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A B S T R A C T   

Microscopic defects in flip chips, originating from manufacturing, significantly affect performance and longevity. 
Post-fabrication sampling methods ensure product functionality but lack in-line defect monitoring to enhance 
chip yield and lifespan in real-time. This study introduces a photoacoustic remote sensing (PARS) system for in- 
line imaging and defect recognition during flip-chip fabrication. We first propose a real-time PARS imaging 
method based on continuous acquisition combined with parallel processing image reconstruction to achieve real- 
time imaging during the scanning of flip-chip samples, reducing reconstruction time from an average of 
approximately 1134 ms to 38 ms. Subsequently, we propose improved YOLOv7 with space-to-depth block 
(IYOLOv7-SPD), an enhanced deep learning defect recognition method, for accurate in-line recognition and 
localization of microscopic defects during the PARS real-time imaging process. The experimental results validate 
the viability of the proposed system for enhancing the lifespan and yield of flip-chip products in chip 
manufacturing facilities.   

1. Introduction 

Over recent decades, flip-chip technology has significantly advanced 
the performance of electronic devices. The flip-chip fabrication process, 
involving physical vapor deposition, chip bumping, flipping, and filling, 
may introduce defects, including delamination, cracks, scratches, and 
solder bump voids. These defects typically span from micrometers to 
sub-millimeters and can impact chip lifespan and product yield. At 
present, chip manufacturers rely on post-fabrication sampling methods 
like electrical tests for chip performance evaluation [1–3]. However, 
these methods lack the real-time monitoring of the defects in flip-chip 
manufacturing, constraining their potential to optimize product yield 
and lifespan. Furthermore, with the escalation of chip integration levels, 
defects of micrometer dimensions, termed as microscopic defects, can 
exert more pronounced effects on chip lifespan and yield [4]. Hence, the 
imperative development of in-line, non-destructive, and precise defect 
monitoring technology is essential. The technology enables real-time 
imaging and precise identification of microscopic defects of flip chips 

during critical fabrication stages, facilitating the early removal of chips 
with fabrication flaws and thereby improving product yield and pro-
duction efficiency. 

Presently, state-of-the-art flip-chip manufacturing procedures de-
mand in-line non-destructive defect monitoring technologies that 
adhere to contamination-free testing standards, offer real-time imaging 
capabilities, possess a high spatial resolution, and can seamlessly inte-
grate with production lines [5–7]. Until now, various technologies have 
been explored in the field of in-line non-destructive defect monitoring 
for flip-chip applications. Ultrasonic technology has been employed to 
assess the bonding quality of layered materials or detect minor defects 
within flip-chip structures [8–11]. The surface acoustic wave (SAW) 
method has been employed for non-destructive evaluation of mechani-
cal properties, residual stress, and subsurface damage in ground silicon 
wafers [12,13]. X-ray computed tomography (X-CT) technology can 
offer sub-micron 3D imaging of integrated circuit chips [14–16]. Pulsed 
phase thermography (PPT), as a promising in-line non-destructive defect 
monitoring technology, has the potential to characterize issues like 
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missing bumps in high-density packages [17,18]. However, the dis-
cussed technologies encounter challenges in in-line non-destructive 
monitoring. Ultrasonic techniques necessitate liquid coupling agents 
that may contaminate chips and cause metal structure rust on the pro-
duction line. SAW technology typically requires direct contact between 
the transducer and the sample, and trade-offs may be necessary to 
achieve high-resolution defect detection and deep probing. X-CT re-
quires time-consuming data processing and carries the risk of ionizing 
radiation. PPT entails a complex and time-consuming data processing 
procedure when identifying defects in chip metal structures. Therefore, 
further development is essential to effectively apply in-line non-de-
structive defect monitoring technologies in flip-chip production lines. 

Photoacoustic (PA) imaging, which combines the advantages of 
high-resolution optical imaging and the deep penetration depth of ul-
trasound imaging, has made significant strides in the field of non- 
destructive testing [19–21]. Unfortunately, traditional photoacoustic 
imaging devices using ultrasound transducers alongside liquid coupling 
agents significantly hinder the application of this technology for in-line 
monitoring in chip production lines. To overcome the limitations of 
traditional PA technology requiring liquid couplants, all-optical 
non-contact techniques, such as laser ultrasound (LU), have been 
employed for non-destructive testing in various applications [22–24]. 
Typically, the resolution of this approach remains below sub-millimeter 
levels, facilitating non-destructive detection of chip defects at this 
dimensional scale [25,26]. 

