figure ED7b1). Indeed, an increased cellular density in the subventricular zone at the level 

of the VMH was seen in both Slit1-/- and Slit2-/- mice, whereas Robo1 inactivation was 

ineffective (Robo1-/-; Figure 3g). Instead, Robo1-/- mice, in which Slit ligands no longer act 

as repulsive axon guidance cues5, showed a reduced density of Slc17a6/Vglut2+ synapses in 

the VMH relative to wild-type controls in contrast to unchanged levels at the median 

eminence, an area devoid of Slits (Figure 3h). In sum, our data suggest the involvement of 

Slit/Robo signaling in hypothalamic neurodevelopment, pointing to conserved Slit/Robo 
functions in ventral brain areas.

Molecular identity of dopamine neurons

Finally, we asked how molecularly distinct subtypes of phenotypically uniform neurons arise 

during hypothalamus development. We took advantage of the at least 9 morphologically and 

electrophysiologically distinct subtypes of parvocellular dopaminergic neurons in A12 (Arc; 

3 subtypes), A13 (zona incerta; 2 subtypes) and A14 territories (PeVN, 4 subtypes; Figure 

ED8) of Thgfp and Slc6a3-Ires-Cre::Ai14 mice; also noting their segregation from midbrain 

dopamine neurons chiefly regulated by Lmx1a/b and Nr4a2 (Figure 3a)28.

Firstly, we explored if hypothalamic dopamine neurons co-expressing tyrosine hydroxylase 

(Th), Ddc/dopa decarboxylase and vesicular monoamine transporter 2/Slc18a2 share a 

developmental trajectory. RNA-velocity vector embedding for all Th+ cells unequivocally 

identified 10 molecularly far-placed neuronal clusters of which groups #4, #7 and #8 

differentiating before E15.5 (Figure 4a and Supplementary Note).

Considering that both pleiotropic and specific genetic programs contribute to molecular 

diversity among hypothalamic dopamine neurons we addressed the earliest and uniform 

genetic codes in putative progenitors. Cascading Ascl1 and Isl1 expression was present in all 

dopamine neurons (Figure 4b,c, ED9a-d), assigning these TFs to defining the entire 

dopamine class. Indeed, both Ascl1-CreERT2::Ai14 and Isl1-Cre:Ai14 mice produced 
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tdTomato+ dopamine cells, particularly in the PeVN (Figure 4b, ED9a,b,d), when induced at 

E12-E15. The lack of Th+ neurons in the hypothalamus but not midbrain of Ascl1-/- mice 

confirmed hypothalamic dependence on an Ascl1-driven transcriptional pathway (Figure 

4b,c and ED9a,b).

Secondly, we asked if the dopamine phenotype evolves from the GABA lineage (Figure 

2d,4a,d), a hypothesis consistent with data in adult4,29. Th+/Ddc+/Slc18a2+ dopamine 

neurons arise from 7 spatially-segregated GABA groups (#1, #3, #4, #6, #7, #8 and #9; 

Figure 4a). This was corroborated by the ~90% co-expression of Th and Gad1 in immature 

neurons (Figure 4d,e and ED9e), including in (BAC)GAD65eGFP and GAD67gfp/+ mice 

(Figure ED10a). To identify genes that promote GABA-to-dopamine phenotypic transitions, 

we screened hypothalamic regulons for Th as target and show that the expression patterns of 

master genes for the Meis2, Nfe2l1, Dlx1 and Pbx3 regulons cover the broad initiation of Th 
expression at embryonic time points (Figure ED10b).

Thirdly, we searched for TFs that segregate dopamine subclasses. We focused on Onecut3, 

which specifies dopamine neurons in the PeVN4. Developmentally, Onecut3 serves as the 

master gene of the regulon that typifies Th/Slc6a3 neurons (#9), and is detectable in the 

preoptic progenitor area by E10.5 (Figure 4f,g). Histochemistry specifically tied the co-

existence of Onecut2/Onecut3 and Sncg, Pmfbp1a, Nr4a2 to PeVN dopamine neurons 

(Figure 4g and ED10c,d). To further resolve the segregation of A14 neurons, we identified 

substantial Sst expression prenatally (with a gradual decay after birth) in Onecut3+ 

dopamine neurons (Figure 4h and ED10e). Based on Robo1 expression in the pseudotime 

scale, we integrated chemotropic cues for the final positioning of Onecut3+/Th+ neurons by 

demonstrating a significantly larger contingent of these cells in Robo1-/- mice relative to 

wild-type littermates (Figure 4i). Finally, Onecut3 expression distinguishes PeVN Th+ 

neurons that produce a uniform electrophysiological signature amongst the 9 dopamine 

subtypes tested (Figure 4j and ED8,10f), thus completing a differentiation trajectory 

segregating PeVN dopamine neurons from all other dopamine subtypes.

Discussion

Our study provides an overview of ectodermal cell identities in the developing hypothalamus 

during pre- and postnatal periods. We show that a constellation of and temporal dependence 

on regulon activity, neurotransmitters and neuropeptides shapes ectodermal clusters. Large-

scale GWAS-based disease assignment linked GRN activity to the life-long determination of 

neuronal functionality and consequently to predisposition to metabolic illnesses. 

Additionally, transient waves of neuropeptide expression were synchronous with critical 

junctions of neuronal fate progression, thus generating long-lasting imprints on neuronal 

circuit complexity.

We found a periventricular cellular reserve to persist throughout life to generate 

hypothalamic neurons with a contingent of GABA progenitors acting as a source for 

dopamine subtypes. We suggest that the existence of quasi-stable immature intermediates for 

GABA neurons, their provisional positioning for protracted periods, and sequential depletion 

until after birth are poised to assure flexibility in expanding functionally distinct 

Romanov et al. Page 7

Nature. Author manuscript; available in PMC 2020 November 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



neurocircuits by the insertion of neurochemically-specialized cellular subtypes. Thus, 

fundamental rules of neuronal specification in for the hypothalamus could substantially 

differ from laminated structures6,7,26. Nevertheless, we find chemogenetic cues that were 

classically viewed to dominate in cortical areas, particularly Slit/Robo signalling, to also 

dictate neurogenesis, cell migration5 and synaptogenesis even, if at the microscale, during 

hypothalamus development. Overall, combining differential gene expression analysis, 

screens for spatially-restricted genes and GRN profiling into a discovery pipeline showcases 

the level of precision achievable to disentangle developmental processes that shape 

neuroendocrine centres and provide a template to study the origins of both hypothalamic 

circuit operations and molecular underpinnings of congenital and acquired metabolic 

disorders.

Online-only Methods

Mouse strains

All mice were housed in groups in clear plastic cages on a 12h/12h light/dark cycle (lights 

on at 08:00 h) and in a temperature (22 ± 2 °C) and humidity (50 ± 10%)-controlled 

environment. Food and water were available ad libitum. Embryos and tissues were obtained 

from timed matings with the day of vaginal plug considered as embryonic day (E) 0.5. The 

day of birth was always registered as postnatal day (P)0. Postnatal animals were weaned on 

P21. Commercial mouse lines were: C57Bl/6J “wild-type” (RRID:IMSR_JAX:000664), 

Ai14 (RRID:IMSR_JAX:007914), Ascl1-CreERT2 (RRID:IMSR_JAX:012882), Th-GFP 

(RRID:IMSR_RBRC03162), (BAC)GAD65-GFP (RRID:MMRRC_011849-UCD), 

GAD67gfp/+ (RRID:IMSR_RBRC03674), Pomc-GFP (RRID:IMSR_JAX:009593), Slc6a3-

Ires-Cre (RRID:IMSR_JAX:006660), Nfia-/- (RRID:MMRRC_010318-UNC), Robo1-/- 

(RRID:IMSR_APB:5320), Slit1-/- (RRID:MMRRC_030404-MU), Slit2-/- 

(RRID:MMRRC_030405-MU), Isl1-Cre (RRID:IMSR_JAX:024242) and OxtrVenus/+ 

(MGI:3838764)30-41. Ascl1-CreERT2 knock-in mice were used as heterozygotes when 

performing lineage tracing and as homozygotes to study developmental consequences of the 

lack of Ascl1 since both copies of the gene were replaced by the Cre coding region (referred 

to as ‘Ascl1 ko’). Nfia-/- mice were provided by J. Bunt and L.J. Richards as a mechanism to 

re-use tissue (QB/356/17). Nfia-/- mice were bred for work conducted under National Health 

and Medical Research Council project grant GNT1100443 and Principal Research 

Fellowship GNT1120615. Tracing experiments for all other Cre lines were performed by 

using heterozygotes.

