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Background. Acute kidney injury (AKI) has long been recognized as a common and important complication of acute pancreatitis
(AP). In the study, machine learning (ML) techniques were used to establish predictive models for AKI in AP patients during
hospitalization. This is a retrospective review of prospectively collected data of AP patients admitted within one week after the
onset of abdominal pain to our department from January 2014 to January 2019. Eighty patients developed AKI after admission
(AKI group) and 254 patients did not (non-AKI group) in the hospital. With the provision of additional information such as
demographic characteristics or laboratory data, support vector machine (SVM), random forest (RF), classification and
regression tree (CART), and extreme gradient boosting (XGBoost) were used to build models of AKI prediction and compared
to the predictive performance of the classic model using logistic regression (LR). XGBoost performed best in predicting AKI
with an AUC of 91.93% among the machine learning models. The AUC of logistic regression analysis was 87.28%. Present
findings suggest that compared to the classical logistic regression model, machine learning models using features that can be

easily obtained at admission had a better performance in predicting AKI in the AP patients.

1. Introduction

Acute pancreatitis (AP) is an inflammatory abnormal condi-
tion of the exocrine pancreas, and most AP patients have
mild disease courses and obtain recovery within one week
[1]. There are about 20% of patients that will develop severe
complications such as persistent organ failure and systemic
inflammatory response syndrome (SIRS). Acute kidney
injury (AKI) has long been recognized as a common and
important complication of AP, and the incidence is as high
as 10%-42% [2, 3]. Furthermore, AP patients concomitant
with AKI suffer from a poor prognosis with a mortality of
25%-75% [4-7]. Hence, the early identification and timely
management of AKI in AP patients seem very important.

However, it is difficult to identify renal injury early depend-
ing on traditional indicators, and the main reason lies in that
when there is an increase in serum creatinine (SCr) or a
decrease in urine output, kidney damage has already
occurred unstoppably [8].

Previous studies have identified a series of risk factors for
predicting AKI, including triglyceride levels, age, male sex,
procalcitonin, hypoxemia, abdominal compartment syn-
drome, and some biomarkers [9], and developed several
AKI prediction models using classical regression methods
[10-12]. However, their predictive performance was rarely
reported regarding the area under the receiver operating
characteristic curve (AUROC), the primary measure of the
prediction model [13]. Furthermore, the classical logistic
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regression model is sensitive to the multicollinearity of inde-
pendent variables, which makes the model easy to underfit
and far from accurate. Recently, artificial intelligence applica-
tions have been gradually implemented in the medical field
by using machine learning [14-16], having excellent perfor-
mance in predicting complications compared to logistic
regression analysis. Unsupervised learning and supervised
learning are two types of machine learning used widely.
Unsupervised learning such as random forest [17] and classi-
fication trees [18] allows the model to work on its own to
discover information and mainly deals with the unlabeled
data. Supervised learning such as extreme gradient boosting
[19] learns from labeled training data and predicts outcomes
for unforeseen data. However, there are few studies using
machine learning approaches to predict acute kidney injury
in AP patients.

Therefore, in this study, we aimed to develop AKI predic-
tive models for AP patients by using different machine learn-
ing algorithms, mainly constituted of classification and
regression tree (CART), random forest (RF), support vector
machine (SVM), and extreme gradient boosting (XGBoost),
as well as comparing the their predictive performances with
those of the classical multivariable logistic regression (LR)
methods.

2. Methods

2.1. Patients. We performed a retrospective observational
study of AP patients admitted to the Center of Severe Acute
Pancreatitis (CSAP) of Jinling Hospital, Nanjing, China,
from January 2014 to January 2019. The center is a tertiary
center for acute pancreatitis located in eastern China.
Patients who met the following criteria were included: (1)
diagnosis of AP and (2) admission to our department within
one week after the disease onset. Patients who were older
than 75 or younger than 18 already developed AKI before
admission and suspected of chronic pancreatitis, pancreatic
tumors, pancreatic trauma, and pregnancy were excluded to
minimize bias. All the data were retrieved from a prospec-
tively collected electronic database with the approval of the
Acute Pancreatitis Database Management Committee.
Informed consent from individuals was waived due to the
retrospective, observational, and anonymous nature of the
current study.