In 2017, another all-optical non-contact imaging technique with 
micrometer-level resolution was introduced, termed photoacoustic 
remote sensing (PARS) microscopy [27]. Grounded in the theory of 
elasto-optical, this technique, characterized by its high 
depth-to-resolution ratio and non-contact imaging capabilities, com-
bined with various rapid imaging strategies, has demonstrated its ca-
pacity for wide field of view (FOV) and high-speed imaging [28–31]. 
Furthermore, PARS has preliminarily achieved non-destructive testing 
with high resolution and a wide FOV in flip-chip samples [32]. However, 
to meet the demand for in-line non-destructive and precise defect 
monitoring of flip-chips during the fabrication process, further research 
on PARS technology is imperative. On one hand, to timely grasp the 
structural information of samples during the fabrication process, 
real-time imaging of flip-chips is required by the PARS technique. On the 
other hand, due to the small proportion of pixels occupied by micro-
scopic defects in PARS images and the limited information they carry, 
there is a propensity for missed detections during the recognition pro-
cess. Therefore, to achieve accurate in-line recognition of microscopic 
defects in samples, PARS technology needs to incorporate convolutional 
neural networks with higher object recognition precision for intelligent 
identification in-line. 

Herein, we propose a real-time PARS system designed for in-line non- 
destructive defect monitoring of flip-chips during the fabrication pro-
cess. Building on our prior research [32], our work introduces a 
real-time imaging method of PARS based on continuous acquisition 
combined with parallel processing image reconstruction, facilitating live 
imaging in fabricated flip-chip samples. During the real-time imaging 
process, we introduce a defect recognition method named improved 
YOLOv7 with space-to-depth block (IYOLOv7-SPD) based on deep 
learning, designed for precise in-line recognition of microscopic defects 
within flip-chip samples. With its non-contact rapid imaging capabilities 
and superior micro-defect recognition, the PARS-based in-line 
non-destructive defect monitoring system exhibits promising potential 
for seamless integration into flip-chip production lines. Consequently, it 
stands as a robust tool for quality assurance and process optimization 
within flip-chip manufacturing. 

2. Mechanism of imaging in flip-chip samples through elasto- 
optical effect 

In this section, we exclusively focus on the elasto-optical mechanism 

at the interface between undoped silicon and metal. In PARS, the 
fundamental description of the elasto-optic effect posits that the initial 
photoacoustic pressure generated by the optical energy absorbed by the 
medium modulates the intrinsic refractive index, as given by the 
following equation: 

δnmaterial(z, t) =
εn3

0pmaterial(z, t)
2ρv2

s
(1)  

here, pmaterial(z, t) represents the photoacoustic initial pressure generated 
due to the medium absorbing the laser pulse energy, its magnitude being 
related to the medium’s absorption coefficient μa material. δnmaterial(z, t)
denotes the modulation of the photoacoustic initial pressure pmaterial(z, t)
on the intrinsic refractive index n0of the medium (prior to excitation). 
εsignifies the local elasto-optic coefficient, ρstands for the local mass 
density, and vs represents the speed of sound within the medium. At this 
time, the continuous probe beam co-focusing with the excitation beam 
induces changes in reflectivity at the sample boundaries, serving as the 
measured physical parameter in our experiments: 
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here, n1denotes the intrinsic refractive index of the absorbing medium, 
while n2represents the intrinsic refractive index of the non-absorbing 
ambient medium. For the flip-chip samples composed of silicon- 
aluminum investigated in this manuscript, when employing 1064 nm 
pulsed excitation light, the material’s absorption of the excitation light is 
related as follows: μa Al(1.0927× 106cm− 1)≫μa Si(11.1cm− 1), satis-
fying pAl

pSilicon
∼ 106. In this context, with silicon wafer coated with a 

complete aluminum film, aluminum can be regarded as the absorbing 
medium and silicon as the ambient medium. When there is a peeling of 
the metal film in the sample, which corresponds to a delamination type 
of defect [33,34], silicon is considered as the absorbing medium and air 
as the ambient medium. 

The PARS signals corresponding to the silicon wafer with metal film 
and delamination regions in the flip-chip samples we used are shown in 
Fig. S1(a). It can be observed that the region with metal film produces a 
positive-slope PARS signal, while the delamination area generates a 
negative-slope PARS signal. Utilizing the distinct slope characteristics of 
the PARS signals can aid in defect recognition during the flip-chip 
fabrication process. For instance, a negative-slope PARS signal, indica-
tive of the silicon-air interface, may suggest instances of delamination or 
missing solder bumps within the substrate. Consequently, the 
advancement of real-time imaging and in-line defect recognition 
methods can further confirm whether suspicious regions contain similar 
defects. 

On the other hand, for cracks appearing within the substrate [34], 
due to their axial position differing from the silicon-air interface, their 
amplitude approaches zero when defocused. Consequently, when cracks 
occur in the silicon substrate, distinct imaging contrasts can be obtained 
based on the amplitude differences between the two signals [see Sup-
plementary data 1]. 