Tissue collection and fixation

Whole heads of embryos (E13.5) or dissected brains (E16.5 and older) were collected and 

fixed in 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS, 0.05M, pH 7.4) at 

4°C for 4 h for E13.5 and 16-24 h for E16.5 or older. For postnatal stages and adult brain 

samples, animals were transcardially perfused with 4% PFA and dissected brains post-fixed 

overnight. Samples were then washed in PBS and cryoprotected by incubating in 30% 

sucrose in PBS at 4°C overnight.
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Ethical approval of animal studies

Experiments on live animals conformed to the 2010/63/EU European Communities Council 

Directive and were approved by the Austrian Ministry of Science and Research 

(66.009/0145-WF/II/3b/2014, and 66.009/0277-WF/V/3b/2017). Particular effort was 

directed towards minimising the number of animals used and their suffering during 

experiments.

Tamoxifen injection and tissue processing

Ascl1-CreERT2::Ai14 dams were injected with tamoxifen (150 mg/kg) on one of the days of 

E11.5 to E16.5 to induce Cre-mediated recombination. Brains of the embryos were collected 

and immersion fixed in 4% PFA in 0.1M phosphate buffer (PB; pH 7.4) for 12-24 h before 

being immersed into 30% sucrose for cryoprotection (48 h). Embryonic brain tissues were 

cut at 16 μm thickness and mounted on fluorescence free glasses. Postnatal animals were 

perfusion-fixed with 50-100 ml of 4% PFA in PB, followed by cryoprotection as above. 

Brains were then cut on a cryostat as 50 μm-thick serial free-floating coronal sections.

Cell capture, lysis and RNA-seq

C57BL6/N mice (E15.5-P23) of both sexes were used for cell collection. Embryos were 

removed by Caesarean sections and immersed in ice-cold pre-oxygenated (95% O2/5% CO2) 

cutting solution containing (in mM): 90 NaCl, 26 NaHCO3, 2.5 KCl, 1.2 NaH2PO4, 10 

HEPES-NaOH, 5 Na-ascorbate, 5 Na-pyruvate, 0.5 CaCl2, 8 MgSO4 and 20 glucose. 

Postnatal animals were deeply anaesthetised (5% isoflurane) and transcardially perfused 

with 40 ml of the same solution. Entire hypothalami were isolated manually under 

microscopy guidance from serial 300-μm thick coronal slices and then dissociated using the 

Papain Dissociation System (Worthington) according to the manufacturer’s 

recommendations with additional mechanical dissociation using Pasteur pipettes with 600, 

300 and 150 μm open tips. After re-suspending the cells in sterile cutting solution 

supplemented with 0.1% BSA, they were fixed in ice-cold methanol for 10 minutes and 

stored at -80 °C until library preparation.

For the preparation of cDNA libraries, cells were re-suspended in PBS (0.01M, pH7.4) and 

concentrated to a range of 105-700 cells/μl. Thirty-three μl of the cell suspension together 

with 1 μl cellular spike-ins (lymphocytes) were added to the reverse transcription mix. 

cDNA synthesis, library preparation and sequencing were performed accordingly to the 10x 

Genomics Chromium Single Cell Kit (version 2). High-throughput RNA sequencing was on 

an Illumina HiSeq3000 instrument.

10x Genomics data pre-processing

Data derived at each time point were processed independently (Figure S1, Supplementary 
Note). Raw files were processed with Cell Ranger42 (version 2.2.0) following default 

arguments for velocyto.py13. Reads were mapped to the Cell Ranger mm10-1.2.0 genome 

and counted with complimentary annotation (Figure S2 and S3, Supplementary Note). 

Deriving unique molecule count (UMI) expression matrices, we additionally compared two 

advanced computational approaches. Firstly, we read raw matrices from the Cell Ranger 
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pipeline (Figure S3, Supplementary Note) into emptyDrops43 implemented in the 

DropletUtils R package. We used a false discovery rate (FDR) of 0.01 with 2x105 

permutations (Figure S4, Supplementary Note). Secondly, we pre-processed raw fastq-files 

using the dropEst pipeline44 with the UCSC mm10 mouse genome and default dropEst 
parameters for 10x (Figure S5, Supplementary Note). Briefly, dropEst utilises Bayesian 

correction of cell barcodes and UMIs, taking into account Hamming distance distribution for 

cell barcodes and probability distribution by sequential estimation of errors with maximal 

likelihood between different barcodes within each gene on multiple metadata sources. These 

include sequencing quality of nucleotide in position (Phred score) and the number of reads 

for each barcode (coverage) as the most critical parameters. When collision targets are 

merged, the pipeline estimates damaged and low-quality cells in two steps. Firstly, it 

automatically assigns cells based on cell-size (Figure S5, Supplementary Note): cell labels 

were marked with two estimated thresholds: lower than first for ‘low-quality’ (red), then, 75 

per cent of cells upper than second as ‘high-quality’ (green) with the remaining cells 

considered as ‘unknown’ (grey)). Secondly, initial labels together with sets of biological and 

technical factors (mitochondrial fraction, mean number of reads per UMI, mean number of 

UMIs per gene, fraction of drop-out genes, fraction of intergenic reads, fraction of not-

aligned reads) were deciphered by the kernel density estimate (KDE) classifier to endow 

each cell with a quality score (0-to-1 range).

emptyDrops and dropEst algorithms hold substantially more cells than the default Cell 
Ranger approach without a crucial difference between them. Thus, we used the dropEst 
pipeline44, throughout which additionally provides quality control metrics for the cells albeit 

at the cost of high computational load. As a result, we used a corrected matrix with cells, 

which passed filters of both emptyDrops and Cell Ranger and possessing dropEst’s ‘high-
quality’ label (upper quartile) together with all cells above the 90-percentile of quality score 

(Figure S5, Supplementary Note).

Expression matrix filtering

We performed an exploratory analysis of dropEst output matrices in sequential steps of 

annotation and filtering. Firstly, we checked known genes, which indicate diverse sources of 

bias, such as ribosomal, immediate-early stress-responsive and gender-specific genes 

(Gm42418, Rpl26, Gstp1, Rpl35a, Erh, Slc25a5, Pgk1, Eno1, Tubb2a, Emc4, Scg5, Ehd2, 
Espl1, Jarid1d, Pnpla4, Rps4y1, Xist, Tsix, Eif2s3y, Ddx3y, Uty, Kdm5d)8,45. Furthermore, 

we assessed the expression level of HuR (Elavl1) to distinguish damaged neurons46,47. Thus, 

the above gene profiles were indicative of low-quality (potentially apoptotic) cells as well as 

identified cells of blood origin. Secondly, after removing biasing genes, we manually 

explored and annotated cell clusters with pagoda213 as described previously44 by using 

known marker genes8,9,48–50 (DOI:10.6084/m9.figshare.11867889). Thirdly, we defined 

differentially expressed genes (DEG) for ‘ribo-rubbish’, ‘excluded’, ‘duplets’, ‘endodermal 

and mesenchymal related clusters’ by comparison against putative ectodermal cell types 

using the Model-based Analysis of Single-cell Transcriptomics (MAST) test51,52. We 

repeated normalization, negative-binomial scaling, PCA dimension reduction, ‘Jackstraw’ 

pc-selection and kNN-graph construction steps after every cell-molecule matrix subsetting.
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Integration of expression profiles against a time factor

We followed the lead design initially implemented for paired canonical correlation analysis 

(CCA)-based integration of data on embryonic and adult cortical interneurons6. Crucial 

differences were: 1) interchalated nuclei in hypothalamus vs. laminar cortical architectures; 

2) higher adult stage transcriptional heterogeneity of neurons (e.g. mixed GABA/glutamate 

phenotypes and magnocellular/parvocellular neurons)4,53; 3) distant volume transmission as 

additional factor54,55; 4) six developmental stages. We aimed to derive a manifold according 

to known adult cell types and lineages. We integrated datasets from successive time points 

(E15.5-P23) to discover the succession of developing cell lineages. This allowed us to apply 

retrospective analysis to distinguish ‘ancestor’ cells. We removed mature and myelin-

forming oligodendrocytes from our analysis, which existed only in late postnatal stages. We 

have additionally filtered cells with < 300 genes or 2.5x104 RNA molecules (taking into 

account only ectoderm-related genes). Finally, we used a variance-stabilizing transformation 

of the SCTransform method to find anchor-candidate genes6,51.

Comparison of integration algorithms

Despite a recently published approach6 for the integration of embryonic and adult single-cell 

RNA-seq data, we additionally tested all presently available algorithms. To match our 

criteria, the algorithm should 1) provide a mixture of time and batch factor and 2) at the 

same time keep a defined cell type local structure. Therefore, we benchmarked 11 different 

solutions of integration using their default parameters (Figure S6, Supplementary Note), 

default balanced batch k-nearest neighbours (BBKNN)56; BBKNN with a neighbours 

trimming procedure based on their connectivity scores, which were derived by UMAP 

algorithm57 (BBKNN_TRM); BBKNN with exact neighbour identification via faiss58 

(BBKNN_FAISS); BBKNN based on k-dimensional-tree (cKDTree)59; Scanorama60; 

LIGER61; Harmony62; mutual nearest neighbour (MNN)63; CONOS64; Seurat 3 CCA-based 

integration of negative binomial fit scaled matrixes (SeuratCCA)65; Seurat 3 CCA-based 

integration of scTransform derived matrixes of Pearsons residuals (SeuratCCAonSCT)51. 

