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Abstract: Administration ofβ-glucans through various routes, including immersion, dietary inclusion,
or injection, have been found to stimulate various facets of immune responses, such as resistance
to infections and resistance to environmental stress. β-Glucans used as an immunomodulatory
food supplement have been found beneficial in eliciting immunity in commercial aquaculture.
Despite extensive research involving more than 3000 published studies, knowledge of the receptors
involved in recognition of β-glucans, their downstream signaling, and overall mechanisms of action
is still lacking. The aim of this review is to summarize and discuss what is currently known about of
the use of β-glucans in fish.
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1. Introduction

Aquaculture is quickly becoming a crucial food-producing sector. One of the consistent problems is
health management, as ever-increasing fish density results in elevated stress often leading to outbreaks
of deadly diseases. Besides antibiotics, which use is increasingly monitored and often prohibited,
the need to establish new ways of potentiation of immune reaction is clear. One option is the use of
β-glucan, which has been tested in fish for decades.

The first report approaching the β-glucan molecule was published in 1946 by Dimler, et al. [1],
and the authors successfully isolated the molecule d-glucosanβ (1,4) (1,6) from starch. However, the first
robust scientific evidence showing that β-glucan affects the immunity was published almost 20 years
later in the journal, Science. Wooles and Diluzio [2] injected mice with β-glucan and observed a higher
hyperphagocytic activity of the reticuloendothelial system, and the authors associated this response to
an increase in the primary and secondary immune responses of mice to sheep erythrocytes. Ever since,
the effects of β-glucan have been extensively studied, and a well-known immunomodulator suitable for
bath treatment, injection, and dietary administration in vertebrates. For example, the positive effects
of β-glucans in immunity have been shown in humans [3], dogs [4], pigs [4,5], cattle [6], horses [7],
sheep [8], chickens [9], frogs [10], fish [11]; invertebrates, such as shrimp [12] and crab [13]; and insects,
such as bees [14] and drosophila [15].
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The effect of β-glucans in the immunity of a wide number of species in general is related to the
conserved pathways of defense reactions among the vertebrate species, more specifically related to
recognition of pathogen-associated molecular patterns [16]. In this context, fish as the first vertebrate
group appearing in evolution after adaptive radiation during the Devonian Period, play an important
role in the evolution of the immune responses, and an apparent crossroads between the innate immune
response and the appearance of the adaptive immune response [17].

Glucan plays a particularly important role in aquaculture as demand for fish and shrimp increases.
Aquaculture is plagued with several problems from environmental pollution to fish diseases, and it
is imperative to improve health of farm animals. This is true not only from the commercial point of
view, but also from the point of minimalizing the spread of diseases to the outside world. Farming of
species can be a vector for disease proliferation in the wild environment. Disease transfer in salmon
aquaculture is perhaps the most reported instance of this phenomenon. The disease, infectious salmon
anemia, first appeared in Chile in the 1990s, and has since been noted in other environments around
the world. The search for natural substances used as dietary feed supplements is ongoing.

In this review, we approached different aspects of the development of the fish immunity system
and how it can be associated with the effects of β-glucan. In addition, we discussed the application
and mechanism of action of β-glucans in fish.

2. The Use of Immunomodulators Compounds

The industry of animal protein production is growing exponentially, and it is inevitable that
intensive animal production stresses the animals by confinement, transport, and handling, creating a
physiological condition characterized by suppressed immunity and consequently higher susceptibility
to disease [18]. Particularly, in the aquaculture sector, the farmer cannot always visually assess the
fish and very often the perception of disease outbreaks is a challenge. The indiscriminate use of
antibiotic to prevent these outbreaks has resulted in the emergence of several resistant pathogens
in aquaculture [19], impeding the development and sustainability of the industry worldwide [20].
In this context, many immunostimulant compounds, such as bacterial lipopolysaccharides (LPS),
mannooligosaccharides, vitamins, minerals, and animal and plant extracts, have been widely
investigated to enhance fish immunity and protect against disease [18,21,22]. Among these compounds,
β-glucans stand out and their role as a biologically active immunomodulator in fish has been
well documented.

3. The Molecule of β-Glucans and Their Effects

“Glucan” is the common name given to a group of polysaccharide polymers, classified based
on interchain linkages as either α or β linked. β-Glucans obtained from different sources often have
different primary structures and conformations. The primary structure is defined by the glycosidic
bond type, as well as degrees of branching and polymerization, while the conformation of β-glucans
often presents as a random coil, single helix, or triple helix, and is affected by the primary structure,
intermolecular force, temperature, and solvent [23].