3. Experimental setups and methods 

3.1. Experimental setups 

Fig. 1(a) presents a schematic representation of our in-line moni-
toring setup employing PARS technology. The comprehensive apparatus 
integrates both automation and the PARS system. The automation 
component features a robotic arm coupled with linear guides. Equipped 
with a visual positioning system, the robotic arm precisely identifies the 
sample placement positions, enabling efficient retrieval and placement 
actions. Upon receiving the feedbelt signal, the robotic arm checks the 
availability of vacant slots on the dual linear guide trays. If a slot is free, 
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the material tray is shifted to the left guide for loading retrieval. Once 
the tray is fully loaded, it transitions to the right, supplying the PARS 
system for continuous in-line defect monitoring experiments. The dual- 
guide design ensures seamless material supply. After the experiments, 
the qualified and defective products are sorted and placed into desig-
nated trays for subsequent processing. 

As the pivotal components of the entire system, the PARS system 
primarily encompasses the excitation pathway, detection pathway, and 
data processing procedures, which closely resemble the system structure 
reported in our previous work [32]. In the excitation pathway, we 
employed an ultrashort pulsed laser (FSLAB-PICO-1064, Laize Photo-
electric Technology, Beijing) operating at a wavelength of 1064 nm. 
This laser boasts an approximate pulse duration of 8 ps and a repetition 
frequency of 1 MHz, facilitating the generation of the excitation light 
beam. Initially, the laser beam was divided into two separate paths using 
a 9:1 beam splitter (BS as illustrated in Fig. 1(b)). In this configuration, 
10 % of the optical power was directed towards a photodetector (PD-1 in 
Fig. 1(b), DET10A, Thorlabs) to generate trigger signals. Meanwhile, the 
transmitted light beam, comprising 90 % of the initial power, traversed 
through a beam expander (BE-1 in Fig. 1(b)) to attain the desired beam 
diameter of approximately 6 mm, and subsequently passed through a 
neutral density filter (NDF) for precise energy adjustment. 

In the detection pathway, the probe beam was derived from a low- 
coherence 1310 nm continuous-wave source, utilizing super-
luminescent diodes (SLD1018P, Thorlabs) with a bandwidth of 45 nm. 
After expansion through a beam expander (BE-2 in Fig. 1(b)), the probe 
beam, with a diameter of 6 mm, propagated through a polarizing beam 
splitter (PBS, as depicted in Fig. 1(b), PBS254/M, Thorlabs) and a 

quarter-wave plate (QWP, shown in Fig. 1(b), WPQ10M-1310, Thor-
labs), resulting in the production of circularly polarized light. Following 
this, a dichroic mirror (DM, as illustrated in Fig. 1(b), DMSP1180, 
Thorlabs) was utilized to combine the probe beam with the excitation 
beam. Subsequently, both the probe and excitation beams were guided 
through the dual-axis galvanometer scanning mirror system (GM, 
illustrated in Fig. 1(b), GVS012/M, Thorlabs) and co-focused by the 
objective lens (OL, as presented in Fig. 1(b), MY20X-824, Mitutoyo). 

In the data processing and digitalization stage, the back-reflected 
component of the probe beam retraced its path within the system and 
was directed to a photodiode (PD-2 in Fig. 1(b), 1811-FS, New Focus) for 
photoelectric conversion, subsequent to passing through a long-pass 
filter (LPF, as depicted in Fig. 1(b), FEL1250, Thorlabs) and a best- 
form lens (BFL, illustrated in Fig. 1(b), LBF254-040, Thorlabs). 
Following this, the photodiode’s output was subjected to further filtra-
tion using a low-pass filter (22 MHz). The refined signal underwent 
digitalization through a four-channel, 14-bit PCI digitizer (CES1442, 
GaGe) operating at a rate of 200 × 106 samples per second. 

To evaluate the lateral resolution of the proposed system, we con-
ducted cross-sectional scanning (B-scan) of carbon fiber networks in 
water using the PARS system. The imaging results are illustrated in Fig. 1 
(c). To determine the spatial resolution of the system, the line spread 
function (LSF) of the system was acquired. During the scanning process, 
particular attention was paid to the signal amplitude distribution at the 
edges of the carbon fibers. This distribution revealed the transition of the 
signal from absent to present within the B-scan. Fitting this distribution 
with an error Gaussian function provided the edge spread function (ESF) 
of the system. Differentiating the ESF yielded the Gaussian-shaped LSF. 

