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Abstract

Cholangiocarcinoma (CCA) is a group of heterogenous malignancies arising from bile duct

epithelium with distinct pathological features. Adaptor proteins have implicated in cell prolif-

eration, migration, and invasion of different cancer cells. The objective of this study was to

assess whether the adaptor protein XB130 (AFAP1L2) is a critical biological determinant of

CCA outcome. XB130 expression levels were investigated in four CCA cell lines compared

to an immortalized cholangiocyte cell line by Western blotting. Small interfering (si) RNA-

mediated XB130 gene silencing was conducted to evaluate the effects of reduced XB130

expression on cell proliferation, migration, and invasion by MTT, transwell migration and cell

invasion assay. The immunohistochemical quantification of XB130 levels were performed in

surgically resected formalin-fixed, paraffin-embedded specimens obtained from 151 CCA

patients. The relationship between XB130 expression and the clinicopathological parame-

ters of CCA patients were analyzed. Our results showed that XB130 was highly expressed

in KKU-213A cell line. Knockdown of XB130 using siRNA significantly decreased the prolif-

eration, migration, and invasion properties of KKU-213A cells through the inhibition of PI3K/

Akt pathway, suggesting that XB130 plays an important role in CCA progression. Moreover,

elevated XB130 expression levels were positive relationship with lymphovascular space

invasion (LVSI), intrahepatic type of CCA, high TNM staging (stage III, IV), high T classifica-

tion (T3, T4), and lymph node metastasis. We provide the first evidence that the overexpres-

sion of XB130 is associated with tumorigenic properties of CCA cells, leading to CCA

progression with aggressive clinical outcomes.

Introduction

Cholangiocarcinoma (CCA) is a malignancy of biliary epithelial cells and its incidence has

increased worldwide [1]. The risk factors of CCA are heterogeneous and differ globally [1].

Primary sclerosing cholangitis is the most typical risk factor for CCA in the Western countries,
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while in several Asian countries Opisthorchis viverrini is determined as the key risk factor for

CCA [2]. CCA is classified into intrahepatic and extrahepatic types, based on its anatomical

location along the biliary tree. Intrahepatic CCA develops within the small and second order

large bile duct branches, which are situated in the liver parenchyma. Extrahepatic CCA

involves the extrahepatic large bile duct location within biliary tree and the hepatoduodenal

ligament [3]. CCA is histologically graded into well, moderately, and poorly differentiated ade-

nocarcinomas [4]. CCA remains a major health problem which leads to high mortality in Thai-

land, notably in the Northeastern region [5]. Because of a high degree of malignancy, rapid

progression, low surgical resection rates and high recurrence rates, CCA prognoses are poor.

Several independent prognostic factors for CCA have been identified, including serum car-

cinoembryonic antigen (CEA) levels, alkaline phosphatase levels, relapse of disease, intrao-

perative blood transfusion, lymph node metastasis, TNM staging [6, 7], histological

differentiation of tumors, surgical margins, types of CCA, Caudal Type Homeobox 2 (CDX2),

and human epidermal growth factor receptor 2 (HER2) gene amplification [8]. It has been

shown that serum CEA levels of greater than 2.5 ng/mL are considered as an independent

poor prognostic factor for resectable CCA patients [6, 7]. CCA patients with CDX2-positive

tumors were reported to have significantly better survival than those with CDX2-negative

tumors [9]. Moreover, the overexpression of HER-2 gene amplification using chromogenic in
situ hybridization (CISH) is an independent prognostic factor for survival in the subgroup of

extrahepatic CCA patients with lymph node metastases [7]. However, the estimated overall

5-year survival rate of CCA is less than 10% and only approximately one third of the CCA

patients are possible for receiving curative treatment at the diagnostic time [10]. Therefore, the

search for novel prognostic marker is still needed for improvement of CCA therapy.

In the development of the human embryo, the liver, extrahepatic biliary ducts, gallbladder,

and pancreas duct arise from the same epithelial anlage [11]. Accumulating evidence suggests

that CCA and pancreatic ductal adenocarcinoma have similar pathology, background, and

development [12]. Zhang et al. demonstrated that the high expression of XB130 is an indepen-

dent prognostic marker to predict poor outcome after surgical resection of pancreatic ductal

adenocarcinoma [13]. However, the roles and expression levels of XB130 protein in CCA,

which is a malignancy developing from the biliary epithelial cells, have never been

investigated.