We found that the updated version of the conventional Seurat approach performed similarly 

to CONOS, Harmony and LIGER, over performed as compared to other algorithms in terms 

of the MixingMetric and underachieved vs. 1) Harmony (with Harmony over-fitting the 

batch factor, which we could not optimize against with two factors (time and batch factor) at 

the same time) and 2) its own more advanced version (Seurat 3.165, unpublished) in terms of 

the Local structure metric leading us to a more conservative way of integration of adult and 

embryonic stages.

CCA-based integration with Seurat 3.1

We integrated cells from different time points into a single manifold using the latest version 

of the Seurat 3.1 CCA-based integration pipeline65. The new version allowed us not to set 

order of integration explicitly and thus determined the optimal order automatically. This 

allowed us to obtain the united manifold of 50 CC components from filtered and weighed 

integration anchors and linearly scaled genes used for integration into the CCA space. 

Subsequently, we performed cell-cycle difference regression: S-phase score minus G2M-
phase score - according to the alternative Seurat workflow to remove differences in cell 
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cycle phases amongst proliferating cells, following the available gene set annotation66. Next, 

we derived 50 principal component (PC) matrices from the corrected matrix. From this PC 

matrix, we selected PCs having >25 percentile of s.d. and learned UMAP embedding57,67 

(Figure 1a, ED3a,7a,d,e, Supplementary Note). As a result, we obtained a 37-dimensional 

manifold of all cells and ’its’ two-dimensional embedding.

Annotation of the collective manifold for hypothalamus development

Our next aim was to annotate putative cell lineages pivoting hypothalamus through 

development to adulthood. Therefore, we used MetaNeighbor68 in supervised mode to 

evaluate area under the recovery curve (AUC) scores of cross-explanation different cellular 

annotations4,8,9,69,70 that exist for adult hypothalamic scRNA-seq data (Figure S8, 

Supplementary Note). Thus, we expected to find putative replicative subtypes, but found an 

unexpected lack of consensus for cellular annotations, meaning that top calls were assigned 

to the same studies.

Therefore, we have chosen a recent dataset8 as reference because of its completeness of 

anatomical sampling (another anatomically complete study of hypothalamus69 was inferior 

in terms of cell numbers and their variability). Additionally, the label transferring approach 
of Seurat was used to verify the absence of possible contamination with cells from the 

thalamus in the filtered dataset. To this end, we integrated the expression profiles with 

signatures derived from the mouse brain atlas spanning the diencephalon8.

Integration of juvenile data with default parameters for Seurat CCA revealed a 

comprehensive coverage on the diversity of terminally-differentiated progenies of reference8 

(Figure S9a, Supplementary Note). Next, we attempted to incorporate the adult reference to 

the entire developmental dataset (Figure S9b, Supplementary Note). We observed 

substantial disparities suggesting the existence of convergence processes during 

hypothalamus development, which necessitated an unbiased strategy of annotation. For this 

reason, we utilised clustering factors from the integration manifold by all field prevalent 

algorithms (graph-based algorithms mostly from the igraph package used in Pagoda2 with 

default parameters on 37 PCs and separately on the corrected UMI counts matrix, and a 

small local movement algorithm with different resolutions via Seurat’s FindClusters 
function) for comparison (Figure S10, Supplementary Note). We observed robustness in 

the inner structure of the integrated manifold for all used algorithms, except infomap, by 

estimating information metrics in a cross-annotation manner (due to lacking a correct one) 

and silhouette scores using R packages aricode71 and clues72. Since most algorithms 

produced similar results (with only minor differences between them), and our approach 

proved accurate (except for the infomap), we decided to proceed with walktrap73.

Finally, we decided to first split cells by major lineages: an exploratory analysis was 

performed in Pagoda213 after transferring our gene-cell integrated matrix and UMAP 

embedding. We utilized the standard Pagoda2 pipeline with the integrated manifold matrix 

clustered by walktrap73. We annotated the final 45 clusters by DEG testing with MAST52 

(Figure 1a,2a and ED1) on the scTransform-corrected6,51 log-normalized UMI matrix (data 

slot in a Seurat object).
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Dendrogram construction (gene-based)

A dendrogram was constructed for neuronal and glial cells separately with Seurat 3 with 

different feature sets as input: for the neuronal tree we used a list of genes from Ref.74. The 

glial tree was based on genes from Ref.75. For both trees, we used gene sets defined in Ref.
76, which were filtered by taking only the upper 95-percentile for the corresponding cell 

types (neurons, astrocytes, oligodendrocytes), the upper 95-percentile for cell types in 

diencephalon and the upper 50-percentile of MeanExpression. We excluded housekeeping 
genes77 for both trees. We used dendrograms to order our dot plots (Figure ED1).

Neuropeptide and neurotransmitter assignment

Density plots on UMAP embedding for signalling molecules were assembled by ggalt78 

(Figure ED3a,d,e). We manually split neuropeptides to prevalent GABAergic or 

glutamatergic co-existence. Top-ranked neuropeptides of the corrected UMI matrix were 

plotted with a threshold of 10 molecules in color and shape-coded manner for two groups 

separately.

Abstraction graph on repartitioned integrated data

We redistributed ‘bridge’ cells (#19) and immature neuron (#11) populations by applying a 

combination of two methods: the Leiden network clustering algorithm79 and PAGA12. 

Moreover, repartitioning immature-to-adult allowed us to negotiate selection bias80. We 

excluded #3, #5, #7, #38, #39, #42, #45 as oligodendrocytes and pars tuberalis from the 

integrated manifold matrix and performed clustering with Scanpy81 wrapper with iterations 

until full optimization. These partitions were used for the construction of an abstraction 
graph (non-directed) with a threshold of 0.365. Nodes were not established as common 

clusters. Instead, we derived them to obtain the topological structure of cell ensembles. We 

analyzed the projection of our preliminary clusters of each developmental stage on partitions 

of the abstraction graph and transformed it by Leiden algorithm (using 

time_slices_to_layers() function and then optimise_partition_multiplex() for class 

la.Optimiser()) to a connection-based annotation of cell lineages with consistent colors. 

Next, we used abstraction graph nodes as starting points for the UMAP algorithm with 

maxiter = 1,000, negative_sample_rate = 20, min_dist = 1, spread = 2 parameters to prepare 

embedding corresponding to cell lineage relations (Figure 1b-d,2a,b,3f,4a and S11, 

Supplementary Note).

RNA velocity analysis 1

We performed RNA velocity analysis of time points separately; following the original 

deterministic approach of the velocyto.R/py packages13. Currently, it is not possible to split 

an UMI-matrix obtained by Bayesian correction of dropestR44. Thus, we exported metadata 

for filtering of a default matrix and our cellular annotations (walktrap algorithm derived 45 

cell groups). They were then sub-grouped to relocate cells, which passed our filters and 

removed ‘rubbish’ and mesenchymal related genes. Lastly, we applied the original RNA 
velocity method13 with a few modifications: 1) we filtered out all non-DEGs, which were 

present in <20 spliced/unspliced molecules, 2) for obtaining a velocyto grid we exported the 
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UMAP embeddings67,73 of our high-quality cells from the previous step for visualization 

purposes (Figure ED2b,c).

RNA velocity analysis 2

To perform RNA velocity analysis of the integrated dataset, we applied the scvelo python 

package using a generalised dynamical model82. As input, we used filtered to ectodermal 

cells and gene loom files, which were merged using loompy (version 2.0.17) and filtered to 

cells used for PAGA construction (see above). Briefly, spliced and unspliced reads were 

separately size-normalized to the median of total molecules across cells. Additional gene 

filtering comprised of those that passed a minimum threshold of 10 expressed counts for 

spliced and 2 for unspliced mRNA. We quantified a 30-nearest neighbour graph based on 

Euclidean distances in 30-PC space (PCA performed on logarithmic spliced counts). 

Therefore, for each cell across its neighbours, we obtained first and second-order moments 

(means and uncentered variances), then estimated RNA velocity with the explicit fitting of 

inferred splicing reaction rates. As a result, transition probabilities were estimated forming 

velocity graph. Thus, we plotted individual cell velocities embedded in UMAP space (Figure 

2a,3f and ED7a). Subgraph analysis of both the glial lineage (#1, #10, #18, #24, #34, #51) 

and ‘bridge’ cells (we subset only the first entering node of the abstraction graph) was 

performed as described previously12,82. To this end, we subset cells of interest and 

transformed PAGA to a directed abstraction graph using a default constructed velocity graph 
from above. Finally, we allocated root cells by using the backward Markov process on the 

transition probability matrix to define excessive density area, estimated the latent time on 

learned transcription dynamic model and plotted a velocity grid (Figure 1c) and individual 

cell velocities embedded in UMAP space (Figure 1c1). We completed all steps using built-in 

functions with default parameters.