Fig. 1. Setup and characterization of the PARS system for in-line defect monitoring. (a) Schematic of the in-line non-destructive defect monitoring scenario for flip- 
chip samples. (b) Schematic representation of the PARS system. (c) PARS image showing randomly distributed carbon fibers. (d) Characterization of lateral reso-
lution, including line spread function (LSF) and edge spread function (ESF) derived from the data presented in panel (c). The resulting line spread functions depict the 
full width at half maximum (FWHM) lateral resolution. 
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The full width at half maximum (FWHM) value of the LSF in Fig. 1(d) is 
approximately 2.9 μm, representing the lateral resolution of the 
designed system. 

To achieve rapid and wide FOV imaging of flip chips during the 
fabrication process, we previously developed a wide-FOV imaging 
method based on an optical-mechanical joint scanning strategy in our 
earlier work [32]. Specifically, this method stitches together multiple 
smaller FOVs to create a larger FOV for expansive imaging. Each smaller 
FOV is scanned using a galvanometer scanning. Subsequently, motor-
ized stages (M-112.2DG1, Physik Instrumente) move in specific steps to 
the adjacent smaller FOV for a similar galvanometer scanning, 
continuing this process until all smaller FOVs have been scanned. 
Finally, all the images from the individual smaller FOVs are stitched 
together to obtain a complete large FOV image of the sample [see 
Supplementary data 2]. 

3.2. PARS real-time imaging method based on continuous acquisition 
combined with parallel processing image reconstruction 

In order to achieve the real-time imaging of the flip-chip sample by 
PARS technology, we proposed a real-time PARS imaging method based 
on continuous acquisition combined with GPU parallel processing image 
reconstruction. The continuous acquisition method is based on the data 
streaming mode of the data acquisition card. It continuously collects 
data at a sampling frequency of 200 MHz from the first trigger signal of 
the excitation light until predefined data volume is reached. The data 
utilization of this method is directly proportional to the repetition fre-
quency of the excitation light. Therefore, a laser with a MHz repetition 
frequency can reduce the sampling time and enhance the imaging speed 
[see Supplementary data 3]. 

However, due to the continuous acquisition method resulting in 
larger data volume compared to existing trigger-based acquisition 
method [see Supplementary data 3], central processing unit (CPU)- 
based serial processing image reconstruction method is unable to meet 
the requirements of real-time imaging. Consequently, we proposed an 
image reconstruction method based on GPU parallel processing to 
reduce image reconstruction time and achieve real-time imaging with 
the PARS system [see Supplementary data 3]. 

Fig. 2(a) depicts the processing workflow of the CPU-based serial 
processing image reconstruction method under continuous acquisition. 
The method exhibits a time complexity of O(n), as each step relies on the 
results from the previous step as input parameters, and the computations 

within each step are limited to single or a few threads. Addressing this 
limitation, the GPU-based parallel processing image reconstruction 
method employs compute unified device architecture (CUDA) to paral-
lelize computations at each step, distributing the workload across mil-
lions of threads. While this optimization method significantly enhances 
computational efficiency and achieves a time complexity of O(1), the 
host-to-device memory transfer introduces additional memory copy 
time [35]. To overcome this, we implemented pinned memory tech-
nology and asynchronous GPU data transmission to ensure GPU memory 
copying occurs within the data transmission window of the acquisition 
card, thereby mitigating additional time consumption. 

Furthermore, we present the strategy for solving the memory 
contention problem in parallel processing image reconstruction method 
by employing reduction algorithms and atomic operations, as shown in 
Fig. 2(b). The purpose of reduction algorithms is to find extreme values. 
The specific process involves dividing the data sent to the GPU memory 
into smaller data blocks, where each thread calculates the maximum and 
minimum values for its corresponding data block. Finally, these 
maximum and minimum values from all data blocks are consolidated on 
the CPU. Meanwhile, as the smallest operational unit, atomic operations 
of CUDA prohibit other parallel threads from performing read and write 
operations on the object variable during execution [36]. As a result, 
atomic operations effectively block threads that encounter memory 
contention, thereby achieving mutual exclusion protection for shared 
variables among threads and becoming the safest method for resolving 
memory contention, as shown in Fig. 2(b). 

However, when a protected shared variable needs to be accessed by 
each thread, each thread becomes blocked, resulting in parallel threads 
executing serially, thus leading to significant time consumption. Based 
on this mechanism, for efficiently protecting various shared variables, 
we developed a multi-atomic operation algorithm by using an array as 
the object of atomic operations. In this scenario, each element in the 
array serves solely as a lock for managing thread blocking and execution 
states, without participating in computation. In the implementation of 
the algorithm, the number of elements in the array is equal to the 
number of pixels in the PARS image. When memory contention occurs in 
the computation of a pixel, only the lock corresponding to that pixel 
relies on the atomic operation to block threads in competition, while 
parallel threads computing other pixels remain unblocked, as shown in 
Fig. 2(b). 

