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The present treatments for lung cancer include surgical resection, radiation, chemotherapy,
targeted therapy, and immunotherapy. Despite advances in therapies, the prognosis of
lung cancer has not been substantially improved in recent years. Chimeric antigen receptor
(CAR)-T cell immunotherapy has attracted growing interest in the treatment of various
malignancies. Despite CAR-T cell therapy emerging as a novel potential therapeutic option
with promising results in refractory and relapsed leukemia, many challenges limit its
therapeutic efficacy in solid tumors including lung cancer. In this landscape, studies have
identified several obstacles to the effective use of CAR-T cell therapy including antigen
heterogeneity, the immunosuppressive tumor microenvironment, and tumor penetration by
CAR-T cells. Here, we review CAR-T cell design; present the results of CAR-T cell therapies
in preclinical and clinical studies in lung cancer; describe existing challenges and toxicities;
and discuss strategies to improve therapeutic efficacy of CAR-T cells.
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INTRODUCTION

Lung cancer is one of the most common and deadly cancer types globally (1). Lung cancer is a highly
complex, heterogeneous disease with a poor prognosis. The poor survival rate of patients with lung
cancer (5-year survival rate: 10%–20%) is a consequence of advanced stage at presentation (2, 3).
Histologically, lung cancer is classified as non-small cell lung carcinoma (NSCLC, approximately
Abbreviations: ALK, Anaplastic lymphoma kinase; CAF, Cancer-associated fibroblasts; CAR, Chimeric antigen receptor;
CEA, Carcinoembryonic antigen; CRS, Cytokine release syndrome; EGFR, Epidermal growth factor receptor; FAP, Fibroblast
activator protein; ICANS, Immune effector cell-associated neurotoxicity syndrome; KRAS, Kirsten rat sarcoma; NFAT,
Nuclear factor of activated T-cells; NSCLC, Non-small cell lung carcinoma; PSCA, Prostate stem cell antigen; SB, Sleeping
beauty; TAA, Tumor-associated antigens; TALEN, Transcription activator-like effector nucleases; TCR, T-cell receptor; TLS,
Tumor lysis syndrome;
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85% of cases) or small cell lung carcinoma (approximately 15%
of cases). NSCLC, causing a major proportion of lung cancer-
related deaths, is classified as adenocarcinoma, squamous cell
carcinoma, or large cell carcinoma (4). Furthermore, genomic
profiling studies have uncovered driver mutations in lung cancer
that support tumor growth and proliferation. The most
frequently found driver mutations in lung cancer are Kirsten
rat sarcoma viral (KRAS) oncogene homolog and epidermal
growth factor receptor (EGFR) mutations (5).

The present main treatment strategies for lung cancer include
surgery, radiotherapy, chemotherapy, targeted therapy, and
immunotherapy (6, 7). Although lung cancer is curable when
diagnosed at an early stage, it even then remains a challenge due
to relapse, and poor survival in >70% of patients (8). Over the
past two decades, cytotoxic chemotherapies used to treat lung
cancer have evolved to platinum-based chemotherapy, cisplatin-
based combination therapies, neoadjuvant therapy, and adjuvant
therapy (9). In addition, targeted therapies have also been
developed to treat patients with lung cancer harboring EGFR
or anaplastic lymphoma kinase mutations (10). Recently,
immunotherapy has complemented this arsenal with the
discovery and targeting of immune checkpoint inhibitors such
as anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4)
and anti-programmed cell death-1 (PD-1) therapies (7). Despite
the development of various therapeutic regimens for lung cancer,
such therapies only provide durable responses and efficacy in a
subset of patients. Variable responses observed under treatment
in different tumors might be attributable to disease heterogeneity
or tumor heterogeneity across patients. Therefore, it is necessary
to explore novel therapies to improve clinical outcomes for more
patients. In this setting, next-generation immunotherapeutics,
such as immunomodulators and adoptive T-cell therapies
including classical T-cell receptor (TCR) and chimeric antigen
receptor (CAR)-T-cell therapies, bear promise for treating
cancers including lung cancer (11–13).

CAR-T cell therapy has emerged as an innovative cancer
immunotherapy for lung cancer treatment (13–16). Although
CAR-T cell therapy produced remarkable clinical responses in
hematological malignancies (17), this therapy has displayed
limited anti-tumor activity in solid tumors including lung
cancer. Despite targeting a variety of antigens and tumor types,
clinical data for CAR-T cell therapy in solid tumors are
disappointing (18). While CAR-T cell therapy has shown clinical
success in hematological malignancies, severe toxicities such as
cytokine release syndrome (CRS), neurotoxicity, on-target/off-
tumor toxicity, tumor lysis syndrome (TLS), and anaphylaxis
have also been reported in CAR-T therapy (19). Also, some
concerns must be addressed including limited efficacy of CAR-T
cell therapies in solid tumors, limited persistence, antigen escape,
CAR-T cell trafficking, tumor infi l trat ion, and the
immunosuppressive microenvironment (20, 21). Recently,
several studies proposed strategies to ameliorate efficacy of CAR-
T cell therapy and limit its toxicities (22–24). In this review, we
focus on CAR-T cell design, present existing preclinical and
clinical studies in lung cancer treatment; highlight existing
challenges and toxicities; and also discussed strategies to improve
the therapeutic efficacy of CAR-T cells in solid tumors.
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THE DESIGN AND STRUCTURE OF
CAR-T CELLS