Estimation of developmental regulons

We prepared a subset of putative glial (astroependymal, tanycyte and progenitor) and 

neuronal clusters (as described above under ‘abstraction graph construction’). A spliced 

UMI count matrix of the integrated dataset was input in the pySCENIC23,83 pipeline with 

default settings to infer active transcription factors (TFs) and their target genes. Briefly, the 

pipeline was implemented in three steps. Firstly, we identified gene co-expression modules 

of TFs83. Secondly, we pruned each module based on a regulatory motif near a transcription 

start site (TSS). Cis-regulatory footprints could be obtained with positional sequencing 

methods (e.g. from ChIP-seq motif calling with an antibody against TF). Binding motifs of 

TFs across multiple species then built an RCisTarget database. Precisely, modules were 

retained if the TF-binding motif was enriched among its targets, while target genes without 

direct TF-binding motifs were removed. Thirdly, we scored the impact of each regulon for 

each single-cell transcriptome using the AUC score as metric. Each step of this pipeline used 

rank statistics, and the last classification step ran independently for each cell, avoiding a 

batch effect.

Moreover, regulons tended to highlight higher-order similarities across cells. Thus, we 

determined whether the target genes in each regulon were enriched in each cell using the 

distribution of regulon activity across all cells in the dataset. The input list of TFs was 
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downloaded from the RIKEN database84–86. As a result, we derived the AUC score matrix 

(AUCell) to validate our clustering and prepared annotation by 395 identified regulons. 

Inferred regulons and their activity across cells in the integrated dataset are reported in 

DOI:10.6084/m9.figshare.11867889. Wilcoxon test, Logreg test87 and dot-plot visualization 

of differentially recruited regulons across 45 identified cell groups (described above) were 

done in the Scanpy package81 (Figure 3a and ED4). Gene regulatory network (GRN) plots 

of the Onecut2/3 regulons were done by using the Gephi software package88 (Figure ED6a).

Dendrogram construction (regulon-based)

Next, a dendrogram was constructed for neuronal and glial cells together by Seurat 3 on the 

AUCell matrix of 395 regulons to observe subtler changes. We deciphered the diverging 

composite rules of a regulons-based dendrogram by testing each branching node for 

differential regulon importance. Therefore, we performed the Wilcoxon test and Logreg 
test87 of every node with min.pct = 0.01, logfc.threshold = 0.01 of Seurat’s function 

FindAllMarkers to derive the action propagation program of the regulons (DOI:10.6084/

m9.figshare.11867889). We used dendrograms to order dot-plots (Figure 3a and ED4).

Regulon assignment to clinical phenotypes

To understand the potential involvement of regulons to human disease phenotypes, we 

analysed properties of human polymorphic variants (SNPs) located within the regulon genes. 

Recently, a robust correspondence between human and mouse regulons was reported23. To 

uncover associations between regulon-specific variants and human phenotypes we used 

Gene Atlas - a database with summary statistics of genome-wide association studies 

(GWAS) between millions of variants and hundreds of traits in the UK Biobank cohort 
(http://geneatlas.roslin.ed.ac.uk/)89. Firstly, we converted a subset of mouse regulon genes 

with one-to-one orthologs to human Ensembl gene IDs. Here, we used mouse notation for 

regulons (only the first capital letter and the remaining lowercase letters) to clarify their 

source. Secondly, we extracted all SNPs belonging to regulon genes and analysed the 

distribution of their p values. Thirdly, we characterised regulons in terms of the total number 

of SNPs affecting their master gene, as well as SNPs affecting other regulon-recruited genes. 

We observed that master genes tend to have a deficit in SNPs as compared to the 

downstream general representatives of these regulons (median number of SNPs affecting 

master genes across all regulons is less than the median number of SNPs affecting general 

representative genes). Some regulons showed zero SNPs (at least in the UK Biobank cohort) 
in their master genes but significant, close to the median, number of SNPs in regulon-

recruited genes. Using the number of SNPs affecting master genes and the number of SNPs 

affecting other regulon-recruited genes as a metric of evolutionary constraint, we split all 

regulons into four quadrants reflecting the ratio of constraints between masters and members 

of regulons (Figure ED5b). Next, we asked where hypothalamus-related regulons appeared 

in this plot. Thus, to focus on the hypothalamus, we used weights of genes in regulons 

output by the SCENIC workflow, which were interpreted as an importance of a given gene 

in a given regulon. To highlight the most important regulons, we chose ones with their 

median weight higher than the median weights of all individual genes from all regulons.
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Henceforth, the logic behind our analysis is similar to pi1 statistics, estimating an excess of 
low p values90. To make a fast approximation of the excess of low p values for 778 

phenotypes and each gene of 395 regulons, we estimated the fraction of p values, which 

were <0.1. Limited testing demonstrated a strong correlation between our excess of low p 
values and pi1 estimated in the qvalue R package91. Also, limited testing demonstrated 

similar trends, observed when we changed the threshold from 0.1 to 0.01. Therefore, we 

manually selected clinical phenotypes related to the hypothalamus, subset to regulons with 

importance (weight) higher than the median and aggregate weighted pi1 statistics to the 

regulon level. For visualisation purposes, we selected three contrast regulons from each 

quadrant by choosing distant regulons in the two-dimensional PCA space of phenotypes (red 

labels in Figure ED5a, black spheres in Figure ED5b) and plotted their normalised values 

via the heatmaply R package (Figure 3d)92.

Estimation of developmental genes and regulon dynamics

Next, we took the spliced molecule count matrix of the same subset of cells as for the PAGA 
subgraph analysis of progenitors and their nearest offsprings. Firstly, we size-normalized to 

the median of total molecules across cells. Secondly, a logarithmic matrix was used to 

estimate pseudo-time order and probabilities for cells to propagate through the subgraph of 

glial lineages or ‘bridge’ cells. For this purpose, we used a probabilistic approach, Palantir93, 

which we implemented as an external module to the Scanpy Python package81 (Figures 

1d,4b and ED7a; Figure S12 in Supplementary Note). Similarly, we applied this method to 

the Pomc-cell group (Figure 2b) and every distinct Th-containing group (Figure 4b-d,f,h,i, 

ED9c; Figure S13 in Supplementary Note) guided by PAGA topology. In all cases, we 

selected early cells by taking upper-99-percentile of the Sox2 regulon of AUC scores 

distribution and used default parameters for estimations with exception for the waypoints 
parameter: for glia and bridge neurons – 500, for the Pomc+ cells lineage – 1200, and for Th
+ trajectories: #1 – 750, #2 – 500, #3 – 1000, #4 – 500, #5 – 350, #6 – 1000, #7 – 200, #8 – 

200, #9 – 1000, #10 – 800. Finally, we estimated the impact of regulon dynamics along the 

identified trajectories using the AUCell matrix as input for Palantir’s function 

compute_gene_trends, which uses a generalised additive model. Both the trends of genes 

and regulon actions were clustered for each trajectory with default parameters utilising the 

Phenograph python package94.

Tissue preparation and immunohistochemistry

After rinsing in 0.1M PB, specimens were exposed to a blocking solution composed of 0.1M 

PB, 10% normal donkey serum, 5% BSA and 0.3% TX-100 for 3h followed by 48h 

incubation with select combinations of primary antibodies: rabbit anti-TH (1:500; Millipore 

AB152, Lot 2593900, 3199177), sheep anti-TH (1:1000, Novus Biologicals, #NB300-110, 

Lot ajo1217p), sheep anti-ONECUT2 (1:250; R&D Systems, AF6294, Lot CDKS0116081), 

guinea pig anti-ONECUT3 (1:5,000)95, rabbit anti-VGLUT2 (1:800; a gift from M. 