We utilized CUDA (v11.3) for programming and implemented the 
GPU-based parallel processing image reconstruction method on an i7- 

Fig. 2. The process of PARS image reconstruction. (a) The CPU-based serial processing image reconstruction method. (b) The GPU-based parallel processing image 
reconstruction method. 
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8700 CPU and a single NVIDIA GeForce RTX 2080Ti GPU. Furthermore, 
this method, as the real-time imaging method for the PARS system, has 
been integrated into the PARS Video Mode Studio software, which is 
used for system control and configuration. This software is programmed 
in QT (v5.14.2) with C++ and incorporates features such as the user 
interface, imaging, motorized-stage control, scanning-mirror control, 
file saving, and more. 

3.3. Precision in-line recognition method for microscopic defects based on 
YOLOv7-SPD 

To enhance the in-line recognition accuracy of microscopic defects in 
the flip-chip sample by PARS technology, we developed an IYOLOv7- 
SPD convolutional neural network based on YOLOv7, and introduced 
a convolutional neural network (CNN) building block called space to 
depth (SPD). The SPD block effectively addresses the common issue in 
CNN architectures, where strided convolutions or pooling layers lead to 
the loss of fine-grained information and learning of less effective feature 
representations. This enhancement enables the network to more effec-
tively extract and preserve feature information related to microscopic 
defects, thereby boosting its capability for microscopic defect 
recognition. 

The building block consists of a space-to-depth layer and a non- 
strided convolution layer. Consider any input feature map X of size 
S × S × C, downsampling is performed using a factor of scale. Fig. 3(a) 
provides an example when scale = 2, where we obtain four sub-maps 
each of which is of size S/2, S/2, C and downsamples X by a factor of 
2. These sub-maps are then concatenated along the channel dimension 
to obtain a feature map X′. The spatial dimensions of X′ are reduced by a 
factor of scale, while the channel dimension is increased by a factor of 
scale2, preserving all the information along the channel dimension 
without loss. Following the space-to-depth feature transformation layer, 
a non-strided (stride = 1) convolution layer with C′ filters is added to 
transform the feature map X’ (S/scale, S/scale, scale2C) into the feature 
map X′’ (S/scale, S/scale, C′). The non-strided convolution aims to retain 
all discriminative feature information as much as possible. 

Fig. 3(b) illustrates the structure of the IYOLOv7-SPD defect recog-
nition method. We obtained IYOLOv7-SPD by replacing the strided-2 
convolution layers with SPD block in YOLOv7. It retains the overall 
network architecture of YOLOv7 and is a typical one-stage object 
detection model [37]. The model consists of a backbone for feature 
extraction and a detection head for predicting the class and bounding 
box of each object. In between, a neck of extra layers is added to 
combine features at multiple scales to produce semantically strong 
features for detecting objects of different sizes. The spatial pyramid 
pooling cross stage partial connection (SPPCSPC) block in the backbone 
incorporates four different-scale max-pooling layers, enhancing the 

receptive field to adapt to objects of varying scales. The concat block 
concatenates outputs from different layers, the upsample (Up) block 
performs upsampling using nearest-neighbor interpolation, the max 
pooling (MP) block achieves downsampling through convolution and 
max-pooling layers, and the detect block contains different-sized 
detection heads. 

Additionally, we implemented our network using the Pytorch 
(v1.12.0) library and conducted all experiments on a single NVIDIA 
GeForce RTX 2080Ti. On the basis of the training set, we determined our 
bounding box priors using k-means++ clustering [38]. The Adam 
optimizer [39] was used to optimize our network with an initial learning 
rate of 0.0001, a batch size of 2 and 200 epochs. The loss function of our 
network consisted of classification loss, confidence loss, and bounding 
box loss. Binary cross-entropy loss was used to calculate classification 
loss and confidence loss. CIoU loss [40] was adopted to calculate 
bounding box loss. 

3.4. Sample preparation 

To demonstrate the in-line non-destructive defect monitoring capa-
bilities of our PARS system, a flip-chip sample was fabricated by 
depositing a 200 nm-thick layer of aluminum onto a silicon substrate. 
The sample preparation processes involved spin coating, dehydration, 
photolithography, development, evaporation, and lift-off, as shown in 
Fig. S4. To simulate internal defects within the flip-chip, such as 
delamination [33,34], we employed ultrasonic cleaning machine 
(SK2200LHC, Shanghai KeDao Ultrasonic Instrument Co., Ltd.) to 
perform ultrasonic cleaning on the prepared flip-chip samples to induce 
partial peeling of the metallic structures, as shown in Fig. S6. The ul-
trasonic frequency and energy used were 53 kHz and 90 W, respectively. 
Additionally, cracks were introduced in the silicon regions without 
metal coating to mimic possible cracks in the flip-chip substrate [34], as 
shown in Fig. S6. Throughout the entire experimental process, the flip 
chip sample was reversed and placed on the motorized stages, ensuring 
that the metal structures and the cracks were consistently positioned 
beneath the silicon wafer, as illustrated in the insert of Fig. 1(b). This 
implies that all defects were invisible under brightfield microscopy. The 
experimental process simulated the scenario of in-line monitoring in-
ternal defects within flip chip samples. 