T cells genetically engineered to carry synthetic CAR bind
specifically targeted tumor antigens and kill these targeted
tumor cells. CAR are synthetic receptors composed of an
antigen-binding domain/hinge motif, transmembrane domain,
and intracellular signaling domain. The extracellular antigen-
binding domain, composed of a single-chain variable fragment
(scFv), recognizes targeted tumor-associated antigens (TAAs)
and triggers downstream signaling. The hinge/spacer region
provides flexibility to allow the antigen-binding domain to
access the targeted antigen. The hinge/spacer region can be
adjusted to its optimal length to provide a sufficient distance
between CAR-T cells and targeted tumor cells. The
transmembrane domain facilitates the distribution of CARs to
the T cell membrane, influencing CAR expression, function, and
stability. The intracellular domain or endodomain is composed
of combinations of signaling domains such as the T-cell
activation complex transducer CD3z and several costimulatory
molecules (25) (Figures 1A, B). The design and structure of CAR
have been extensively reviewed elsewhere (26, 27).

To improve the efficacy and safety of CAR-T cell therapy,
CAR-T cells have undergone several progressive changes by
modifying the CAR structure based on its intracellular
signaling domains (Figure 1C). The first generation of CAR,
containing the antigen recognition extracellular scFv and CD3z
signaling endodomain, displayed less efficient T cell activation
and a short survival time in vivo (28–30). To improve the
persistence and efficacy of CAR-T cells, second-generation
CARs contain an additional costimulatory molecule (e.g.,
CD28, 41BB, ICOS) that enhances T cell proliferation,
prolongs T cell survival time, and improves clinical outcomes
(31–33). The design of third generation of CAR included CD3z
and two costimulatory molecules that further enhance CAR-T
cell function. The most commonly used third generation
costimulatory molecules are CD27, CD28, 41BB, ICOS, and
OX-40 (34, 35). The design of fourth-generation CAR-T cells
introduced T cells redirected for universal cytokine-mediated
killing containing nuclear factor of activated T cells. These
fourth-generation CAR-T cells can produce pro-inflammatory
cytokines (interleukin [IL]-12, IL-13, and GM-CSF) upon
activation and enhance the penetration ability of T cells to
overcome the immunosuppressive effect of the hostile tumor
microenvironment (TME) (36). The fifth generation of CAR
includes an IL-2Rb fragment that induces JAK production and
activates signal transducer and activator of transcription 3/5 (37).
CAR-T CELL THERAPY APPLICATIONS
AND TUMOR-ASSOCIATED TARGET
ANTIGENS IN LUNG CANCER

CAR-T cell therapy is an individualized cell-based therapy that
involves the modification of a patient’s own T cells to express
CAR. The generation of CAR-T cells involves a complex
June 2022 | Volume 13 | Article 903562
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engineering process featuring several steps starting with the
collection of T cells from the patients, engineering cells to express
tumor-specific antigen-targeted CAR on their surface, CAR-T cell
expansion, and purification, and the infusion of CAR-T cells back
into the patient with therapeutic intention (Figure 2).

CAR-T cell adaptive cancer immunotherapy has emerged as a
promising strategy for the treatment of solid tumors including
lung cancer. Synthetic CAR-T cells are independent of major
histocompatibility (MHC) complex targeted for TAAs on cancer
cells to establish tumor immunity. Similarly, for successful CAR-
T therapy in solid tumors, it is important to identify specific
TAAs that are highly and selectively expressed in solid tumors
but weakly expressed or absent in normal tissue. Several TAAs
have been proposed in CAR-T cell research in solid tumors
including lung cancer. TAAs currently being investigated in
clinical trials of CAR-T cells include carcinoembryonic antigen
(CEA), EGFR, human epidermal growth factor receptor 2
(HER2), mesothelin (MSLN), prostate stem cell antigen
(PSCA), mucin 1 (MUC1), tyrosine kinase-like orphan
receptor 1 (ROR1), programmed death ligand 1 (PD-L1), and
CD80/CD86 (Table 1).
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CEA is a fetal antigen that is expressed during fetal
development but is minimally expressed or absent in adult
tissues. CEA is overexpressed in various cancers, including
70% of NSCLC (38). Therefore, CEA has proven useful as a
tumor marker and for monitoring the response to CEA-targeted
CAR-T therapy. Furthermore, preclinical studies also showed the
relevance of serum CEA concentrations as an indicator of brain
metastases in patients with advanced NSCLC (39). This led to the
establishment of CEA-targeted CAR-T cells in phase I clinical
trials to evaluate the efficacy, safety, and maximum tolerated dose
of this therapy in various solid tumors including lung cancer
(NCT02349724, NCT04348643). In addition, in vivo established
human lung cancer model in immune-compromised mice
showed treatment with inducible IL8 (iIL8) and CEA-targeted
CAR-T cells completely eliminated advanced stage of lung
cancer (40).