2.2. Definition. AP (ICD-10, K85) was diagnosed according
to the definition in the 2012 revision of the Atlanta classifica-
tion [20]. Acute kidney injury (AKI) (ICD-10: N17) was
diagnosed and staged using the Kidney Disease: Improving
Global Outcomes (KDIGO) criteria based on serum/plasma
creatinine and urine output [8]. And the patient meeting
the diagnosis during the whole hospitalization of AP is calcu-
lated into the AKI group. Alcohol abuse (ICD-10, F10) and
smoking (Z72.0, Z86.43, and Z87.891) were identified using
relevant diagnostic codes.

2.3. Data Collection. We collected data on demographic char-
acteristics, previous medical history, physical examination,
laboratory examination, and therapeutic treatments of each
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patient. Based on previous studies, we selected 23 possible
risk factors for predicting AKI, including etiology, demo-
graphic data (age, gender, smoking, and alcohol abuse), body
mass index (BMI), hypertension, intra-abdominal pressure
(IAP), disease severity scores (APACHE II), acute respiratory
distress syndrome (ARDS), and laboratory examination
(amylase, lipase, triglyceride (TG), cholesterol, white blood
cells (WBC=*10%), c-reactive protein (CRP), interleukin-6
(IL-6), procalcitonin (PCT), total bilirubin (TBIL), alanine
aminotransferase (ALT), hemoglobin (Hb), platelet (PLT),
and prothrombin time (PT)). All of the data were available
from the hospitalized patient electronic medical record sys-
tem within 24h after admission. However, the values of
serum IL-6 levels were not complete (240 out of 334 total
patients), so we filled the lost value with the mean of the
remaining data.

2.4. Statistical Analysis. The population characteristics are
presented using medians and interquartile ranges (IQR) for
continuous variables and count and percentages for the
dichotomous variables. For continuous variables, we used
the Kolmogorov-Smirnov test to analyze the normalization
of the distributed data and used Mann-Whitney U tests to
analyze nonnormally distributed data. A p value < 0.05 was
taken as statistically significant.

Prior to developing predictive models, the data collected
were divided into 70% of the training dataset and 30% of
the test dataset. The training dataset was used for developing
predictive models using machine learning and logistic regres-
sion algorithms. The parameters of the models were contin-
uously adjusted using tenfold cross-validation to reduce the
chances of overfitting, and then, the final performance of
each model was validated and compared in the test dataset.
The area under the receiver operating characteristic curve
(AUC), sensitivity, specificity, and accuracy were adopted
as the comparative measure between different models.

The modeling and statistical analyses were performed
using Sklearn package version 0.19 (https://scikit-learn.org/
stable/) and Python programming software version 3.6
(Python Software Foundation, http://www.python.org/).

2.5. Logistic Regression Algorithms and Machine
Learning Algorithms

2.5.1. Logistic Regression (LR). The logistic regression model
is a discrete selection and generalized linear regression anal-
ysis model [21]. It has been widely used in medicine, indus-
try, and other areas. It uses the sigmoid function to map
the predicted value to a probability value on (0,1) to help
judge the result (Figure 1(a)). This model can be applied to
both continuous and categorical independent variables.

2.5.2. Classification and Regression Tree (CART). The classifi-
cation and regression tree [18] is a tree-like prediction model
(Figure 1(b)). Each nonleaf node in the tree represents a
feature value input by the model. The branch path under
the node represents the possible attributes of the feature
value. Each leaf node represents one or more samples, and
the path taken from the root node to the leaf node represents
the classification process of the sample. The decision tree
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FiGure 1: The graphic expression of different machine learning algorithms: (a) logistic regression, (b) classification and regression tree, (c)
random forest, (d) support vector machine, and (e) extreme gradient boosting.



itself has no specific requirements for the input eigenvalues
and can be used for both numerical data (including continu-
ous and discrete outcome) and logical or categorical data.
The CART algorithm uses the Gini index to select the opti-
mal feature. The Gini index represents the purity of the
model, and its value is between 0 and 1.

2.5.3. Random Forest (RF). The random forest is an inte-
grated classifier with multiple decision trees [17], which
belongs to the bagging algorithm (Figure 1(c)). There is no
dependency between the weak learners that can be generated
in parallel and fitted. The outputs of the weak learners are
combined (by mean, mode, etc.) as a model output. The ran-
dom forest is an evolved version of the bagging algorithm
which uses a CART decision tree as a weak learner.