4. Results 

4.1. Real-time imaging of the flip-chip sample based on PARS technology 

To demonstrate the reliability and real-time imaging capability of 
the proposed imaging method of PARS, we conducted optical- 
mechanical joint scanning imaging experiments on the flip-chip 

Fig. 3. Overview of IYOLOv7-SPD. (a) Illustration of SPD block when scale = 2. (b) Detailed structure of IYOLOv7-SPD. Blue blocks represent convolution layers. 
Green blocks represent Extended efficient layer aggregation networks. 
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sample. During the experiment, the data acquisition card operated in 
data streaming mode and continuously collected data [see Supplemen-
tary data 3] at a sampling frequency of 200 MHz, with a configured 
sampling depth of 8 × 107. In the optical-mechanical joint scanning 
imaging mode, the scanning frequencies of the dual-axis galvanometer 
mirrors were set at 2.5 Hz and 800 Hz, respectively, and remained 
constant throughout all experiments, yielding a small FOV of 
400 × 400 μm2. The motorized stages scanned sequentially in the x and 
y directions at a speed of 1.5 mm/s, with a single-step movement of 
320 μm [see Supplementary data 2]. This resulted in a total of 4 × 2 
small FOVs from the galvanometer scanning, with the entire process 
completed in 8 seconds. 

Fig. 4(a) compares the time consumption of each workflow when the 
PARS system uses the continuous acquisition combined with CPU-based 
serial processing image reconstruction method and the PARS real-time 
imaging method. In the PARS real-time imaging method, the overall 
workflow includes the transmission phase, motorized stages moving 
phase, memory copy phase, and reconstruction phase. After the PARS 
system is launched, it enters the transmission phase. In this phase, the 
time consumption for both methods is 400 ms, as the transmission time 
is determined by the set sampling quantity of the acquisition card and is 
independent of the method used. Subsequently, during the movement of 
the motorized stages, the PARS system completes image reconstruction. 
The time for the motorized stages movement is not affected by the 
method and is approximately 600 ms. 

In the image reconstruction phase, the average consumption time for 
the CPU-based serial processing image reconstruction method is 
1134 ms, which is greater than the time for the motorized stages 
movement. In contrast, the average consumption time for the GPU-based 
parallel processing image reconstruction method is only 38 ms, which is 
30 times shorter than the CPU-based serial processing image 

reconstruction method. This ensures that image reconstruction in a GPU 
environment can be completed during the movement of the motorized 
stage. The memory copy phase is inevitable when using the GPU-based 
parallel processing image reconstruction method. However, thanks to 
pinned memory technology and asynchronous data transmission tech-
nology, the memory copy phase only takes 125 ms and can run 
concurrently with the transmission phase. Therefore, the memory copy 
phase does not impact the imaging time of the PARS system. 

Fig. 4(b) displays the optical-mechanical joint scanning results (2 
rows × 4 columns) of the flip-chip sample obtained using the PARS real- 
time imaging method, which is based on continuous acquisition com-
bined with parallel processing image reconstruction. While the imaging 
results are consistent with those obtained using the continuous acqui-
sition combined with CPU-based serial processing image reconstruction 
method [see Supplementary data 5], the proposed method demonstrates 
an average reconstruction time that is approximately 30 times faster. 
The reconstruction times of both methods during optical-mechanical 
joint scanning are summarized in Table 1. 

This speed improvement allows the optical-mechanical joint scan-
ning mode to no longer be limited by the image reconstruction time, 
thereby contributing to the achievement of real-time imaging for flip- 
chip samples. Due to the smaller step size of the motorized stages dur-
ing optical-mechanical joint scanning than the FOV of the image, adja-
cent images have a 20 % overlap region. The imaging results are the 
same in the overlap regions of adjacent images, which confirms the 
continuity and reliability of PARS real-time imaging method. The 
experimental results accurately display defects of different sizes, re-
gions, and shapes, confirming the accuracy of real-time imaging in the 
PARS system. Additionally, Video1 in the Supplementary data demon-
strates the real-time imaging process of this experiment. The results 
indicate that the PARS real-time imaging method based on continuous 

Fig. 4. The real-time imaging results for the flip-chip sample. (a) Timeline chart of time consumption for various components in the PARS system (b) PARS optical- 
mechanical joint scanning imaging results based on the proposed real-time imaging method. All images are presented at the same scale bar: 100 μm. 
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acquisition combined with parallel processing image reconstruction is 
promising for the real-time imaging of flip-chip structures during the 
fabrication process. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.pacs.2024.100614. 