Watanabe)96, goat anti-GFP (1:1,000; Abcam, #ab6662, Lot GR311622-15, GR311622-7), 

chicken anti-GFP (1:500, Aves Labs Inc., #GFP-1020, Lot GFP697986), rabbit anti-SOX2 

(1:500, Abcam, #ab97959, Lot GR3244885-1), chicken anti-mCherry (1:1,000; EnCor 

Biotech, #CPCA-mCHERRY, Lot 7670-4), mouse anti-MASH1 (1:100, BD Pharmingen, 

556604, Clone: 24B72D11.1), guinea pig anti-GFAP (1:500, Synaptic Systems, 173004, Lot 
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2-15, 2-17), rabbit anti-phospho-Histone H3 (1:500; Cell Signaling Technology, 9701, Lot 

7), chicken anti-NeuN (1:500, Merck Millipore, ABN91, Lot 3132967), mouse anti-FLAG-

tag (1:1,000; Sigma, F1804, Lot SLBR7936V), mouse anti-HA-tag (1:600; Cell Signaling 

Technology, mAb2367, Lot 1). Secondary antibodies were from Jackson ImmunoResearch, 

including Alexa Fluor 488-AffiniPure donkey anti-goat (705-545-147, Lot 131669), Alexa 

Fluor 488 donkey anti-mouse (715-545-151, Lot 127820), Alexa Fluor 488-AffiniPure 

donkey anti-guinea pig (706-545-148, Lot 138058), Alexa Fluor 647-AffiniPure donkey 

anti-guinea pig (706-605-148, Lot 135631), Alexa Fluor 647-AffiniPure donkey anti-rabbit 

(711-605-152, 127614) and carbocyanine (Cy)2-AffiniPure donkey anti-rabbit 

(711-225-152, Lot 139999), Cy3-AffiniPure donkey anti-chicken (703-165-155, Lot 

142225), Cy3-AffiniPure donkey anti-goat (705-165-147, Lot 134527), Cy3-AffiniPure 

donkey anti-guinea pig (706-165-148, Lot 134844), Cy3-AffiniPure donkey anti-mouse 

(715-165-150, Lot 116881), Cy3-AffiniPure donkey anti-rabbit (711-165-152, Lot 141941) 

and applied at a dilution of 1:300 in 0.1M PB supplemented with 2% BSA (20-22 °C, 2h). 

Nuclei were routinely counterstained with Hoechst 33,342 (1:10,000; Sigma). Tissues were 

photographed on a Zeiss LSM880 laser-scanning microscope. Images were acquired in the 

ZEN2010 software package. Multi-panel images were assembled in CorelDraw X7 (Corel 

Corp.).

RNA-scope® in situ hybridisation

C56Bl6/J mice were used to verify scRNA-seq candidate gene expression as described97. 

Dissected embryonic mouse heads were fixed in 4% PFA (pH 7.4) overnight. RNAscope® 

2.0 was performed according to the manufacturer’s instructions (ISH, RNAscope®, 

Advanced Cell Diagnostics)98. RNAscope® probes for detection of Slc1a3, Rax, Dll1, Dll3, 
Neurod1, Slit1, Slit2, Draxin, Prdm12, Nhlh2, Sox10, Ddc, Lancl3, Pmfbp1, Sncg, Sst, Th 
and Trh were designed commercially by the manufacturer and are available from Advanced 

Cell Diagnostics. Imaging was performed using an LSM880 Zeiss confocal microscope 

equipped with a 40x objective.

Fluorescent In Situ hybridization (HCR 3.0)

Stainings were performed on fresh frozen tissues sectioned at 16 μm following the HCR 

v3.0 protocol for ‘generic sample on the slide’ (Molecular Instruments)99. The pre-treatment 

of tissue sections included fixation with 4% PFA for 15 min, two washing steps with PBS 

and dehydration using an ascending EtOH gradient (25%, 50%, 75% and 100%, each step 

for 5 min with subsequent drying for 15 min). The tissue used for these experiments was 

obtained from E12.5, E15.5, E16.5, E18.5 embryos or P2, P7 pups. The probes used (Ddc, 

Gad1, Meis2, Onecut3, Sncg, Th, Trh and Zic5) were designed and purchased from 

Molecular Instruments.

In vitro overexpression of Onecut3

Neuro2A cells were propagated in DMEM containing 4.5g/L glucose, Glutamax, 10% FBS, 

100 U/mL penicillin and 100 μg/mL streptomycin (all from Gibco). Prior to transfection, 

cells were plated on glass coverslips (coated with poly-D-lysine (Sigma) at 37 °C overnight) 

at a density of 75,000 cells/well in a 24-well format. Cells were transfected with 500 ng of 

either OC3 or ABCD2 (an ATP-binding cassette transporter located on peroxisomes as 
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CMV control) using the jetPRIME transfection system. The medium was replaced after 30 

min to growth medium containing 2% FBS (to limit excessive proliferation) and cells were 

either immersion fixed for immunocytochemistry in 4% PFA in PBS (pH 7.4) for 20 min or 

lysed for qPCR after 3 days in vitro. Note that no cell death was observed due either to 

overexpression or the transfection reagent.

For immunocytochemistry, cells were permeabilised and blocked before adding a primary 

antibody cocktail overnight at 4 °C. Staining was performed with phospho-Histone H3 

(rabbit host; 1:500; Cell Signaling Technology), FLAG-tag (mouse host; 1:1,000; Sigma), 

HA-tag (mouse host; 1:600; Cell Signaling Technology) and counterstained with Hoechst 

33,342 (1:10,000; Sigma). After mounting with glycerol gelatine (Sigma), random overview 

images (20x magnification) were taken on an Zeiss LSM880 confocal microscope. Hoechst+ 

as well as phospho-Histone H3+ cells were counted with ImageJ1.52a (cell counter plugin) 

and normalised to Abcd2.

For qPCR quantification, RNA was extracted with the Aurum Total RNA Kit (BioRad). A 

cDNA library was prepared by transcribing 2μg of RNA with the High Capacity RNA-to-

cDNA Kit (Applied Biosystems). For qPCR reactions, 20ng cDNA was amplified using 

SYBR green (BioRad) on a CFX Real Time Amplifier (BioRad) with [Th forward: 

TGTTTCAGTGCACACAGTAC]; [Th reverse: CCAATGTCCTGGGAGAACTG], [Cxxc5 
forward: AGTGGACAAAAGCAACCCTA]; [Cxxc5 reverse: 

TTAGCATCTCTGTGGACTGT], [Tmprss9 forward: GCTTGGTGCGACCCATCT]; 

[Tmprss9 reverse: CATGGAGCCTCCCTCGC] and [Tbp for: 

CCTTGTACCCTTCACCAATGAC]; [Tbp rev: ACAGCCAAGATTCACGGTAGA] primers 

as loading control.

Preparation of acute brain slices

All experiments were performed in 300 μm-thick coronal slices prepared on a VT1200S 

vibratome (Leica) using a protective recovery method for slice preparation100. All 

constituents were from Sigma-Aldrich. Solutions were aerated with carbogen (5% CO2/95% 

O2).

Patch-clamp electrophysiology

Whole-cell recordings were carried out using borosilicate glass electrodes (Hilgenberg, 

Germany) of 3-4 MΩ pulled on a P-1000 instrument (Sutter). Electrodes were filled with an 

intracellular solution containing (in mM): 130 K-gluconate, 3 KCl, 4 ATP-Na2, 0.35 GTP-

Na2, 8 phosphocreatine-Na2, 10 HEPES, 0.5 ethyleneglycol-bis(2-aminoethylether)-

N,N,N',N'-tetraacetate (EGTA), (pH 7.2 set with KOH) and 0.5% biocytin (Sigma) for post-
hoc cell identification. After recordings, brain slices were immersion-fixed in 4% PFA at 

4°C overnight. Recordings were carried out on an EPC-10 triple amplifier (HEKA) 

controlled by PatchMaster 2.80.

Sample sizes, statistics and reproducibility

Sample sizes for scRNA-seq experiments: n = 8 (E15.5), n = 7 (E17.5), n = 4 (P0), n = 4 

(P2), n = 3 (P10), n = 3 (P23). SCTransform corrected UMI-count matrices were statistically 
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tested to obtain DEGs using log-normalized values with pseudocount = 1 for 45 identified 

cell groups as previously described6,51 using MAST test52. We used the Wilcoxon test and 

Logreg test87 to define up-regulated regulons. Results of the DGE tests are specified in 

DOI:10.6084/m9.figshare.11867889.

For Figure 1a, UMAP plot was built for n = 51,199 cells of ectodermal origin integrated by 

canonical correlation analysis (CCA).

For Figure 1c, n = 5,070 cells were used for UMAP.

For Figure 1d (right), we sampled cell-ordering (n = 5,070 cells) to 500 bins to compute 

gene expression trends. For each bin, means ± s.e.m. expression was estimated by 

generalized additive models.

For Figure 1e, n = 2 animals for E12.5, 3 n = animals for E13.5, and n = 3 animals for 

E15.5 were used for embryonal tracing of Ascl1 at corresponding time points.

For Figure 1f, n = 2 animals were used to trace Ascl1+ cells in (BAC)GAD65-eGFP:Ascl1-

CreERT2:Ai14 mice (tamoxifen injection at P14, sample collection at P21).

For Figure 2b (top right), to compute gene trends we sampled the trajectory for POMC 

neurons (n = 1,643 cells from progenitors to mature POMC cells) to 500 bins. Each single 

trajectory shows means ± s.e.m. estimated by generalized additive models.