2.5.4. Support Vector Machine (SVM). The support vector
machine [22] is a supervised learning model applied to clas-
sification and regression problems. For linearly separable
problems, the model constructs hyperplanes (sets) in a
high-dimensional or infinite-dimensional space to separate
samples; for linearly inseparable problems, the model
chooses a suitable kernel function (¢) to map the samples
to a high-dimensional space that is much higher than the
original space dimension, so that the samples are linearly
separable in the high-dimensional space (Figure 1(d)).

2.5.5. Extreme Gradient Boosting (XGBoost). The extreme
gradient boosting (XGBoost) is an eflicient system imple-
mentation of the Gradient Boosting Decision Tree (GBDT)
algorithm, which belongs to the boosting algorithm [19,
23]. (1) Weak learner 1 is trained with initial weights from
the training set, (2) the weights of the training samples are
updated according to the learning error rate, (3) the weights
of weak learner 1 are increased, (4) weak learner 2 will be
trained with new weights, and this will be iterated until the
number of weak learners reaches the specified number T,
and (5) finally, a total of weak learners are combined to
obtain the final strong learner (Figure 1(e)).

3. Results

In this study, we extracted 23 features, including 17 continu-
ous variables (Table 1) and 6 dichotomous variables (Table 2)
from 334 AP patients who were admitted within one week
after the AP onset. Among the study patients, finally, 80
patients (23.95%) developed AKI during the whole hospital-
ization among whom 13 patients suffered from AKI stage 1,
37 patients from stage 2, and 30 patients from stage 3 accord-
ing to the KIDGO criteria.

The results showed that in comparison with patients in
the non-AKI group, patients who suffered from AKI had a
higher incidence of ARDS (p < 0.001) and death (p < 0.001);
higher BMI (p =0.005), IAP (p<0.001), and APACHE II
scores (p<0.001); and higher percentages of male sex
(p=0.005) and alcohol consumption (p=0.020), together
with significantly higher serum levels of CRP (p =0.012),
PCT (p <0.001), and TBIL (p < 0.001). The serum levels of
Hb (p=0.006) and PLT (p <0.001) in the AKI group are
lower compared with those in the non-AKI group.
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3.1. Predictive Effects of Different Models. We generated five
models, including LR (logistic regression), SVM (support
vector machine), XGBoost (extreme gradient boosting), RF
(random forest), and CART (classification and regression
tree), to predict the development of AKI in AP patients after
admission. Figure 2 shows the performance of 5 different
models in predicting AKI on the test dataset in terms of
receiver operating characteristic (ROC) curves. The areas
under ROC curves (AUC) demonstrated that the XGBoost
model achieved the best predictive effects for AKI with an
AUC of 0.9193 compared with other models. Taking the LR
model as a reference, the XGBoost model and RF model out-
performed it in predicting AKI while the SVM model and
CART model failed as shown by AUC values.

Table 3 presents a set of detailed performance metrics for
the 5 models. As to all of the five metrics, the XGBoost
achieved the best performance with the highest AUC
(0.9193), the highest sensitivity (0.6190), the highest specific-
ity (0.8815), and the second-highest accuracy (0.8631). The
ranks of feature importance in each model are listed in
Table 4. As shown, APACHE II, IAP, and PCT rank the
top three features contributing to the development of the
prediction models for AKI in AP patients.

4. Discussion

Acute kidney injury (AKI) is a common complication of AP,
and its incidence is 14%-43% [2, 3, 24]. According to relevant
research reports, AKI developed by AP may be caused by the
release of a large number of inflammatory mediators and
cytokines, which lead to microcirculation disorders and tis-
sue damage [25]. At the same time, hypercoagulability and
SIRS may cause damage to renal tubules [26]. In this study,
PCT is the second most important risk factor in the XGBoost.
The clinical outcomes of AP patients complicated with AKI
are extremely poor, and the mortality reported in the previ-
ous studies is up to 40-70% [6, 24]. Hence, it should be at
the top of the priority list to identify high-risk patients and
prevent their renal function from further deterioration.

We compared the performance of four machine learning
models and the traditional logistic regression model to pre-
dict AKI in the early stage. The result showed that XGBoost
achieved the best performance in predicting AKI in terms
of the combined predictive performance and predictive sta-
bility. XGBoost is a scalable tree boosting system that is
widely used by data scientists and provides state-of-the-art
results on many problems. XGBoost helps to reduce overfit-
ting compared to gradient tree boosting by only a random
subset of descriptors in building a tree and is known as the
“regularized boosting” technique. The balance between sensi-
tivity and specificity for each of the algorithms should also be
evaluated. In particular, XGBoost had higher specificity than
sensitivity, meaning it is more prone to be correct in ruling
out AKI than detecting it. Our results demonstrated that
the XGBoost appears to be a very effective machine learning
method in terms of specificity and accuracy.