XB130, which is also known as actin filament-associated protein 1 like 2 (AFAP1L2), is an

important member of the actin filament-associated protein (AFAP) family of adaptor proteins.

XB130 gene is located on human chromosome 10q25.3 and encodes a protein of 818 amino

acids [14]. XB130 is an adaptor protein involved in cell proliferation, survival, and migration

[15–17]. This adaptor protein has been shown to cause the activation of kinases and related

downstream proteins in many signaling pathways [18]. It can also promote interactions

between protein binding partners, triggering signaling cascades. For instance, XB130 binds to

the p85α subunit of phosphatidylinositol-3-kinase (PI3K) and activates protein kinase B (Akt).

The excessive activation of PI3K/Akt signaling pathway promotes cell proliferation by regulat-

ing cell cycle during G1 to S phase progression and by inducing cell migration and tumor cell

survival [19]. XB130 is mainly distributed in the cytosol, where the chemical reactions pre-

dominantly occur and is associated with physiological processes and oncogenesis of certain

malignancies [18]. Functional roles of XB130 have been examined in various types of cancer

both in vitro and in vivo. For example, the overexpression of XB130 in human esophageal

squamous cell carcinoma (ESCC) has shown to be associated with cell cycle progression and

poor prognosis [20]. The previous studies in lung and thyroid cancer cells demonstrated that

XB130 is a potential regulator of tyrosine kinase-mediated signaling and substrate that control

of cell proliferation and apoptosis [19, 21]. Knockdown of XB130 in human lung and thyroid
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cancer cells by small interfering RNA (siRNA) suppressed cell cycle progression and induced

spontaneous apoptosis [19, 21]. However, little is known about the roles of XB130 in CCA.

In this study, we aimed to investigate: i) the expression levels of XB130 in four different

CCA cell lines (KKU-100, KKU-213A, KKU-213C, and KKU-023) compared to an immortal-

ized cholangiocyte cell line (MMNK1); ii) the effects of decreased XB130 expression on cell

proliferation, cell migration and invasion in XB130-expressing KKU-213A cells; iii) the

expression levels of XB130 in CCA tissues using immunohistochemistry; and iv) the relation-

ship between the XB130 expression levels with the clinicopathological features and survival

rates of CCA patients.

Materials and methods

Cell culture

For different CCA cell lines (KKU-100, KKU-213A, KKU-213C, and KKU-023) and an

immortal cholangiocyte cell line (MMNK1) were obtained from the Cholangiocarcinoma

Research Institute, Khon Kaen University, Thailand. KKU-213A and KKU-213C CCA cell

lines were established and characterized by Sripa B [22]. All cell lines were cultured in Ham0s

F-12 (Life technologies, Grand Island, NY, USA) containing 10% heat-inactivated fetal bovine

serum, 100 U/mL penicillin and 100 ug/mL streptomycin (Life technologies, Grand Island,

NY, USA). Cells were incubated at 37˚C in a humidified incubator with an atmosphere of 5%

CO2.

Screening of the XB130 expression in cell lines using Western blot analysis

Cells were lysed on ice in RIPA buffer (150 mM NaCl, 50 mM Tris-HCl, 1% (v/v) Triton X-

100, 1% (w/v) sodium deoxycholate, 0.1% (w/v) sodium dodecyl sulfate (SDS) supplemented

with protease inhibitor cocktail (Thermo Fisher Scientific, MA, USA; S1 Appendix) The pro-

tein concentration was measured using Pierce BCA Protein assay kit (Pierce Biotechnology,

Rockford, USA). Proteins in the total cell lysate were separated onto SDS-PAGE (4% stacking

gel and 8% separating gel) and transferred onto a polyvinylidene difluoride (PVDF) mem-

brane (Bio-Rad, CA, USA). After blocking the blot in a solution of 5% skimmed milk in Tris-

buffered saline (TBS) pH 8.0 at room temperature for 1 h, membrane-bound proteins were

probed with mouse anti-XB130 monoclonal antibody (1:1000; Santa Cruz, USA), rabbit anti-

E-cadherin antibody (1:1000, Cell Signaling Technology, Danvers, MA, USA), mouse anti-

vimentin antibody (1:1000, Agilent Dako, Santa Clara, CA, US), rabbit anti-Akt antibody

(1:1000, Cell Signaling Technology, Danvers, MA, USA), rabbit anti-Ser473 phosphorylated