For Figure 2b (bottom), RNA scope in situ hybridization was performed on samples from 

POMC-GFP mice (n = 4 for Prdm12 and n = 3 for Nhlh2).

For Figure 2e, experiment was performed in triplicate with n = 2 animals/time point.

For Figure 3b, iImages are representative for wild-type (n = 3) and Nfia-/- (n = 3) mice.

For Figure 3f, n = 5,070 cells belong to glia (excluding oligodendrocytes) or bridge 

neurons. To compute gene expression trends, we sampled cell-ordering to 500 bins. For each 

bin, means ± s.e.m. was estimated by generalized additive models.

For Figure 3g, n = 5 (wild-type), n = 5 (Robo1-/-), n = 3 (Slit1-/-) and n = 3 (Slit2-/-) mice 

were used. Data are presented as percentile box-whisker plots (10, 25, 50, 75, 90 

percentiles). Data were statistically analysed using one-tailed Student’s t-test of raw data: p 
= 0.0019 for wild-type vs. Slit1-/-; p = 0.0006 for wild-type vs. Slit2-/-.

For figure 3h, experiment was performed in duplicate with wild-type (n = 3) and Robo1-/- 

(n = 4) mice.

For Figure 4b,c,d,f,h,i, to compute gene trends we independently sampled 7 differentiation 

trajectories containing neurons (for group #1: 1,506 cells, for group #2: 997 cells, for group 

#3: 1,453 cells, for group #5: 948 cells, for group #6: 1,779 cells and for group #9: 1,181 

cells) to 500 bins. For each bin, means ± s.e.m. expression was estimated by generalized 

additive models.
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For Figure 4b (right), n = 2 animals for E12.5, n = 3 animals for E13.5. Experiment was 

performed in duplicate.

For Figure 4e, n = 2 animals were used. Experiment was reproduced 2 times.

For Figure 4f (right), n = 3 animals were used in the experiment.

For Figure 4g (right), n = 2 animals were tested in each independent experiment.

For Figure 4h (right), n = 2 animals were tested in the experiment.

For Figure 4i, n = 5 (wild-type) and n = 6 (Robo1-/-) mice were tested. Data are visualised 

as error bar plots with individual data point information. Data were statistically evaluated 

using one-tailed Student’s t-test on raw data: p = 0.015 for wild-type vs. Robo1-/- at the 

anatomical (rostral-to-caudal) level of the suprachiasmatic nucleus.

For Figure 4k, post-hoc neuroanatomical reconstruction identified that all n = 9 Onecut3+ 

neurons were of ‘type C’ in A14 (n = 15 cells were characterized as ‘type C’ within 62 cells 

recorded in total from A14).

For Extended Data Figure 1, we used the dataset of n = 51,199 ectodermal cells for dot-plot 

representation (a,b) and UMAP visualizations (b1,b2,c).

For Extended Data Figure 2a, we used the same dataset of n = 51,199 ectodermal cells for 

each alignment algorithm.

For Extended Data Figure 2c, n = 6,314 cells from E 15.5 passed filters of original RNA-
velocity analysis and presented at the figure panels for each analysis of gene expression.

For Extended Data Figure 2d, numbers of animals used for embryonal tracing are: n = 2 for 

E12.5, n = 3 for E13.5, n = 3 for E15.5 and n = 2 for E16.5.

For Extended Data Figure 2d, freely available data from Allen’s Mouse Developmental 

Brain Atlas were used.

For Extended Data Figure 2f, images are representative for Ascl+/- (n = 3) and Ascl1-/- (n = 

3) mice.

For Extended Data Figure 2g, 3 animals were checked for each developmental stage.

For Extended Data Figure 2h, 2 Ascl1+ cells were traced in (BAC)GAD65-eGFP:Ascl1-

CreERT2:Ai14 animals for the time-point shown (tamoxifen injection at P14, sample 

collection at P21).

For Extended Data Figure 3d,e, analysis was done based on n = 33,893 cells of neuronal 

and glial origin (excl. oligodendrocytes).

For Extended Data Figure 3f, experiment was reproduced 3 times with n = 2 animals/time-

point.
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For Extended Data Figure 4, n = 33,893 cells in total were tested with two-tailed Wilcoxon 

rank sum test.

For Extended Data Figure 6b, images are representative for samples from n = 2 animals.

For Extended Data Figure 6c, Images are representative of n = 2 animals/experiment.

For Extended Data Figure 6d,d1, images are representative for the experiment reproduced 2 

times with n = 6 (coverslips).

For Extended Data Figure 6d2, the sample size is n = 12 for each group. Data were 

statistically evaluated using two-tailed Student’s t-test on raw data. p = 0.0000292 for the 

density of Hoechst positive cells; p = 0,0000000103 for the density of pHH3+ cells.

For Extended Data Figure 6e, there were 3 biological and 3 technical replicates for each 

probe. Data are visualized as error bar plots (means ± s.e.m.) with individual data point 

information. Data were statistically evaluated using two-tailed Student’s t-test on raw data. p 
= 0.0210 for Th expression; p = 0.000153 for Cxxc5 expression.

For Extended Data Figure 7a (UMAP), n = 33,893 cells were used for graph construction.

For Extended Data Figure 7a (bottom), to compute gene expression trends we sampled n = 

5,070 cells to 500 bins. For each bin, means ± s.e.m. expression was estimated by 

generalized additive models

For Extended Data Figure 7a (right), b,b1,b2, all images represent results from n = 3 

animals for each experiment.

For Extended Data Figure 8a, we recorded n = 20 cells from A12 (including n = 12 of 

‘type A’, n = 3 of ‘type B’, n = 5 of ‘type C’), n = 8 cells from A13 (n = 5 cells of ‘type A’ 

and n = 3 cells of ‘type B’) and n = 62 cells from A14. Specifically for A14, we 

distinguished 4 electrophysiological profiles: n = 32 cells of ‘type A’, n = 9 cells of ‘type B’, 

n = 15 cells of ‘type C’ and n = 6 cells of ‘type D’. Post-hoc neuroanatomical reconstruction 

identified that all n = 9 Onecut3+ neurons were of ‘type C’ in A14.

For Extended Data Figure 8b, images are representative for the experiment reproduced 9 

times.

For Extended Data Figure 9a, images are representative for Ascl+/- (n = 3) and Ascl1-/- (n = 

3) mice. Immunohistochemical experiment was reproduced 2 times.

For Extended Data Figure 9b, n = 3 animals from E13.5 tamoxifen injection, n = 3 animals 

from E15.5 tamoxifen injection, and n = 2 mice from E16.5 tamoxifen injection were tested 

for embryonal tracing of Ascl1-cells at corresponding time points at E18.

For Extended Data Figure 9c, to compute gene trends we independently sampled 7 

differentiation trajectories containing neurons (for group #1: 1,506 cells, for group #2: 997 

cells, for group #3: 1,453 cells, for group #5: 948 cells, for group #6: 1,779 cells and for 
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group #9: 1,181 cells) to 500 bins. For each bin means ± s.e.m. expression was estimated by 

generalized additive models.

For Extended Data Figure 9d, n = 3 animals were tested.

For Extended Data Figure 9e (images), n = 2 animals were used for each developmental 

time-point. Experiment was reproduced twice.

For Extended Data Figure 9e (scatter plot), for both ages n = 2 animals were tested. In total 

86 Th-containing (min >2 mRNA molecules) cells were randomly analyzed. Data are 

visualized as error bar plots (means ± s.e.m.) with individual data point information.

For Extended Data Figure 9f, images are representative for n = 2 animals from each time-

point.

For Extended Data Figure 10a, images are representative for the experiment performed in 

duplicate on n = 4 for each developmental stage of both mouse lines.

For Extended Data Figure 10b, n = 26,316 cells from the neuronal lineage (including 

progenitors) were used.

For Extended Data Figure 10c, n = 3 animals were tested for each developmental time-

point.

For Extended Data Figure 10d, n = 2 animals were tested/independent experiment.

For Extended Data Figure 10e, n = 2 animals were tested for the experiment.

For Extended Data Figure 10f, n = 9 Onecut3+ neurons were reconstructed.

Data availability

Custom code was neither generated nor used. Raw, processed and supplementary datasets 

were deposited in GEO (accession number: GSE132730). GEO files include: 1) raw fastq 

files for every sequencing run; 2) filtered matrices for every sample in RDS file format 

including Seurat 3 objects with all processed cells; 3) original integrated dataset in RDS file 

format including Seurat 3 objects with all processed cells as well as all used commands; 4) 

integrated dataset used for dynamics analysis (which passed filtering of RNA Velocity 
analysis); 5) AUCell matrices from pySCENIC pipeline; 6) full regulon hypothalamic 

network in GraphML file format; 7) metadata protocol describing all experimental, 

computational procedures and quality control. An interactive view of the integrated dataset 

(for processing in Pagoda2) can be accessed through the following URLs: https://dx.doi.org/

10.6084/m9.figshare.11867889 (~1.1 GB).