We listed the features of the highest importance in the
three best-performing models. The APACHE II score, IAP,
PCT, and lipase turned out to be the top three most
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TasBLE 1: The continuous variable characteristics of AP patients.
No. Variable code Non-AKI group (n = 254) AKI group (n = 80) p values
AKIT stage (count, %)

Stage 1 13 (16.25%)

Stage 2 37 (46.25%)

Stage 3 30 (37.50)
1 Age (year) 45.85 (37.00, 54.00) 46.86 (39.62, 51.55) 0.559
2 AMY (unit) 422.53 (77.00, 457.00) 773.33 (118.25, 840.75) 0.098
3 LPS (unit) 1132.58 (240.00, 1234.00) 1750.73 (330.25, 1442.25) 0.087
4 TG (mmol/L) 5.76 (1.00, 5.70) 7.034625 (2.30, 6.89) 0.300
5 Chol (mmol/L) 4.841 (3.08, 5.60) 4.58 (2.30, 6.89) 0.533
6 WBC (%10°/L) 12.54 (9.10, 14.80) 12.02 (8.35, 14.25) 0.412
7 CRP (mg/L) 155.54 (94.10, 213.10) 189.22 (147.35, 236.90) 0.012
8 IL-6 (pg/mL) 156.96 (44.35, 161.15) 283.66 (105.50, 174.50) 0.08
9 PCT (ug/L) 2.17 (0.21, 1.99) 13.61 (1.71, 16.98) <0.001
10 TBIL (umol/L) 24.51 (14.60, 28.70) 45.21 (18.85, 51.53) <0.001
11 ALT (U/L) 65.75 (20.00, 59.00) 62.35 (22.25, 65.50) 0.82
12 Hb (g/L) 125.39 (109.00, 141.00) 114.75 (90.00, 137.25) 0.006
13 PLT (%10°/L) 174.89 (126.00, 215.00) 128.98 (84.50, 179.75) <0.001
14 PT (s) 13.56 (12.20, 13.70) 13.59 (12.23, 14.48) 0.971
15 BMI 25.37 (23.00, 27.00) 26.60 (24.60, 29.08) 0.005
16 APACHE I 9.87 (7.00, 13.00) 18.28 (12.00, 17.00) <0.001
17 IAP (mmHg) 7.26 (5.00, 10.00) 14.11 (12.00, 17.00) <0.001

Abbreviations: AMY: serum amylase; LPS: serum lipase; TG: triglycerides; Chol: cholesterol; WBC: white cell count; CRP: c-reactive protein; IL-6: interleukin-6;
PCT: procalcitonin; TBIL: total bilirubin; ALT: alanine aminotransferase; Hb: hemoglobin; PLT: platelet; PT: prothrombin time; BMI: body mass index;
APACHE II: Acute Physiology and Chronic Health Evaluation II; IAP: intra-abdominal pressure.

TaBLE 2: The dichotomous variable characteristics and outcomes of AP patients.

No. Variable code Variable description Count Non_?’l:rlcent (%) Count AK{)ercent (%) P values
1 Gender Male 157 61.57 62 77.50 0.005
2 Female 98 38.43 18 22.50
3 Etiology Biliary 126 49.41 31 38.75 0.094
4 Hyperlipidemic 105 41.18 44 55.00 0.030
5 Alcoholic 4 1.57 2 2.50 0.585
6 Other 20 7.84 3 3.75 0.134
7 Smoking 91 35.69 36 45.00 0.145
8 Alcohol abuse 60 23.53 28 35.00 0.020
9 Diabetes 58 22.75 17 21.25 0.780
10 Hypertension 66 25.88 30 37.50 0.059
ARDS 33 12.9 55 61.10 <0.001
Death 1 0.40 16 17.8 <0.001

Abbreviations: ARDS: acute respiratory distress syndrome; Death: death during the hospitalization; AKI: acute kidney injury.