Akt (pAkt) antibody (1:1000, Cell Signaling Technology, Danvers, MA, USA) and mouse anti-

β-actin antibody (1:60000, Sigma, Louis, MO, USA) overnight at 4˚C. The membrane was

washed and incubated with peroxidase-labelled anti-rabbit or anti-mouse secondary antibod-

ies (1:2000) for 1 h at room temperature. Finally, immunoreactive bands were visible to Amer-

sham™ ECL™ Prime Western Blotting Detection Reagent (GE Healthcare, Buckinghamshire,

UK) for chemiluminescence detection which was performed using an Amersham Imager™ 600

(GE Healthcare Bio-Sciences AB, Uppsala, Sweden). Original images of Western blot results

are shown in S1–S7 Figs.

Knockdown of XB130 in an CCA cell line using siRNA

Specific siRNA against XB130 (siXB130), ON-TARGET plus Human XB130 siRNAs; cat. no.

L-014917-02-0005, and a negative control or scramble, ON-TARGET plus Non-targeting Pool

siRNAs; cat no. D-001810-10-05, were purchased from GE Healthcare Dharmacon Inc.
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(Lafayette, CO, USA). KKU-213A cells (12 x 104 cells/well) were transfected with 50 nM of

siXB130 or scramble using lipofectamine1 RNAiMax (Invitrogen, Carlsbad, CA, USA)

according to the manufacturer’s protocol. After 48 h transfection, cells were used for detection

of XB130 expression by western blot analysis as well as cell proliferation, invasion and migra-

tion assays.

Cell proliferation assay

At 48 h after XB130 knockdown, treatment with scramble and siXB130, the cells were trypsi-

nized and seeded onto 96-well plates (3.0 × 104 cells) in quintuplicate. Cell proliferation was

measured using the methyl thiazolyl tetrazolium (MTT) assay as previously described [23].

Cell invasion assay

Cell invasion assay was performed using a 24-well Matrigel Invasion Chamber (Discovery Lab-

ware, Inc, Bedford, MA, USA) as previously described [24]. The cell invasion was determined

at 24 h after incubation.

Cell migration assay

The migration ability of CCA cells across the membrane filter of 8 μm pore-size was measured

using a Boyden chamber in a 24-well plate (Corning, NY, USA) as previously described [23].

The number of cells migrated across the membrane was determined at 24 h.

Human cholangiocarcinoma tissues

The formalin-fixed and paraffin-embedded CCA tissues used in this study were the leftover

tissues after pathological diagnosis of CCA (n = 151 cases) in the Srinagarind Hospital, Khon

Kaen University, from January 2007 to August 2017 and performed tissue microarray (4 cores,

2 mm). The protocol of this study was approved by the Ethics Committee for Human

Research, Khon Kaen University (HE621409).

Immunohistochemical staining

The immunohistochemistry (IHC) method for XB130 protein was performed on tissue micro-

array slide sections, using a VENTANA BenchMark XT Slide Staining System (Roche Diag-

nostics, NJ, USA). The tissue microarray slides were cut at 4 μm thickness and dried in a hot-

air oven overnight at 50˚C. Immunohistochemical staining was carried out following the man-

ufacturer’s recommended protocol. Mouse anti-AFAP1L2/XB130 monoclonal antibody

(1:100; Santa Cruz, TX, USA) was used as a primary antibody and its presence was visualized

using an OptiView DAB IHC detection kit (Ventana, AZ, USA). For XB130 assessment, the

stained tissue microarray slides were entirely scanned to assign the scores using a ScanScope1

XT digital slide scanner (Leica Biosystems, Singapore).

Evaluation of immunohistochemical staining

The semi-quantitative analysis of IHC scores using an ImageJ software, Java-based image pro-

cessing program developed at the National Institutes of Health and the Laboratory for Optical

and Computational Instrumentation, University of Wisconsin [25, 26]. The quantification

methods were performed following the previous report [27]. XB130 expression levels (IHC

scores) of 151 CCA tissues examined ranged from 28.00 to 220.45.
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Clinicopathological parameters of CCA tissues