All data presented (e.g., imaging) will be made available by T.Ha. (tibor.harkany@ki.se or 

tibor.harkany@meduniwien.ac.at) upon reasonable request.

Code availability

Code is available at https://dx.doi.org/10.6084/m9.figshare.11867889
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Extended Data
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ED Figure 1. Marker genes to define molecular phenotypes.
(a) Differential gene expression by glia (#1-9) and neurons (#10-45). Because of the 

integration of six stages, early-expressed TFs and spatially-restricted genes amenable to 

cellular differentiation were identified. For neuronal clusters, fast neurotransmitter 

specificity is shown to the right. Relative diameter of the solid circles for each cluster is 

scaled to the fraction of cells that expresses a specific gene. Color coding and numbering at 

the top correspond to those in Figure 1a. (b) Dot plot representation of differential TF 

expression in 45 ectoderm-derived cell groups in the hypothalamus. (b1,b2) Subclass-
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specific TFs recapitulate the UMAP positions of neuronal (b1) and tanycyte (b2) subtypes. 

(c) Integrated molecular/anatomical annotation of hypothalamic with their specific 

assignment to hypothalamic areas. Abbreviations: ARC-Agrp, arcuate nucleus-agouti-

related peptide+ neurons; ARC-Sst, arcuate nucleus-somatostatin+ neurons; ARC-TIDA, 

arcuate nucleus-tuberoinfundibular dopamine neurons; DMH, dorsomedial hypothalamus; 

Gal, galanin; Ghrh/Vacht, growth hormone-releasing hormone/vesicular acetylcholine 

transporter+ neurons; LH, lateral hypothalamus; LH-Lhx9, lateral hypothalamus-LIM 

homeobox 9+ cluster; Meis2, meis homeobox 2; MM, ; MM-Lhx9, mammillary nucleus-

LIM homeobox 9+ neurons; Pomc, proopiomelanocortin; PH, posterior hypothalamus; 

PMM, premamillary nucleus; PVN, paraventricular nucleus; SCN, suprachiasmatic nucleus; 

Tbr1, T-box brain transcription factor 1; VMH, ventromedial hypothalamic nucleus.
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ED Figure 2. Molecular analysis of TFs involved in neurogenesis and neuronal differentiation.
(a) Comparative and time-resolved analysis of the ‘cell bridge’ by MNN, CONOS and 

Seurat alignment. In UMAP space on separate developmental stages, MNN, CONOS and 

Seurat algorithms were compared for their ability to specifically resolve the transition of 

progenitors to immature cells (‘bridge’). Color codes correspond to those in Figure 1a). 

RNA-velocity at E15.5, E17.5 and P0. Color codes are consistent with those in Figure 1a. 

Note the presence of a ‘bridge’ (grey background) between progenitor/glial and neuronal 

compartments at early developmental stages with its rupture being evident by birth. (c) Gene 
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expression in UMAP space at E15.5. Note a central role for Notch signalling in 

neurogenesis. (d) Genetic tracing of Ascl1+ cells produced in the developing hypothalamus 

during the E12.5-E16.5 period. (e) In situ hybridisation showing the distribution of Tbr1 and 

Eomes genes as per the open-source Allen brain atlas database (www.brain-map.org). (f) 
Genetic tracing of Ascl1+ cells in the developing hypothalamus of Ascl+/- and Ascl-/- mice. 

(g) Sox2, Ascl1 and Rbfox3 localization at successive developmental stages. (h) Genetic 

tracing of Ascl+ cells postnatally (as in Figure 1f). Scale bars = 200 μm (d), 20 μm (f,g,h).
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ED Figure 3. Neurotransmitter and neuropeptide specificity and load in the developing 
hypothalamus.
(a-c) Coincident profiling of fast neurotransmitters (a), neuropeptides (b) and neuropeptide 

receptors (c) in 45 cell groups of ectodermal origin. (c1-c2) Given their abundance, Ntrk2 
and Adcyap1r1 were plotted separately along the developmental timeline studied with 

appropriate scaling (c1). Likewise, the distribution of both receptors per cell cluster was 

mapped and scaled separately (c2). (d) Coincident profiling of neuropeptides in neuronal 

clusters distinguished as GABA and glutamate phenotypes and graphically identified in blue 

and grey, respectively. (e) Map of tyrosine hydroxylase (Th) expression in GABA and 

glutamate neurons. Color coding correspond to that in (d). (f) Developmental mapping of 

hypothalamic Oxtr expression in OxtrVenus/+ mice. Low-magnification image surveys are 
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shown (see also Figure 2e). Scale bars = 200 μm (f). Data are shown as dot plots and scaled 

as previously described6,51,65.
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ED Figure 4. Hierarchical relationship of GRNs (regulons).
Area under the curve (AUC) separability plot was used to assign regulons that determine cell 

cluster identities identified in Scenic23. GRNs were reconstructed individually for each cell 

and then assigned as ‘regulon representation’ (Logreg test) to each cell group. TFs to the left 
are representative for each regulon. Marked dendrogram branchpoints were estimated by 

both the Wilcoxon and Logreg tests (see also DOI:10.6084/m9.figshare.11867889).
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ED Figure 5. Relationships between regulons and disease phenotypes in humans.
(a) Complete heat map of associations between regulon activity and clinical disease 

phenotype. Left: classifications of diseases as per phenotypic criteria of the UK biobank 

registry (www.ukbiobank.ac.uk). Top: master genes for each regulon. Genes presented in 

Figure 3 are in red and highlighted in (b). Color coding from deep blue to bright yellow 

show increasing correlation probability. (b) Scatter plot reflecting the ratios of mutability in 

master genes vs. all downstream target genes per regulon. Mutability and the constrains of 

TFs were expressed as the total number of mutations. Colors represent four quadrants that 
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were separated on the basis of the total number of mutations per master gene (medians, y 
axis) vs. target genes (medians, x axis). Horizontal line corresponds to the median of SNPs 

in all genes. Dot size reflects the median influence of a given regulon on its targets as per 

Scenic output.
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ED Figure 6. Molecular complexity and function of the Onecut3 regulon.
(a) Interlinked Onecut2 and Onecut3 regulons in hypothalamic neurons. Genes that had been 

biologically validated (see below) are shown in black. (b) Onecut2 and Onecut3 co-

expression along the rostrocaudal axis of the hypothalamus. (c) Co-localization of Onecut3 
and its target genes (from panel a). (d-d2) Overexpression of Onecut3 and ATP-binding 

cassette D2 (Abcd2, to control promoter activity) in Neuro2A cells. Representative images 

by multiple fluorescence labelling-differential interference microscopy. (e) Quantification of 

Hoechst+ and phosphor-histone H3 (pHH3)+ Neuro2A cells revealed significantly reduced 

proliferation upon Onecut3 overexpression. No significant cell death was observed by either 

overexpressed plasmid or the transfection reagent alone. (e) qPCR analysis of genes 

regulated by Onecut3: CXCC-type zinc finger protein 5 (Cxxc5), transmembrane protease 

serine 9 (Tmprss9) and tyrosine hydroxylase (Th). All data were normalized to samples 

transfected with Abcd2, which were taken as technical controls. Scale bars = 50 μm (d,d1) 

20 μm (b,f), 10 μm (g).
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ED Figure 7. Experimental validation of ventricle-restricted genes identified by scRNA-seq.
(a) Left: Expressional dynamics of ventricle-associated marker genes: Slc1a3 (GLAST), 

Rax and Dll3 on UMAP embedding (top) and trend lines (bottom). Right: Validation by in 
situ hybridization. (b,b1) In situ hybridization for the co-existence of Slit2/Rax in ventricular 

progenitors and consequential medio-to-lateral Slit1/Dll1/Dll3 patterns during neuronal 

differentiation and migration by E15.5. Left-to-right orientation corresponds to medial-to-

lateral hypothalamic positions. (b2) Localization of Slit1 and Slit2 mRNAs in the 

ventromedial hypothalamus (VMH) at E18.5. Scale bars = 200 μm (a), 20 μm (b,c).
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ED Figure 8. Physiological and morphological subtypes of hypothalamic dopamine neurons.
(a) Action potential waveforms of dopamine neurons within the A12-A14 groups. Note the 

diversification of A14 dopamine cells into subgroups A-D with clearly different action 

potential signatures. Morphological reconstruction of biocytin-filled neurons is shown to the 

left of each panel. (b) Distribution of tdTomato+ neurons in the hypothalamus of Slc6a3-

Ires-Cre::Ai14 mice. Scale bars = 50 μm (b), 20 μm (a).
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ED Figure 9. Transcriptional and physiological features of dopamine neurons in the developing 
hypothalamus.
(a) Ascl1-CreERT2/+::Ai14 (control) vs. Ascl1-CreERT2/ERT2::Ai14 (a knock-in mouse line 

with Cre disrupting the Ascl1 gene, referred to as ‘KO’), injected with tamoxifen at E11.5 

and analysed at E13.5. Note the accumulation of tdTomato+ cells in the KO relative to 

controls. (b) Genetic tracing in Ascl1-CreERT2::Ai14 reporter mice identified Ascl1+/Th+ 

neurons within the preoptic (POA) and periventricular (PeVN) nuclei. Meanwhile, Ascl1-/Th
+ neurons populated the arcuate nucleus (Arc) and zona incerta (ZI) by E18.5. (c) Isl1 and 
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Meis2 transcriptional trends of differentiation for trajectories in Th+ groups (#1-9). 