important features. The APACHE 1I score is a nonspecific
scoring system, which is related to the severity and complica-
tions of AP [27, 28]. Previous studies found that the
APACHE 1II score is an independent risk factor for AP com-
plicated with AKI [29, 30]. The median APACHE II score of
patients in the AKI group is much higher than that in the
non-AKI group (18.28 vs. 9.87, p < 0.005). IAP is the most

important feature in the XGBoost model, and previous stud-
ies showed that IAP is the independent risk factor for AKI
[31-34]. Locally in the abdomen, intra-abdominal hyperten-
sion compresses and compromises blood flow in the renal
parenchyma, vena cava, and renal vein. Increased IAP has a
multitude of effects on the kidney through a series of mecha-
nisms that result in a decrease in the glomerular filtration rate
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FIGURE 2: The receiver operating characteristic (ROC) curves of 5 different models in predicting AKI in AP patients after admission in the test
dataset. Abbreviations: XGBoost: extreme gradient boosting; RF: random forest; SVM: support vector machine; LR: logistic regression; CART:

classification and regression tree.

TaBLE 3: The detailed performance metrics for the 5 models.

LR CART  XGBoost SVM RF
AUC 0.8728  0.8033 0.9193 0.8625  0.8821
Sensitivity ~ 0.6071 0.6190 0.6190 0.5357  0.4761
Specificity ~ 0.8642  0.8333 0.8815 0.8488  0.8472
Accuracy 0.8614  0.7910 0.8631 0.8713  0.8452

Abbreviations: AUC: area under the receiver operating characteristic curve;
LR: logistic regression; XGBoost: extreme gradient boosting; SVM: support
vector machine; RF: random forest.

(GFR) with oliguria, which usually is the first clinical
evidence of kidney impairment [35, 36]. Screening and inter-
vention to decrease IAP and improve vital perfusion of the
kidney are essential to minimize the negative effects [37].
Novel machine learning techniques are relatively free of
these limitations of conventional statistical analysis and have
demonstrated improved predictive performance compared
to classical statistical methods, and machine learning has
been used to predict AKI in some disease populations (e.g.,
severely burned patients and patients receiving liver trans-
plants) and shows favorable performances [38, 39]. Com-
pared with traditionally static predictive models, deep-
learning techniques have the advantages in the ability to
automatically learn the features and relationship of the read-

TaBLE 4: The ranks of feature importance in XGBoost, RF, and LR
for predicting AKL

Rank RF XGBoost LR

1 APACHE II IAP APACHE II
2 IAP PCT IAP

3 PCT APACHE II LPS

4 CRP TBIL TBIL

5 TBIL TG PCT

Abbreviations: RF: random forest; XGBoost: extreme gradient boosting; LR:
logistic regression; APACHE II: Acute Physiology and Chronic Health
Evaluation II; IAP: intra-abdominal pressure; PCT: procalcitonin; CRP: c-
reactive protein; TBIL: total bilirubin; TG: triglycerides; LPS: serum lipase.

ily available data [40], which makes the early prediction of
AKI possible before the significant changes in classical indi-
cators, for instance, creatinine and/or urine output. Earlier
identification of renal injury with the easily obtained medical
data at admission provides a “therapeutic window” for
clinicians to take preventive measures to avoid further renal
function damage.

Previous studies showed that early detection and treat-
ment of AKI can help most patients recover renal function
and reach a better clinical outcome [41, 42]. Therefore, it is
particularly important to identify the risk factors and
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prognostic factors for acute pancreatitis with acute renal
injury in the early stage, so as to develop a predictive model
to help clinicians take preventive intervention measures and
avoid renal function damage [43]. Our study provides a pre-
dictive model with machine learning algorithms that can give
a better performance in predicting AKI of AP patients than
the classical LR algorithm. A model using machine learning
produced by our study may have a positive effect on the out-
come of the AP patients.

Our study has several limitations. Firstly, our analysis
used only a small number of cases from data derived from a
single AP treatment center. There may be some differences
in the performance of machine learning techniques when
they are applied to a sample of a different institution with a
different distribution of covariates. Secondly, the study does
not use the models produced by the last 5 years in our center,
in other centers, or in some open databases.

Compared to the classical logistic regression model,
machine learning models (XGBoost and RF) using features
that can be easily obtained at admission had a better perfor-
mance in predicting AKI in the AP patients. Predictive
models using machine learning algorithms may help clini-
cians predict AKI early and may prevent the renal function
from further injury.
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