EGFR, expressed in both epithelial cells and epithelium-
derived malignancies, is a transmembrane glycoprotein
belonging to the tyrosine kinase receptor family. In addition to
EGFR overexpression in solid tumors including NSCLC, it has
also been reported that more than 60% of EGFR mutations are
A B

C

FIGURE 1 | Schematic representation of basic principle of CAR structure (A), mechanism of CAR engineered T-cells action on tumor cells (B), and progressive
evolution of CAR-T cells with modifications from 1st generation to 5th generation (C) (Figure generated using Bio Render).
June 2022 | Volume 13 | Article 903562
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TABLE 1 | Potential TAAs in CAR-T cell therapy clinical tails for lung cancer (ClinicalTrials.gov).

Type of CAR-T Malignancies NCT number Phase Location Status

CEA-Targeted CAR-T Lung, Colorectal, Gastric, Breast, Pancreatic NCT02349724 I China Unknown
CEA-Targeted CAR-T Lung, Colorectal, Liver, Pancreatic, Gastric, Breast NCT04348643 I/II China Recruiting
CXCR5 modified EGFR-targeted CAR-T NSCLC NCT04153799 I China Recruiting
CXCR5 modified EGFR-targeted CAR-T NSCLC NCT05060796 I China Recruiting
EGFR-targeted CAR-T Advanced solid tumors NCT01869166 I/II China Unknown
HER2-targeted CAR-T Breast, Gastric, NSCLC NCT01935843 I/II China Unknown
HER2-targeted CAR-T Breast, Ovarian, Lung, Gastric, Colorectal, Glioma, Pancreatic NCT02713984 I/II China Withdrawn
MSLN-targeted CAR-T Cervical, Pancreatic, Ovarian, Mesothelioma, Lung cancer NCT01583686 I/II United

States
Terminated

PD1-MSLN-targeted CAR-T Advanced solid tumors, Lung Cancer, Mesothelioma NCT04489862 I China Recruiting
Autologous CAR-T cells transfected with anti
MSLN mRNA

Mesothelioma NCT01355965 I United
States

Completed

TnMUC-1-targeted CAR-T NSCLC, Ovarian cancer, Fallopian tube cancer, Pancreatic ductal
adenocarcinoma, multiple myeloma

NCT04025216 I United
States

Recruiting

MUC-1-targeted CAR-T Lung neoplasm malignant, NSCLC NCT03525782 I/II China Unknown
MUC-1-targeted CAR-T Hepatocellular carcinoma, NSCLC, Pancreatic carcinoma, breast

carcinoma, Ovarian cancer, NSCLC, Colorectal cancer
NCT02587689 I/II China Unknown

P-MUC1C-ALLO1-targeted CAR-T Pancreatic cancer, Renal cell carcinoma, Nasopharyngeal
carcinoma, Head and neck squamus cell carcinoma, Gastric
cancer

NCT05239143 I United
States

Not yet
recruiting

PSCA/MUC1/TGFb/HER2/Mesothelin/Lewis-Y/
GPC3/AXL/EGFR/B7-H3/Claudin 18.2 -CAR-T cell

Advanced lung cancer NCT03198052 I China Recruiting

ROR1-targeted CAR-T Hematopoietic and Lymphoid Cell Neoplasm, Breast carcinoma,
Advanced NSCLC, Chronic lymphocytic leukemia

NCT02706392 I United
States

Recruiting

PD-L1-targeted CAR-T Advanced Lung cancer NCT03330834 I China Terminated
PD-L1-CD80/CD86-targeted CAR-T NSCLC NCT03060343 I China Unknown
MAGE-A1, MAGE-A4, MucI, GD2, MSLN-targeted
CAR-T

Lung cancer NCT03356808 I/II China Unknown

AMT-253 targeted CAR-T NSCLC NCT05117138 II China Not yet
recruiting

CD276 (B7-H3)-targeted CAR-T Osteosarcoma, Neuroblastoma, Gastric cancer, Lung cancer NCT04864821 I China Not yet
recruiting

CD276 (B7-H3)-targeted CAR-T Malignant melanoma, Lung cancer, Colorectal cancer NCT05190185 I China Recruiting
GPC3-TGF-b targeted CAR-T Hepatocellular, Squamous cell carcinoma NCT03198546 I China Recruiting
Frontiers in Immunology | www.frontiersin.org
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associated in NSCLC patients (41). Therefore, EGFR has become
a possible therapeutic target in CAR-T cell therapy for NSCLC.
In vitro studies revealed that EGFR-targeted CAR-T cells exhibit
specific cytolytic activity and produce high levels of cytokine (IL-
2, IL-4, IL-10, TNF-a, and interferon-g [IFN-g]) against EGFR-
positive tumor cells (42). There are two ongoing phase I clinical
trials in lung cancer of C-X-C chemokine receptor type 5
modified EGFR-targeted CAR-T cells (NCT04153799,
NCT05060796). Furthermore, phase I/II clinical studies in
patients with advanced NSCLC revealed no severe toxicity after
3–5 days of EGFR-targeted CAR-T cel l per fus ion
(NCT01869166). These studies indicate the promise of EGFR-
targeted CAR-T cells in treating NSCLC.