β-Glucans are widely distributed in bacteria, algae, fungi, and plants, with different structural
types (see Barsanti et al. [24]). Their structure is comprised of a main chain of β (1,3) and/or β

(1,4)-d-glucopyranosyl units in nonrepeating but nonrandom order, with side chains of varying
lengths [25]. In this context, the different β-glucan molecules may differ in their activity/effectiveness
as immunomodulator, and even molecules with similar structures, molecular weights, and solution
conformations can differ markedly. Many studies have reported correlations between β-glucan
effectiveness and molecular structure, size, branching frequency, structural modification, conformation,
and their solubility; however, it is risky to make generalizations due the often-contradictory data [26].
In addition, numerous concentrations and routes of administration have been tested including oral
applications. Despite extensive investigations, consensus on the source, size, and other biochemical or
physicochemical properties of β-glucans has not been achieved.
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Basically, the two types of β-glucan molecules, which are based on the glycosidic bonds present in
them, are α-glucan (dextran with 1,6, starch with 1,4 and 1,6 glycosidic bonds) and β-glucan (cellulose
with 1,4, zymosan with 1,3, laminarin with 1,3- and 1,6, lichenin with 1,3 and 1,4 glycosidic bond).
Because of the complex structure in β-glucans, they have superior ability to activate the immune
response and act as biological response modifiers [27]. Certain characteristics of β-glucan, such as
ability to function normally on immune system without over-activating them [28], ability to lower
the elevated levels of cholesterol [29–31], and ability to reduce sugar levels [32,33], make it unique
among immunostimulants.

β-Glucans are responsible for a multitude of actions, which protect and enhance the immune
system and provide optimum resistance to any possible health assailants due to its ability to bind
directly with macrophages and other white blood cells (neutrophils and natural killer (NK) cells)
and activate them [34,35]. When β-glucan receptors are engaged by β-glucan, all immune functions
are improved including phagocytosis (ability to engulf foreign cells and particles); release of certain
cytokines such as IL-1, IL-6, GM-CSF, and interferons; and the processing of antigens. These cytokines
stimulate formation of new white blood cells, providing immunity to β-glucan binding receptors
present in all vertebrates ranging from fish to human [36].

4. Overview of Fish Immunity

Like cartilaginous fish, osteichthyes (commonly named ‘bony fish’) evolved through the Paleozoic
Era, mainly during the Devonian. Whereas most early elasmobranchs and holocephalans are extinct,
the bony fish continued to evolve in an expanding fashion. At present, the bony fish, in comparison to
any vertebrate group, have reached the highest level of their evolution and adaptational capacities in
an aqueous environment. Adaptationally, they may be considered as the most successful. Selectional
pressures of various water environments, which the bony fish invaded, from fresh waters to tropical
and polar seas, have induced a wide range of diversities in their body forms and size, so that they
are also the most varied of all vertebrates [37–39]. Since the Tertiary Period, bony fish populations,
especially the teleosteans (infraclass Teleostei), have increased, and currently form the most numerous
group of all vertebrate taxa, nearly 35,000 species (i.e., comprising about one-half of all vertebrate
species) [40].

The main cause of this unprecedented growth of various forms among the vertebrates was the
emergence of new tissues and organs that enabled the realization of evolutionary novelty, the adaptive
specific immunity with immunological memory. The first foundations of this type of defense of internal
environment appeared in chondrichthyans (sharks, skates, and rays) together with the appearance
of the jaws, which can be considered the most significant revolutionary event in the entire history of
vertebrate evolution [41].

The immune system of bony fish is principally the same as in all advanced gnathostomeans. It is
composed from two components, the phylogenetically older innate (nonspecific) immunity and the
adaptive (specific) immunity with immunological memory. Contrary to higher vertebrates, survival of
fish as the free-living organisms practically from the earliest embryonic stage depends mainly on their
innate immunity [42], which remains the predominant component of defense throughout adult life.