Amplitudes are shown in log10 scale. Line shading corresponds to means ± s.e.m. (d) 

Genetic lineage tracing using Isl1-Cre::Ai14 mice. (e) In situ hybridization for Gad1 and Th 
revealed anti-parallel expressional load for these genes as a factor of medial-to-lateral 

positioning. Scatter plots show the number of fluorescent puncta per cell (threshold >2). (f) 
In situ hybridisation for Meis2, Th and Ddc in the hypothalami of E18.5 and P2 mice. Scale 
bars = 120 μm (a,f/left), 20 μm (k), 12 μm (b,d,e,f/right,i,j).
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ED Figure 10. GABA origin of hypothalamic dopamine neurons.
(a) Immunohistochemical analysis of tyrosine hydroxylase (TH) and Onecut3 protein 

expression in the hypothalamus of (BAC)GAD65-GFP and GAD67gfp/+ mice at the 

developmental time-points indicated. Note a gradual GABA-to-dopamine transition as a 

factor of advancing age with OC3 expression preceding that of TH. Dashed rectangles 

denote the positions of high-resolution insets. (b) Expression patterns of regulon-forming 

TFs that directly drive Th transcription in the developing hypothalamus. Meis2, Pbx3, Dlx1 
were visualised on UMAP embedding for neuronal lineages. (c) Histochemical localization 
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of the migratory route of prospective PeVN dopamine neurons (#9) through the coincident 

localization of Th and Onecut3 during embryonic development. Dashed lines denote the 

ventricular surface. (d) Localization of Onecut2 and Pmfbp1a target genes within the 

Onecut3 regulon to PeVN dopamine neurons by a combination of immunohistochemistry 

and in situ hybridization. (e) Sst expression in PeVN dopamine neurons. (f) Post-hoc 
reconstruction of A14 Onecut3+ dopamine neurons after patch-clamp recordings. 

Abbreviations: 3V, 3rd ventricle; AH, anterior hypothalamus; DMH, dorsomedial 

hypothalamus; PeVN, periventricular nucleus; VMH, ventromedial hypothalamus. Scale 
bars = 200 μm (a, overviews), 50 μm (a, insets), 20 μm (f), 12 μm (c,d,e).
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Figure 1. Developmental diversification of hypothalamic cell lineages.
(a) UMAP plot of 51,199 cells of ectodermal origin and integrated by canonical correlation 

analysis (CCA) to achieve a hypothetical continuum reflecting the progressive attainment of 

cell identities. Walktrap in iGRAPH distinguished non-mature cells (#11, #19) and neurons 

(31 proto-groups) at the end of each developmental trajectory. (b,b1) Schemes illustrating 

the conformity of alignment and clustering in pseudotime (z axis, calculated independently) 

with biological age (b1). (c,c1) UMAP and PAGA representation of progenitors, glia and 

immature neurons (‘bridge cells’). RNA velocity12,13 transformed multi-dimensional PAGA 
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data to developmental trajectories. The color of junctions accord with groups (c) and age 

(c1). Note that a ‘cell bridge’ linking progenitors and immature neurons encompasses cells 

of early developmental stages even though all time points are minimally represented therein. 

(d) Imputed expression for the cell groups shown in (c) and pseudotime trajectories of 

differentiation into neurons starting from a Sox2+ state. (e) Genetic tracing of Ascl1+ 

progenitors (induction at successive time points) in VMH and Arc. (f) Ascl+ progenitor-

derived neurons (arrovheads) generated postnatally. Scale bars = 65 μm (e), 20 μm (f).
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Figure 2. Neuronal differentiation in the hypothalamus.
(a) Cellular clusters from Figure 1a (without #38, #42 and #45 oligodendrocytes) 

represented as a graph-like map upon transforming UMAP embedding with the PAGA 

method12 to assess cell differentiation trajectories. Red arrow specifies the trajectory for 

proopiomelanocortin (Pomc; #40) neurons. (b) Prdm12 and Nhlh2 expression (top left) and 

their developmental dynamics (pseudotime) relative to Pomc and Cited1, a transcriptional 

co-activator specifying neurons of the arcuate nucleus (top right). Data in pseudotime were 

scaled6. Prdm12 and Nhlh2 expression in Pomc+ neurons was validated by in situ 
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hybridization in Pomc-GFP mice (bottom). Blue rectangles in topographical maps show the 

location of images at single-cell resolution. Dynamics of gene expression for neuropeptides 

(c) and their receptors (d) during hypothalamus development. Data were shown as dot plots. 

(e) Developmental mapping of hypothalamic Oxtr expression in OxtrVenus/+ mice. Scale bars 
= 200 μm (e), 12 μm (b).
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Figure 3. GRNs (regulons), including chemotropic guidance cues, in ectoderm-derived 
hypothalamic cells.
(a) A dendrogram of regulons for each cell cluster estimated in Figure 1b. TFs at each 

branching point of the dendrogram are representative for subjacent groups of regulons. 

Onecut TFs were color-coded. (b) Gfap, Sox2 and Rbfox3 in the anterior arcuate nucleus of 

wild-type and Nfia-/- mice at E18.5. (c) Ratio between mutability for master genes and their 

downstream targets in regulons. A quadrant highlighting the Onecut3 regulon is shown (see 
also Figure ED5). (d) Heat-map of associations between selected regulons and clinical 
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phenotypes (see also Figure ED5). (e) Illustration how regulons that chiefly control Slit/
Robo signalling contribute to neuronal differentiation in the hypothalamus. (f) Slit1/2 and 

Robo1/2 expression in pseudotime (top; means ± s.d.) and on an integrated dataset (bottom). 

Blue-to-red scale codes for low-to-high RNA expression. (g) Slit1-/- and Slit2-/- mice present 

increased cell density at the level of the ventromedial hypothalamus (VMH; arrowheads) but 

not arcuate nucleus (Arc) relative to Robo1-/- and wild-type littermates. (h) In turn, 

glutamatergic (Slc17a6/Vglut2) synaptogenesis is reduced in the VMH of Robo1-/- mice by 

E18.5. The median eminence (ME), devoid of Slit2 expression, lacked any phenotype. Scale 
bars = 20 μm (b,h,i).
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Figure 4. Molecular configuration of hypothalamic dopamine systems.
(a) RNA-velocity vector embedding of tyrosine hydroxylase (Th)+ neurons. Phenotypic 

convergence even for molecularly-distant neurons is by uniform expression of Th and other 

enzymes of dopamine synthesis. (b) Th+ neurons invariably rely on Ascl1 as revealed in 

pseudotime (left). Genetic tracing in Ascl1-CreERT2::Ai14 mice showed the production of 

Th+/Ascl1+ progeny during the E12-5-E16.5 period. (c) Isl1 is expressed by all Th+ 

dopamine subgroups (pseudotime; Figure ED9d). (d) Pseudotime trajectories show Gad1, 

Slc32a1 and Th co-expressed from the early fetal period. (e) Antiparallel expression of Gad1 
and Th as a factor of medial-to-lateral positioning (Figure ED9e). (f) Pseudotime trajectories 

for Onecut2, Onecut3 and Slc6a3 (left) and earliest positions of Th+/Onecut3+ neurons 

(arrowheads) of prospective PeVN dopamine neurons (#9; right). (g) Validation of target 

genes for the Onecut3 regulon in PeVN dopamine neurons: scheme to the left identifies 

hierarchical relationships for Onecut2, Nr4a2, Pmfbp1a and Sncg. (h) Somatostatin (Sst) 
was enriched in dopamine neurons in the arcuate (Arc) area. (i) Pseudotime trajectory for 

Robo1 in dopamine neurons (left). Middle: Th+/Onecut3+ neurons in wild-type vs. Robo1-/- 

mice. Right: quantification of cell numbers at the suprachiasmatic (SCN) and Arc levels (*p 
< 0.05; Student’s t-test for independent groups). (j) Patch-clamp electrophysiology classifies 
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A14 Onecut3+ dopamine neurons as uniform ‘type C’ cells (see also Figure ED8). Scale bars 
= 10 μm.
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