HER2, a member of the tyrosine kinase erythroblastic
leukemia viral oncogene homolog (ERBB) family, is also a
potential CAR target antigen in lung cancer (43). Studies using
an in vivo A549 NSCLC xenograft model and in vitroNSCLC cell
lines (A549 and H1650) revealed anti-tumor effects of HER2-
targeted CAR-T cells, including decreased tumor growth but not
complete tumor elimination (44, 45). In addition, two phase I/II
clinical studies of HER2-targeted CAR-T cells in treating NSCLC
have been launched (NCT01935843, NCT02713984). However,
clinical data have not yet been reported for HER2-targeted CAR-
T cell therapy in NSCLC.

MSLN, a cell surfaced glycoprotein, is overexpressed in the
majority of cancer types including lung cancer, mesothelioma,
pancreatic cancer, and ovarian cancer (46, 47). High expression
of MSLN occurs in approximately 69% of lung adenocarcinomas,
and it carries an increased risk of recurrence with reduced overall
survival in NSCLC (48, 49); therefore, it could be a potential
target in CAR-T cell therapy. This prompted the development of
MSLN-targeted CAR-T cells, and research using in vivo
subcutaneous mouse lung cancer models and ex vivo models
revealed a slower tumor growth rate and inhibitory effects on cell
proliferation (46, 50). However, phase I/II clinical trials of
MSLN-targeted CAR-T cells in MSLN-positive metastatic lung
cancer were terminated because of poor accrual (NCT01583686).
Furthermore, the intravenous application of mRNA-engineered
T-cells expressing MSLN-targeted CARs did not exert effects on
metastatic tumors in patients with NSCLC (NCT01355965).

MUC1 is another potential candidate that is aberrantly
overexpressed in NSCLC and other cancer types (51). MUC1 is
an abnormally glycosylated extracellular transmembrane
glycoprotein that is correlated with poor survival and tumor
progression (52). Ongoing phase I clinical trial studies are
examining Tn glycoform of MUC1-targeted CAR-T cells for
the treatment in MUC-1 positive advanced cancers, including
NSCLC (NCT04025216). Additionally, phase I/II clinical studies
in various solid tumors including lung cancer using MUC-1–
targeted CAR-T cells have been launched (NCT03525782,
NCT02587689). Meanwhile, an early stage clinical trial is using
P-MUC1-ALLO1–targeted CAR-T cells in solid tumors
including lung cancer is ongoing (NCT05239143). In contrast,
studies using MUC-1–targeted CAR-T cells in patient xenograft
model did not reveal significant suppression of NSCLC tumor
growth (51).
Frontiers in Immunology | www.frontiersin.org 5
PSCA is a glycophosphatidylinositol-anchored cell surface
protein that is aberrantly overexpressed in NSCLC (51). Using in
vivo PDX subcutaneous mouse models and in vitro models, the
combination of CAR-T cells targeting MUC-1 and PSCA
substantially inhibited tumor growth and PSCA- and MUC-1–
expressing NSCLC cell proliferation (51). Meanwhile, an
ongoing phase I study is testing safety, efficacy, and tolerance
of a combination of CAR-T cells targeting MUC-1 and PSCA in
lung cancer (NCT03198052).

ROR1, a tyrosine kinase-like orphan receptor, is highly
expressed in NSCLC, breast cancer, and other solid tumors
(53, 54). Because of the toxicity of ROR1-targeted CAR-T cells
attributable to ROR1 expression in normal tissues, CAR-T cells
have been engineered with synthetic Notch receptors EpCAM
and B7-H3 to improve selectivity, specificity, and tumor
regression in ROR1-expressing tumor cells with less toxicity
(55). A phase I clinical study was designed to assess the safety
and anti-tumor effects of ROR1-targeted CAR-T cells in ROR-
positive NSCLC (NCT02706392). In addition, animal models
examining ROR1-targeted CAR-T cells revealed effective
elimination of ROR1-positive NSCLC cells (53).

Treatments targeting the PD-1-PD-L1 complex, which blocks
the cytotoxic T-cell activity, have made substantial progress in
NSCLC and other cancer types (56, 57). In vitro and in vivo
studies using PD-L1–targeted CAR-T cells revealed cytotoxic
effects and tumor growth inhibition in NSCLC cells (58, 59).
However, phase-1 clinical trials of PD-L1 targeted CAR-T cells in
advanced lung cancer patients were terminated because of
serious adverse effects (NCT03330834). Also, another phase I
clinical trial has been ongoing with PD-L1-MSLN targeted CAR-
T cells to determine safety and efficacy in PD-L1–positive
NSCLC patients (NCT04489862).

The expression of CD80/CD86, costimulatory molecules of
the immune system, has been detected in NSCLC (60). CD80 and
CD86 bind to CTLA-4 and downregulate T-cell function,
making them preferred targets for immune intervention (61).
Phase I clinical trial study is ongoing to assess safety and
tolerance of PD-L1 and CD80/CD86 targeting CAR-T cells in
the treatment of recurrent or refractory NSCLC patients
(NCT03060343). In addition, CD80/CD86-targeted CAR-T cell
treatment controlled tumors including NSCLC tumors by
reversing inhibitory CTLA-4–CD80/CD86 signals (62).

Fibroblast activator protein (FAP), highly expressed in
cancer-associated fibroblasts (CAFs), can modulate the tumor
microenvironment by ECM remodeling. FAP overexpression on
CAFs is associated with poor prognosis in many solid tumors
including lung cancer. Targeting FAP is also being evaluated for
CAR-T cell therapy in NSCLC. In vitro studies in A549 cells
using FAP targeted CAR-T cells showed significant reduction of
tumor growth (63, 64). Furthermore, mouse model studies using
FAP-targeted CAR-T cells showed 35-50% reduction of tumor
growth after treatment (63, 64).