4.2. In-line accurate defect recognition of flip chip samples based on 
IYOLOV7-SPD 

To validate the accurate and fast defect recognition capabilities of 
the proposed YOLOv7-SPD, we established the dataset of defects in flip- 
chip samples. Specifically, we captured 4075 defect images using the 
constructed PARS system. Subsequently, we manually annotated the 
defect categories and positional information in the images using the 
Labellmg tool, thus creating the defect dataset. According to the object 
definition method based on absolute scale [41–43], the dataset com-
prises 27,726 microscopic defects, 7386 medium defects, and 1078 large 
defects. Here, the term " microscopic defects" is defined as delamination 
defects with a pixel area smaller than 32 × 32 pixel2, corresponding to 
an actual area of less than 48 × 48 μm2 when converted [see Supple-
mentary data 6]. To alleviate the overfitting problem and improve the 
generalization ability of our network, we employed data augmentation 
techniques such as affine transformation, horizontal flipping, color jit-
tering and pixel multiplication [44]. The augmented dataset included 
20,375 images and was randomly split into a train set and a test set in a 
9:1 ratio. 

To validate the superior recognition capability of our proposed 
IYOLOv7-SPD for detecting microscopic defects, we compared it with 
classical deep learning-based object detection methods including Faster 
RCNN [45], YOLOv3 [46], YOLOX [47], and YOLOv7 [48]. We trained 
these methods on the same training dataset and computed their recog-
nition accuracy on an identical test dataset, as shown in Table 2. 

Table 2 introduces the mean average precision (mAP) as a compre-
hensive metric to assess the accuracy of the recognition methods [49]. 
Through this metric, we compared the recognition accuracy of 
IYOLOv7-SPD with other methods specifically on microscopic defects of 
delamination. For microscopic defects in the flip-chip samples, 
IYOLOv7-SPD achieved mAP of 56.8 %, which is the highest recognition 
accuracy among the five methods compared, demonstrating the superior 
capability of IYOLOv7-SPD in recognizing microscopic defects accu-
rately. Moreover, with a single recognition time of 12 ms, IYOLOv7-SPD 
ensures precise in-line recognition of microscopic defects during 
real-time imaging. 

Furthermore, to demonstrate the in-line accurate defect recognition 
capability of IYOLOv7-SPD for microscopic defects more intuitively, we 
employed various recognition methods to identify defects from the 
large-scale scanning image of the flip-chip sample. The image was ob-
tained by setting the scanning range of the galvanometer mirrors to 
600 × 600 μm2 with a scanning step size of 3.2 μm. Fig. 5(b–e,g) 
compare the microscopic defect recognition results obtained by 

IYOLOv7-SPD with those of other recognition methods using the large- 
scale scanning image. The recognition results confirm that the confi-
dence level of IYOLOv7-SPD in recognizing microscopic defects is higher 
than that of other recognition methods and can recognize microscopic 
defects missed by other methods. Furthermore, compared to the signal 
gating methods, the proposed method can effectively differentiate be-
tween delamination and substrate structures in Fig. 5(f). 

To validate the reliability of the results achieved by IYOLOv7-SPD in 
large-scale recognition, we performed a small-scale scanning using its 
recognition outcomes. This small-scale scanning features a finer step size 
and enhanced lateral resolution [see Supplementary data 9]. Specif-
ically, by controlling motorized stages to move to the locations of 
different defects identified by IYOLOv7-SPD, we performed small-scale 
scanning over an area of 240 × 240 μm2 with a scanning step size of 
1.3 μm and manually segmented the regions with defects in the images, 
as shown in Fig. 5(a). It can be observed that the defect imaging results 
from the small-scale scanning match those of the large-scale recognition. 
Furthermore, upon completion of the experiment, we acquired bright-
field microscopy image of the corresponding sample regions for further 
validation, as depicted in Fig. 5(f). 

Based on the aforementioned results, it is evident that IYOLOv7-SPD 
possesses the capability to recognize microscopic defects in flip-chip 
samples and demonstrates a higher precision in microscopic defect 
recognition compared to other methods. Additionally, this method also 
demonstrates higher recognition accuracy for medium and large-sized 
defects compared to other deep learning approaches [see Supplemen-
tary data 7]. On the other hand, beyond the delamination in the chip 
samples, our proposed system also exhibits the capability for in-line non- 
destructive defect monitoring of substrate cracks in flip-chip samples 
[see Supplementary data 8]. These findings underscore the potential and 
versatility of our proposed PARS in-line defect monitoring system in 
enhancing quality control and defect monitoring processes in flip-chip 
manufacturing. 