The clinicopathologic variables included age, gender, type of CCA, histological type, histologic

differentiation, LVSI, T classification, N classification (lymph node metastasis), M classifica-

tion, TNM staging, and surgical margins were used for data analysis. By anatomical location of

the tumor, CCA was classified into intrahepatic CCA and extrahepatic CCA. Histologic differ-

entiation of CCA was classified by histology into well, moderately, and poorly differentiated

adenocarcinomas [4]. Histologic type was defined as papillary or tubular base on architectural

growth pattern. The LVSI is the histologic visible invasion of a cancer cells into lymphatic and/

or blood vessels which is the cause of lymphatic and vascular spreading. Lymph node metasta-

sis is cancer that has spread to lymph nodes and a surgical margin is the margin of apparently

non-tumorous tissue around a tumor that has been surgically removed [28]. The TNM classifi-

cation of Malignant Tumors seventh edition is an anatomically based system that records the

primary size, regional nodal extent of the tumor, and distance metastasis. TNM is a notation

system that describes the stage of a cancer, T category describes the primary tumor site, N cate-

gory describes the regional lymph node involvement and M category describes the presence or

otherwise of distant metastatic spread [29].

Statistical analyses

The relationship between XB130 expression levels with clinicopathological features were

performed by linear regression. Survival analysis was performed using the Kaplan-Meier

method and the difference between survival curves was calculated using the log-rank test.

Cox’s proportional hazards models of univariate and multivariate analyses were performed

to define risks and identify independent prognostic factors of XB130 protein expression.

Univariate and multivariate logistic regression analyses were performed to identify factors

affecting lymph node metastasis (N1) in CCA. All statistical analyses were performed using

STATA 10.1 software (StataCorp LLC, TX, USA). Statistical significance is defined as a P-

value < 0.05.

Results

Evaluation of XB130 expression levels in CCA cell lines and an immortal

cholangiocyte cell line

XB130 expression levels in the immortal cholangiocyte (MMNK1) and four CCA cell lines

(KKU-100, KKU-213C, KKU-213A, and KKU-023) were measured semi-quantitatively using

Western blot analysis. The results showed that XB130 was not expressed in MMNK1 cells (Fig

1). Among four studied CCA cell lines, XB130 was highly expressed in the KKU-213A cell line,

but it was not expressed in other cells lines (i.e., KKU-100, KKU-213C and KKU-023 cell

lines).

Roles of XB130 in proliferation, migration and invasion in CCA

The effects of down-regulation of XB130 by siRNA on cell proliferation, migration and inva-

sion were examined in KKU-213A cell line. XB130 gene silencing using siRNA technology

successfully suppressed the expression levels of XB130 compared with the scrambled control

at 48 h after treatment (Fig 2A). The cell proliferation rates and cell invasion and migration

activities of siXB130-treated KKU-213A cell line were significantly reduced compared to con-

trol cells (Fig 2B–2F).
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XB130 activates the PI3K/Akt pathway and alters metastasis-associated

proteins in CCA

To explore the mechanisms underlying XB130 expression, the possible downstream targets of

XB130 including PI3K downstream (Akt), Ser473 phosphorylated Akt (pAkt) and epithelial-

mesenchymal transition (EMT) markers (E-cadherin and vimentin) were measured in the

XB130 knockdown-CCA cell lines using western blot analysis. The results indicated that

XB130 siRNA effectively reduced XB130 protein levels; a phenomenon associated with

decreased the expression and phosphorylation of Akt as well as the expression of EMT induc-

ing protein (vimentin) as shown in Fig 2A. Our findings suggest that XB130 has an oncogenic

property that can induce cell proliferation, migration and invasion in CCA via the activation

of PI3K/Akt pathway leading to increasing of EMT processes.

Expression levels of XB130 in CCA tissues

The expression levels of XB130 protein in CCA tissues (n = 151) were determined using

immunohistochemistry. The protein was highly localized in cytoplasm of CCA cells, whereas

it was weakly stained in normal bile duct and hepatocyte cells. The representative results of

normal bile duct, hepatocyte and CCA tissues with XB130 expression levels were shown in

Fig 3.