Preclinical CAR-T cell therapy studies in lung cancer by
targeting several potential targets, like erythropoietin-
producing hepatocellular carcinoma A2 (EphA2), lung-specific
X protein (LUNX), variant domain 6 of CD44 gene (CD44V6),
June 2022 | Volume 13 | Article 903562
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melanoma-associated antigen (MAGE)-A1, exhibited significant
suppression of tumor growth (65–68). Furthermore, potential
targets like MAGE-A1 (NCT03198052 and NCT03356808),
AMT-253 (NCT05117138), CD276 [(B7-H3): NCT04864821,
NCT05190185), and GPC3-transforming growth factor beta
(TGF-b; NCT03198546), are under evaluation for CAR-T cell
therapy application in NSCLC in clinical trials.
CURRENT CHALLENGES AND TOXICITIES
IN CAR-T CELL THERAPY

Although there has been continuous improvement of CAR-T cell
therapies and their great promise in the treatment of lung cancer
and other solid tumors has been revealed, many challenges and
hurdles exist. T cell intrinsic as well as tumor-driven mechanisms
and treatment-related toxicities in CAR-T cell limit efficacy and
safety in solid tumors including lung cancer.

Challenges in Applying CAR-T Cell
Therapy in Lung Cancer
Following administration, CAR-T cells encounter considerable
challenges in treating lung cancer, such as tumor antigen escape,
TME heterogeneity, immune suppression, CAR-T cell trafficking
and infiltration into the tumor, and CAR-T cell exhaustion
(Figure 3). In this section, we further elaborated explaining
main current challenges in CAR-T cell therapies in lung cancer
and other solid tumors.

The challenges associated with CAR-T cell therapy in solid
tumors such as lung cancer include tumor antigen escape and the
emergence of multiple resistance mechanisms. Although CAR-T
cell therapy can produce high initial response rate in some
patients or diseases by overcoming HLA restriction and MHC
I downregulation, many patients subsequently experience disease
relapse because of antigen escape by cancer cells, resulting in the
partial or complete loss of target antigen expression. CD19-
targeted CAR-T cell therapy in ALL patients and BMCA-
targeted CAR-T cell treatment in patients with multiple
myeloma resulted in disease recurrence with the development
Frontiers in Immunology | www.frontiersin.org 6
of resistance and reduced target antigen expression in cancer
cells after treatment (69, 70). Similarly, treatment with IL-
13Ra2–targeted CAR-T cells in glioblastoma resulted in relapse
because of reduced IL-13Ra2 expression in tumors (71).
Therefore, it is important to optimize target antigen selection
to prevent antigen escape mechanisms, thereby improving anti-
tumoral effects of CAR-T cells and preventing disease relapse.

Another significant limiting factor in CAR-T cell therapy in
solid tumors including lung cancer is tumor heterogeneity.
Overall, tumor heterogeneity is a major factor in cancer
treatment efficacy, resistance, and failure (71, 72). Spatial
distribution studies in patients with NSCLC revealed high
spatial heterogeneity of the intratumoral microenvironment in
lung tumors for immune and stromal cells and their impact on
survival in lung cancer (73). For example, the heterogeneity of PD-
L1 expression in the TME influences the prognosis of lung cancer
and significantly affects immunotherapy outcomes (74). It is
important to optimize the selection of tumor-specific antigens
that are specifically expressed in tumor cells to increase anti-tumor
activity and safety of CAR-T cells (75). However, it is highly
challenging to identify specific target antigens that are expressed
homogenously and stably on tumor cells but not healthy cells.

Similarly, as other solid tumors, CAR-T cells in lung cancer
suffer the immunosuppressive effect of the TME, which hinders
their effector function and impedes clinical efficacy of CAR-T
cells (75, 76).

Many infiltrating cell types contribute to an immunosuppressive
TME, including myeloid-derived suppressor cells, CAFs, tumor-
associated macrophages, and regulatory T cells, which secrete
factors such as TGF-b, IL-10, ARG-1, inducible nitric oxide
synthase (iNOS), COX2, PGE2, FAP, and PD-L1 (77, 78). These
factors regulate metabolism, cytokine networks, and immune
checkpoints in the TME and generate an immunosuppressive
microenvironment, thereby leading to reduction or loss of CAR-T
cell function.

Unlike observations in hematological malignancies, hurdles
including effective trafficking and infiltration of CAR-T cells into
the tumor site limit efficacy of CAR-T cell therapy in solid
tumors such as lung cancer. T cell infiltration into lung tumors is
FIGURE 3 | Major challenges in applying CAR-T cell therapy in lung cancer (Figure generated using Bio Render).
June 2022 | Volume 13 | Article 903562
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mainly influenced by chemokines, chemokine receptors,
adhesion molecules, the irregular and extensive leakage of the
tumor vasculature, and a hypoxic and immunosuppressive TME
(79–82). Furthermore, CAFs and extracellular matrix (ECM)
establish a physical barrier that causes therapeutic resistance and
blocks the penetration of drugs into solid tumors. In lung cancer,
the dense fibrotic environment generated by abnormally dense
collagen, ECM deposition, and CAF activation impedes immune
cell infiltration and the efficacy of immunotherapy (83, 84).
Several of these factors and physical barriers in the TME in
solid tumors including lung tumors represent the first obstacles
encountered by CAR-T cells after administration, thereby
impeding trafficking and tumor penetration.