5. Discussion and conclusion 

In this study, we proposed a PARS-based in-line non-destructive 
defect monitoring system designed for real-time imaging of flip chips 
during the fabrication process and for accurate defect recognition of 
their internal defects. To meet the requirements of real-time imaging 
and accurate recognition of microscopic defects for in-line non- 
destructive defect monitoring, we proposed real-time imaging and 
microscopic defect recognition methods. These methods were applied to 
achieve real-time imaging of the fabricated flip-chip samples and in-line 
precise recognition of microscopic defects. The results demonstrate that 
our proposed PARS system has the potential for in-line non-destructive 
and precise defect monitoring of flip-chips during the fabrication pro-
cess, showcasing its unique advantages compared to other techniques, as 
presented in Table 3. 

To achieve real-time imaging, we proposed real-time imaging 
method of PARS based on continuous acquisition combined with parallel 
processing image reconstruction that ensures the imaging process does 
not increase the optical-mechanical scanning time, while maintaining 
the same micrometer-level lateral resolution as the method based on 
continuous acquisition combined with serial processing. This method 
reduces the image reconstruction time from an average of approximately 
1134 ms to around 38 ms, achieving a 30-fold improvement compared 
to the CPU-based serial processing image reconstruction method under 

Table 1 
Comparison of image reconstruction times based on two imaging methods.  

Image coordinate (Raw, Column) (1, 1) (1, 2) (1, 3) (1,4) (2, 1) (2, 2) (2, 3) (2, 4) 

Reconstruction time (ms) Continuous acquisition combined with CPU-based serial 
processing  

1140  1136  1148  1127  1134  1130  1125  1131 

PARS real-time imaging  35  37  43  36  36  38  43  37  

Table 2 
Comparison of recognition accuracy of microscopic defects by different recog-
nition methods.  

Method Faster RCNN YOLOv3 YOLOX YOLOv7 IYOLOv7-SPD 

mAP 54.3 % 48.7 % 52.5 % 54.6 % 56.8 % 
Time 42 ms 28 ms 16 ms 12 ms 12 ms  
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continuous acquisition. The compatibility of PARS technology’s real- 
time imaging capability with the optical-mechanical joint scanning 
mode makes it particularly well-suited for the in-line imaging of flip 
chips during the fabrication process. 

To achieve precise recognition of microscopic defects within flip- 
chip samples during real-time imaging, we introduce the IYOLOv7- 
SPD recognition approach. This method incorporates SPD block, to 
mitigate the use of strided convolution or pooling layers, which results 
in a loss of fine-grained information and learning of less effective feature 
representations. Consequently, compared to other deep learning-based 
methods, IYOLOv7-SPD enables more accurate in-line recognition of 
microscopic defects. 

In the future, to achieve faster imaging, higher-speed motorized 
stages can be employed in conjunction with galvo-resonant scanners. 
Concurrently, the development of corresponding image compensation 
algorithms may be necessary to ensure that the signal-to-noise ratio of 
the images remains unaffected by mechanical instabilities during rapid 
scanning [see Supplemental data 10]. To achieve higher precision in 
identifying microscopic defects, the neural network structure of 
IYOLOv7-SPD can be further optimized by integrating a context 
enhancement module. Additionally, enhancing the spatial resolution of 
PARS can be achieved by incorporating a confocal optical design in the 
detection path. This would increase the pixel area occupied by micro-
scopic defects in the images, thereby reducing the difficulty in their 
accurate identification. On the other hand, the combination of PARS 
with laser ultrasound techniques [22–26] holds promise for 
non-destructive monitoring of various defect types in flip chips across 
multiple scales, such as voids and delamination between the die top and 
the encapsulates. 
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Fig. 5. Comparative experimental results of different recognition methods. (a) Small-scale precise scanning result. (b) Recognition result of YOLOv7. (c) Recognition 
result of IYOLOv7-SPD. (d) Recognition result of Faster RCNN. (e) Recognition result of YOLOX. (f) Brightfield microscopy imaging result. (g) Recognition result of 
YOLOv3. The recognition results are denoted by red rectangular boxes. The regions of small-scale precise scanning are highlighted with blue circular boxes. Defect 
areas within the small-scale precise scanning results are delineated in red. Scale bar for large-scale and brightfield images: 150 μm. Scale bar for small-scale im-
ages: 50 μm. 
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