Relationship between the XB130 expression levels and clinicopathological

data of CCA patients

The relationship between XB130 protein expression levels and the clinicopathological features

of CCA patients were summarized in Table 1. No relationship was observed between XB130

expression and the following variables: age (β = -0.0023, P = 0.976), gender (β = 0.0042,

P = 0.958), histological type (β = 0.0262, P = 0.749), margin status (β = -0.1305, P = 0.110),

moderate differentiation (β = 0.1238, P = 0.128), poor differentiation (β = 0.1477, P = 0.070) or

M classification (β = 0.074, P = 0.365). The XB130 expression was significantly positive

Fig 1. Western blot analysis of XB130 in MMNK1, KKU-100, KKU-213C, KKU-213A and KKU-023 cell lines, with β-actin as a loading control.

https://doi.org/10.1371/journal.pone.0259075.g001
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Fig 2. Effects of siXB130 on proliferation, motility and invasiveness of KKU-213A cell line. A): The expressions of XB130 (130 kDa), E-cadherin

(~135 kDa), vimentin (~54 kDa), Akt (~60 kDa), pAkt (~60 kDa) in siXB130 and scramble groups measured by western blotting, with β-actin as a

loading control. B): MTT assays of the scramble and siXB130 treated cells. C): Hematoxylin-staining invasive cells from cell invasion assays of the

scramble and siXB130 treated cells. D): Graphical represents numbers of invasive cells from cell invasion assays. E): Hematoxylin staining migrated cells

from cell migration assays. F): Graphical represents numbers of migrating cells from cell migration assays. The asterisk (�) indicates statistical

significance at P<0.05 and asterisks (���) indicates statistical significance at P< 0.001.

https://doi.org/10.1371/journal.pone.0259075.g002
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Fig 3. XB130 expression patterns in: A) normal bile duct; intensity = 48, B) hepatocyte; intensity = 72 and C) CCA

intensity = 220 analyzed by IHC. The scale bar equals 50 μm.

https://doi.org/10.1371/journal.pone.0259075.g003

Table 1. Relationship between XB130 expression and clinicopathologic features of CCA patients.

Variable XB130 expression

Coef. 95% CI β P-value

Gender

Female/male -0.12 -8.9111–8.6517 0.0042 0.976

Age

Years 0.41 -15.4027–16.2285 -0.0023 0.958

LVSI

Yes/No 22.08 6.7806–37.3836 0.2274 0.005

Histological type

Tubular/Papillary type 2.48 -12.8509–17.8225 0.0262 0.749

Margin status

Yes/No -12.75 -28.4395–2.9211 -0.1305 0.110

Type of CCA

Intrahepatic/Extrahepatic 17.03 0.2762–33.8017 0.1623 0.046

Histologic Differentiation

Well 1

Moderated 15.78 -4.5935–36.1560 0.1238 0.128

Poor 50.16 -4.1080–104.4313 0.1477 0.070

TNM staging

I 1

II 10.58 -10.0906–31.2698 0.0970 0.313

III 41.17 21.5696–60.7782 0.4048 < 0.001

IV 28.41 6.2269–50.6001 0.2363 0.012

T classification

T1 1

T2 3.93 -11.8204–19.6827 0.0412 0.623

T3 56.87 35.8058–77.9391 0.4314 < 0.001

T4 54.32 29.1228–79.5356 0.3327 < 0.001

N classification

N1/N0 19.71 4.5583–34.8619 0.2060 0.011

M classification

M1/M0 8.91 -10.494–28.3251 0.074 0.365

�Definition of TNM staging system described in the S1 Data.

�Coef, coefficients; 95% CI, 95%confidence interval; β, correlation coefficient.

https://doi.org/10.1371/journal.pone.0259075.t001
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relationship with LVSI (β = 0.2274, P = 0.005), intrahepatic type of CCA (β = 0.1623,

P = 0.046), stage III of TNM staging (β = 0.4048, P< 0.001), stage IV of TNM staging (β =

0.2363, P = 0.012), T3 classification (β = 0.4314, P< 0.001), T4 classification (β = 0.3327,

P< 0.001) and lymph node metastasis (β = 0.2060, P = 0.011).

Univariate and multivariate analyses of clinicopathological variables

influencing survival and lymph node metastasis in CCA

Clinicopathological parameters of 151 CCA patients (95 males and 56 females) with an age

range of 34–79 years were analyzed. The impact of 12 variables, including age, gender, type of

CCA, histological type, histologic differentiation, LVSI, T classification, N classification

(lymph node metastasis), M classification, TNM staging, surgical margins and XB130 expres-

sion, on survival was investigated using univariate and multivariate analyses. On univariate

analysis using the Cox’s proportional hazards model, the poor survival was associated with the

following parameters: LVSI (HR = 1.6150, P = 0.007), tubular histological type (HR = 1.6348,

P = 0.005), positive margin status (HR = 1.6777, P = 0.003), TNM staging (stage IV,