The success of CAR-T cell therapy is also hampered by the
development of a dysfunctional state called CAR-T cell
exhaustion. CAR-T cell exhaustion is one factor limiting the
efficacy of CAR-T cell therapy in solid tumors including lung
cancer. T cell exhaustion develops in the TME by persistent
antigen stimulation, increase in expression of inhibitory
receptors, and the presence of inhibitory immune cells and
cytokines (79). In solid tumors, the NR4A transcription factor
family plays an important role in T-cell exhaustion, which limits
CAR-T cell function in solid tumors (85).

CAR-T Cell Treatment Related Toxicities
Amajor hurdle to CAR-T cell therapy is severe toxicities. The most
common toxicities following infusion of CAR-T cells are CRS,
neurologic toxicity, tumor lysis syndrome (TLS), on-target-off-
tumor effects, anaphylaxis, and hematologic toxicities (19, 86, 87)
(Figure 4). However, these toxicities are mainly based on clinical
observations in hematological malignancies, and the toxic effects
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and risks of CAR-T cell therapies in lung cancer and other solid
tumors must be carefully weighed to expand their clinical use.

CRS is the most prevalent adverse effect after CAR-T cell
therapy. Fever is the most common symptom of CRS after CAR-
T cell infusion can be accompanied by nausea, fatigue,
hypotension, and cardiac dysfunction (88). After CAR-T cell
therapy, high IL-6 levels in patient serum are strongly correlated
with CRS severity (89). The pathophysiology of CRS related to
CAR-T cell therapy is associated with the activation and
proliferation of CAR-T cells and release of high levels of
several cytokines and chemokines including IFN-g, IL-6, IL-8,
IL-10, granulocyte macrophage colony-stimulating factor, and
iNOS which in turn activate endogeneous myeloid cells (90–92).

Neurologic toxicity is the second major side effect reported in
patients after CD19-specific CAR-T cell infusion (93). More
recently, a CAR-T cell-related encephalopathy syndrome
termed immune effector cell-associated neurotoxicity syndrome
(ICANS) has been reported (94). The clinical features of ICANS
associated with CAR-T cell therapy include encephalopathy,
memory loss, seizures, impaired speech, tremor, headache,
language disturbance, and motor weakness (95, 96). Although
the pathogenesis of ICANS is less clear than that of CRS in CAR-
T cell therapy studies, high levels of C-reactive protein, IL-6, IL-
15, IFN-g, TNF-a, granzyme B, granulocyte macrophage colony-
stimulating factor, IL-2, and IL-8 are associated with severe
ICANS (95, 97, 98). Recently, several studies suggested that
blood–brain barrier dysfunction is the main factor in the
pathogenesis of neurotoxicity after CAR-T cell therapy (95).

Another potential adverse effect of CAR-T cell therapy is TLS.
TLS describes a group of metabolic abnormalities that may occur
because of the CAR-T cell-mediated lysis of malignant cells (99).
TLS can lead to organ damage, life-threatening arrhythmias, and
renal failure.

Further treatment-related side effects may occur if target
antigens selected for CAR T cell therapy are not specific and
shared healthy tissue and healthy cells. Recent single cell analysis
and other studies in healthy tissues studies revealed expression of
several TAAs in various non-cancerous tissues, supporting the
concern for on-target – off tumor mediated side effects (100–102)
(Table 2). On-target-off-tumor toxicity through damage in
noncancerous normal tissues lead to life-threatening effects
(103). Carbonic anhydrase IX-specific CAR-T cell therapy in
renal carcinoma resulted in on-target-off-tumor toxicity in the
bile duct epithelium and cholestasis because of the expression of
the same antigen (29, 104).. Furthermore, CAR-T cell therapy
using HER2/neu-specific CAR-T cells resulted in on-target-off-
tumor toxicity, leading to respiratory failure, multi-organ
dysfunction, and subsequent death because of antigen
recognition on pulmonary tissue (105). Dramatic effects have
been noted in genetically modified TCRs against melanoma
through lethal cardiac toxicity attributable to off-target
reactivity (106). CAR-T cell therapy in metastatic colon cancer
induced adverse effects within 15 min as a consequence of
respiratory dysfunction (105).

As the majority of currently utilized CAR-T cells carry an
antigen recognition domain derived from murine monoclonal
antibodies (103), infusion may provoke humoral and cellular
FIGURE 4 | Toxicity hurdles in CAR-T cell therapy (Figure generated using
Bio Render).
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immune responses culminating in anaphylactic reactions (28,
107). A clinical trial identified cardiorespiratory failure after a
third infusion of MSLN-targeted CAR-T cells as a consequence
of such species mismatch. Furthermore, this study reported an
IgE-mediated anaphylactic event caused by the presence of
human anti-mouse antibodies and elevated trypsin antibodies
in patient serum (108). These adverse effects might be related to
isotype switching to IgE; inappropriate timing of treatment, and
improper treatment intervals.
FUTURE STRATEGIES TO IMPROVE
CAR-T CELL THERAPY

Despite the success of CAR-T cell therapy against hematologic
malignancies, the effects of CAR-T cell therapies on solid tumors
such as lung cancer are unsatisfactory because of antigen
heterogeneity, an immunosuppressive microenvironment, and
insufficient trafficking to tumor tissue. Furthermore, CAR-T
therapy in the treatment of solid tumors may result in adverse
cytotoxicity in healthy cells because of the presence of targeted
TAA on healthy cells. Therefore, it is utmost important to
develop strategies to improve safety and efficacy of CAR-T cell
therapies in lung cancer and other solid tumors. To overcome
these hurdles, several studies adapted genetic engineering
approaches to modulate CAR-T cells to enhance their efficacy,
functional activity in the immunosuppressive TME, and efficient
infiltration into the tumor site.

Modulating CAR Activity
Recently, several scientists attempted to improve the efficacy and
feasibility of CAR-T cell therapy in solid tumors and avoid off-
tumor toxicity. To overcome antigen heterogeneity in solid
tumors, several approaches have been adopted to target
multiple antigens with a single CAR-T cell population. The
combination of biotinylated antibodies and avidin-conjugated
CAR has been used to control CAR-T cell activity and target
multiple antigens (109, 110). Other CAR that can potentially
target multiple antigens include split universal and programmable
(SUPRA) CAR and leucine-zipper motif CAR (ZipCAR) with free
scFv motifs (ZipFv). SUPRA CAR reduce CAR-T cell
Frontiers in Immunology | www.frontiersin.org 8
hyperactivity, overcome tumor immune escape, and enhance
the activation of T-cells with high sensitivity for various tumor
antigens (111). SUPRA CAR also regulate various signaling
pathways in T-cells and other cells and prevent CRS. ZipCAR
with different types of ZipFv motifs can be designed to recognize
various tumor antigens and attenuate the unspecific activation of
CAR-T cells. Further strategies using tandem CAR-T cells and
dual CAR-T cells that prevent on-target/off-tumor toxicity by
targeting two different tumor surface antigens and enhance anti-
tumor activity have been reported (112, 113). Modular CAR
approaches have been extensively reviewed elsewhere (114).

Small Molecules-Based or Chemogenitic-
Based Switchable CAR-T Cells
To mitigate CAR-T cells posed challenges and complications,
further approaches such as small molecules-based or
chemogenitic-based switchable CAR-T cells have been
developed to regulate CAR activity. A variety of small
molecules such as FITC-conjugated antibodies, rapamycin,
folate, rimiducid, proteolysis-targeting chimera (PROTAC),
and dastinib have been employed to develop safety switches for
CAR-T cells (115) Switchable CAR-Ts approach in breast cancer
treatment using Her2-targeted antibody drug combination with
a T cell-redirected bsAb, and a FITC-modified antibody capable
of redirecting anti-FITC CAR-T (switchable CAR-T; sCAR-T)
cells showed improved activity against cancer cells (116). In vitro
and in vivo studies using chemically programmed antibody
fragment (ca-Fab)/CAR-system based on/off switch targeting
folate binding proteins showed specific elimination of folate
receptor expressing cancer cells (117). In addition, recent study
developed chemogenitic-based switchable CAR-T cells targeting
CD19 positive cancer cells in in vitro and in vivo using anti-CD
19 hepatitis C virus NS3 protease (HSV-NS3) between the single-
chain variable fragment (scFV) demonstrated control of CAR-T
activity in the presence and absence of HCV-NS3 inhibitor
asunaprevir in eliminating CD19 positive tumor cells (118).

Enhancing CAR-T Cell Therapy to
Overcome an Immunosuppressive TME
To improve efficacy of CAR -T-cell therapy, several strategies
modified CAR-T cells to secrete pro-inflammatory cytokines
TABLE 2 | Expression of TAAs in healthy tissues.

Target antigen
in CAR-T

Expression in normal tissues

EGFR Fibroblasts, smooth muscle cells, pericytes, alveolar type1 and type2, ciliated cells, basal cellsrenal epithelium, liver epithelial cells, various
pancreatic cell populations

MUC1 alveolar type1 and type2, ciliated cells, basal cells, collecting duct principal cells, liver epithelial cells,ductal cells
MSLN alveolar type1 and type2, ciliated cells, basal cells, collecting duct principal cells, ductal cells
Her2 (ERBB2) Fibroblasts, smooth muscle cells, pericytes, alveolar type1 and type2, ciliated cells, basal cells, renal epithelium, liver epithelial cells, various

pancreatic cell populations, bone marrow cells CD8 cells, NK cells
FAP Fibroblasts, smooth muscle cells, pericytes
ROR1 Fibroblasts, smooth muscle cells, pericytes, renal epithelium
EphA2 Cardiac endothelial cells, fibroblasts, smooth muscle cells, pericytes, alveolar type1 and type2, ciliated cells, basal cells, liver epithelial cells
CEA Colon epithelium
PSCA Subset of basal and secretary cells of healthy prostrate, pancreatic islets
CD80/CD86 Dendritic cells, macrophages and B cells
June 2022 | Volume 13 | Article 903562