HR = 4.2664, P� 0.001), T classification (T4, HR = 2.0254, P = 0.028), N1 classification

(HR = 2.3754, P� 0.001) and M1 classification (HR = 3.4339, P� 0.001), but not with gender

(HR = 1.0722, P = 0.659), age (HR = 1.0139, P = 0.163), intrahepatic type of CCA

(HR = 1.1532, P = 0.451), moderate differentiation, (HR = 1.5331, P = 0.055), poor differentia-

tion, (HR = 0.4662, P = 0.287), T classification (T2, HR = 1.3788, P = 0.111), T classification

(T3, HR = 1.1805, P = 0.543), TNM staging (stage II, HR = 1.2338, P = 0.400), TNM staging

(stage III, HR = 1.4768, P = 0.101), XB130 expression (HR = 1.000, P = 0.356) (Table 2). The

Kaplan-Meier survival curves showed the comparison of the survival rate in 151 cases of CCA

patients between gender, histological type, type of CCA, M classification, LVSI, margin status,

histologic differentiation, TNM staging, T classification and N classification. Tubular histolog-

ical type (P = 0.0052), M1 classification (P< 0.0001), LVSI (P = 0.0062), positive margin status

(P = 0.0041), stage IV of TNM staging (P< 0.001) and N1 classification (P< 0.001) were sig-

nificant related to prognosis as shown in S8 Fig.

In addition, multivariate analysis using Cox’s proportional hazards model showed that only

N1 classification (HR = 1.8707, P = 0.002) and M1 classification (HR = 2.3925, P< 0.001)

were significantly correlated with poor survival. The two clinicopathologic variables, i.e., N

and M classifications, can be used as independent prognostic factors (Table 3). Moreover, the

results obtained from multivariate analysis using logistic regression demonstrated that M1 and

LVSI were independent factors for lymph node metastasis (Table 4).

Discussion

The main finding of this study was that XB130 overexpression in CCA was related to cell pro-

liferation, migration, and invasion, leading to CCA progression with aggressive clinical out-

comes. These results suggest that the expression levels of XB130 in CCA cell lines, XB130 was

highly expressed in the KKU-213A cell line, but it was not expressed in other cells lines (i.e.,

KKU-100, KKU-213C and KKU-023 cell lines). The expression levels of XB130 in CCA cell

lines may not be involved in the transformation from cholangiocytes to CCA cells. According

to the cell line’s properties, KKU-213A has the highest proliferation, invasion and migration

rates among the other tested cell lines [22, 30]. Thus, in CCA, XB130 may play a critical role in

tumor cell progression, but not in tumorigenesis. The KKU-213A cell line was selected for fur-

ther functional analysis of XB130 using specific siRNA technique. Significant inhibition of cell

proliferation, migration, and invasion caused by XB130 silencing in KKU-213A cells suggests
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that XB130 plays an important role in the progression of CCA by promoting cell growth,

migration, and invasion.

These findings are consistent with previous studies on XB130 in a variety of cancers, e.g.,

thyroid tumor [19, 31], prostate cancer [15], lung cancer [17], gastric cancer [32], breast cancer

Table 2. Univariate analysis (Cox’s proportional hazards model) for overall survival of CCA patients.

Characteristics Univariate

HR 95% CI P-value

Gender

Female/male 1.0722 0.7569–1.5187 0.659

Age

Years 1.0139 0.9943–1.0339 0.163

LVSI

Yes/No 1.6150 1.1404–2.2870 0.007

Histological type

Tubular /Papillary type 1.6348 1.1583–2.3073 0.005

XB130 expression

Intensity 1.0000 0.9980–1.0053 0.356

Margin status

Yes/No 1.6777 1.1873–2.3708 0.003

Type of CCA

Intrahepatic/Extrahepatic 1.1534 0.7924–1.6788 0.451

Histologic Differentiation

Well 1

Moderated 1.5331 0.9907–2.3722 0.055

Poor 0.4662 0.1144–1.8988 0.287

TNM staging

I 1

II 1.2338 0.7559–2.0137 0.400

III 1.4768 0.9266–2.3538 0.101

IV 4.2664 2.4784–7.3443 < 0.001

T classification

T1 1

T2 1.3788 0.9291–2.0461 0.111

T3 1.1805 0.6919–2.0140 0.543

T4 2.0254 1.0781–3.8048 0.028

N classification

N1/N0 2.3754 1.6709–3.3769 < 0.001

M classification

M1/M0 3.43396 2.1942–5.3741 < 0.001

https://doi.org/10.1371/journal.pone.0259075.t002

Table 3. Multivariate analysis (Cox’s proportional hazards model) for overall survival of CCA patients.