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kandra et al. CAR-T Cell Therapy in Lung Cancer
such as IL-12 (119) or transgenically express cytokines such as
IL-23, IL-12, and IL-15 to protect CAR-T cells in the inhibitory
TME and thereby improve their anti-tumor activity (120–124).
To reduce cytokine secretion in CAR-T cell therapy, internal
ribosome entry site-based approaches can be used in CAR-T cell
construction when a cytokine gene is placed 3’ prime of internal
ribosome entry site (125). Another study suggested that
constructing a constitutive signaling of cytokine receptor C7R,
which potentially triggers IL7 stimulation, increase CAR-T cell
persistence and antitumor activity (126). Another approach to
target PD-1-PD-L1 interaction is programming CAR-T cells to
secrete blocking agents for checkpoint inhibitor PD-1. CAR-T
cells secreting scFv targeting PD-1 provided a better outcome in
PD-L1–positive xenograft mouse models (127). Also, to
overcome an immunosuppressive TME, several studies
suggested that the combination of monoclonal antibodies
inhibiting immune checkpoints such as PD-1 or CTLA-4 and
CAR-T cell therapy might result in improved anti-tumor activity
(128, 129). In addition, several other approaches developed
CRISPR/Cas9-mediated PD1-disrupted CAR-T cells and
CTLA-4–specific CAR-T cells to improve effector function of
CAR-T cells and enhance their anti-tumor activity (130). In
addition to CRISPR/Cas9, several gene-editing tools including
zinc finger nucleases, mega nucleases, and transcription
activator-like effector nucleases have been applied to engineer
CAR-T cells (131, 132).

Enhancement of Infiltration of CAR-T Cells
Into Solid Tumors
To enhance the penetration of CAR-T cells into solid tumors by
overcoming physical barriers in the TME, different approaches
have been explored to design CAR-T cells targeting the tumor-
associated stromal fibroblast protease FAP or ECM-modifying
enzymes or to use distinct chemokine gradients to recruit CAR-T
cells to solid tumor tissues. Several studies also reported that
solid tumor-associated chemokine release characteristics can be
utilized to enhance the trafficking of therapeutic T-cells using
chemokine receptors (133–135). One study of FAP-targeted
CARs in immunocompetent models reported bone toxicity in
FAP-positive stromal cells in bone marrow, whereas another
study observed reduced tumor growth without toxicities (136).
Thus, FAP-targeted CAR-T cell strategies require further deep
investigation to explore their efficacy and toxicity. Another
approach to enable the expression of heparanase in ECM is
targeting heparin sulfate proteoglycans by combining this
enzyme with anti-GD2 CAR-T cells. This approach resulted in
the increased infiltration of CAR-T cells and prolonged survival
in a mouse xenograft tumor model (137). However, these
approaches require further research because of the complicated
and unpredictable effects of ECM-modifying enzymes.

Improving Metabolic Functions of CAR-T
Cells in TME
Nutrient depletion, hypoxia and toxic metabolites in TME affects
biological properties of infiltrating immune cells in solid tumors.
These toxic metabolites harbors reactive oxygen species in TME
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and thereby impairs T cell function (138–140). The efficacy of
CAR-T therapy is closely associated with T cell metabolism
fitness. Several strategies have been explored to modulate
metabolic function of adoptively transferred CAR-T cells
including manipulating ROS levels balance, relieving
unfavorable metabolic TME, and blocking inhibitory effects of
toxic metabolites. To protect CAR-T cell from ROS damage,
investigators developed genetically modified T cells which secrete
ROS scavenger catalase (141). In order to improve arginine re-
synthesis in adoptively transferred T cells, several studies
developed either ex vivo loading of CAR-T cells with arginine
(142) or genetic manipulation of CAR-T cells with arginine
synthesizing enzymes to re-synthesize arginine (143). In
addition, several other approaches also explored to manipulate
glutamine metabolism in the TME to increase T cell effector
function (144, 145). Potential strategies to modulate metabolic
properties of CAR-T cells have been extensively reviewed
elsewhere (146).

Combinatorial Therapy Approaches
In order to enhance effector function of CAR-T cells, numerous
studies are approaching CAR-T cell therapy by combining other
therapeutic methods to improve outcomes. These CAR-T cell
combinatorial therapies which are being pursued include
chemotherapy, radiotherapy, cytokine therapies, checkpoint
blockades, and oncolytic viruses (147–150). Combining
checkpoint blockade and CAR-T cell therapy may produce a
synergic effect and provide infiltration of immune cells into
tumors (151).
CONCLUSION

Over the last decade, CAR-T cell therapy has revolutionized the
treatment of hematological malignancies. The clinical
application of CAR-T cell therapy and the identification of
novel potential target antigens in lung cancer are the subjects
of ongoing research. However, the successful use of CAR-T cell
therapy against solid tumors including lung cancer is hampered
by several hurdles including antigen targeting, tumor
heterogeneity, the immunosuppressive TME, CAR-T cell
trafficking, associated toxicities, and on-target-off-tumor effects.
Several new strategies are being developed to overcome these
obstacles and improve the efficacy and scope of CAR-T cell
therapies to permit their more widespread use in cancer
treatment. In summary, novel strategies of CAR-T cell design
with reduced toxicity that efficiently direct CAR-T cells to
tumors may provide a path for their safer and more effective
use against different cancer types including lung cancer.
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