Characteristics Multivariate

HR 95% CI P-value

N classification

N1/N0 1.8707 1.2589–2.7797 0.002

M classification

M1/M0 2.3925 1.4589–3.9237 0.001

https://doi.org/10.1371/journal.pone.0259075.t003
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[33], colorectal cancer [34], hepatocellular carcinoma [35], and skin tumor [24]. XB130 has

been suggested to play significant roles in cancer progression through PI3K/Akt signaling path-

way, leading to an increase in tumorigenic properties, including cell growth, migration, invasion

and epithelial–mesenchymal transition (EMT) process [17, 31, 35–37]. It is worth noting that in

CCA, the PI3K/Akt signaling pathway was constitutively activated and was involved in cell pro-

liferation, migration and invasion [38, 39]. Suppression of the PI3K/Akt signaling pathway by

various anti-cancer drugs could also inhibit CCA cell progression [35, 40–43]. From the above

mentioned, we hypothesized that XB130 activates PI3K/Akt pathway resulting in the phosphor-

ylation of Akt (pAkt) and induction of EMT process in CCA cells. To prove the hypothesis, the

detections of PI3K/Akt pathway-downstream marker (pAkt) and EMT markers (E-cadherin

and vimentin) expression levels in siXB130 and the vertical control cells were measured using

western blot analysis. The results showed that pAkt and vimentin expression levels were

decrease in the XB130 knockdown-CCA cell line. Therefore, we concluded that the overexpres-

sion of XB130 in CCA accelerates the cancer progression via PI3K/Akt signaling pathway.

The XB130 expression levels in clinical tissues were further analyzed to assess its potential

for being used as an accurate prediction of survival of patients with CCA and as a valid biologi-

cal indicator for the aggressiveness of CCA. The XB130 expression level was not an indepen-

dent prognosis factor for survival in CCA. It should be noted that distant metastasis

(M1-classification) has more potential clinical use to predict for the risk of lymph node metas-

tasis in CCA than the LVSI. The XB130-mediated aggressiveness of CCA was confirmed by

the biological function assays, i.e., cell proliferation, invasion, and migration in cell lines. In

CCA tissues, the elevated XB130 expression levels had positive relationship with lymphovascu-

lar space invasion (LVSI), intrahepatic type of CCA, high TNM staging (stage III, IV), high T

classification (T3, T4), and N1 classification (lymph node metastasis). The high T classifica-

tion, LVSI, lymph node metastasis, and high TNM staging all indicate tumor extension and

invasion, which supported the in vitro investigation of cell proliferation and invasion in KKU-

213A cells. The Kaplan-Meier survival curves showing LVSI, margin status, TNM staging, and

N classification were significantly related to prognosis. Although, XB130 level was not directly

associated with survival outcome in CCA patients, but it was associated with other factors cor-

related with survival, including LVSI, high TNM staging and lymph node metastasis. There-

fore, our findings demonstrated that the adapter protein XB130 is a significant player in CCA

progression and metastasis.

Conclusion

In this work, the expression of XB130 was assessed along with its impact on CCA proliferation,

migration, and invasion in vitro. Furthermore, high expression levels of XB130 in tissues

reflect a role in predicting the aggressive behavior of CCA, as evidenced by significant risk fac-

tors, i.e., LVSI, lymph node metastasis, and high TNM staging in the patients. Targeting

XB130 may assist in slowing tumor growth and decreasing cell migration and invasion. There-

fore, high XB130 expression might be considered as an indicator of aggressive CCA and a

potential target for CCA therapy.

Table 4. Univariate and multivariate analyses (logistic regression model) of factor correlated with lymph node metastasis (N1).

Clinicopathologic characteristics Univariate Multivariate

Odds ratio 95% CI P-value Odds ratio 95% CI P-value

M category (+) 29.84 6.7488–131.9561 < 0.001 22.17 4.9082–100.1789 < 0.001

LVSI (+) 5.32 2.4970–11.3455 < 0.001 3.69 1.6187–8.4202 0.002

https://doi.org/10.1371/journal.pone.0259075.t004
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