The components of the innate immunity are divided into humoral molecules that are freely
located in body fluids and cellular components. These include the growth inhibitors, lytic enzymes,
agglutinins, precipitins (opsonins and primary lectins), cytokines, chemokines, and antibacterial
(cationic) peptides [43,44], including components of complement (see below). This type of immunity
is crucial in preventing infection due to slow proliferation and differentiation of immunocompetent
cells after antigen stimulation, and limited antibody repertoire leading to a delay in the adaptive
immune response especially in lower temperatures [45]. Therefore, the innate immune response
acts as an alarm that allows the adaptive immune system time to mount a specific response [46].
The cellular components of innate immunity provide a physical barrier in the form of mucus-producing
epithelial cells that line the skin and gills and specialized cells protecting the digestive tract, which are
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responsible for preventing penetration of pathogens inside the body. They comprise such cellular types
like granulocytes, monocytes, macrophages, two types of NK cell homologues characteristic for fish,
the non-specific cytotoxic cells and NK-like cells, and also the nonspecific cytotoxic cells, which kill
and digest the pathogenic bacterial and viral invaders [47]. Further cellular components of innate
immunity form various populations of blood leukocytes, which produce a row of abovementioned
humoral substances that are immediately able to kill altered or foreign (allogeneic or xenogeneic) cells.
To them, it is necessary to take into account the components of complement system, which, as seen in
evolutionary advanced vertebrates, can be activated in three ways: the classical pathway (triggered by
antibody binding to the cell surfaces); the alternative pathway (triggered independently of specific
antibodies only by microorganisms); and the lectin pathway (triggered by the binding of a protein
complex consisting of mannose/mannan-binding lectin in bacterial cells [43,48,49].

The adaptive immune system is well defined in mammals, and although most of the basic
characteristics are also found in fish, the adaptive system is fairly inefficient due to a restricted
antibody repertoire and an extensive lag time, up to 12 weeks after infection for activation [44,50].
In addition, due to their evolutionary status, cold-blooded vertebrates, such as fish, lack certain
histologically distinct lymphoid architecture, such as follicular dendritic cells (DC) and germinal
centers, which explains why fish are heavily reliant on a strong innate system [36,51–53].

It also plays a key role in the acquired immune response through a system of receptor proteins,
which recognize pathogen-associated molecular patterns (PAMP), such as LPS and peptidoglycans,
including bacterial and viral DNA and RNA.

The fish adaptive immune response takes place thanks to the presence of well-developed and
functionally specialized structures and organs, like in higher gnathostomeans, the thymus, kidney,
spleen and gut-associated lymphatic tissue (GALT), which form a sophisticated network of highly
specialized cells, molecular messengers, and effective factors maintaining the homeostasis of an internal
milieu [54].

The thymus together with the kidney (anterior and posterior) and spleen are the largest lymphoid
organs in teleosteans [55]. Thymic structure, contrary to higher vertebrates, is highly variable and,
in many species, is not possible to clearly differentiate between the cortex and the medulla [56].

The kidney in teleost fish is the equivalent of bone marrow in vertebrates and is the largest site of
hematopoiesis until adulthood [55]. The main cells found in the anterior kidney are macrophages,
which aggregate into so-called melanomacrophage centers, and lymphoid cells, which are found at all
developmental stages (mainly B cells) [57].

The spleen is distinctly divided into white and red pulps, even if structurally less organized.
This dividing is very variable. In some species, the red pulp prevails and may include the whole organ,
whereas in others, it may be composed only of lymphoid cells and macrophages [58,59]. Fish spleen
is a main site of erythropoiesis, phagocytosis, and antibody formation. The splenic tissue contains a
system of ellipsoids and melanomacrophage centers. In most species, ellipsoids are clustered together
and organized around the other two components [60]. The ellipsoids are thick-walled capillaries that
open in the pulp and result from the division of the splenic arterioles. The macrophages along the
capillaries are engaged on active phagocytosis of foreign material. A similar splenic structure has
been described also in other teleosteans. The appearance of immunoglobulin-producing cells in the
ellipsoids approximates them to true germinal centers of endothermic vertebrates; they could represent
evolutionary predecessors of germinal centers of mammals [61]. In bony fish, it is generally accepted
as a main secondary lymphoid organ, in which a plenty of B cells are activated and differentiate into
plasma cells. Plasma cells then migrate to the other lymphoid organs such as head-kidney, intestine,
skin, and gills. In the intestine, the distribution of B cells is low and variable among different species of
fish [62].

In fish, the aggregations of lymphoid cells, plasmacytes, granulocytes, and macrophages present
in connective tissue of the mucosa and infiltrating gut epithelia, including the lamina propria, represent,
functionally, the GALT, but without organized structures resembling Peyer patches found in the
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mammals. These aggregates of immunocytes play the same role as an effective mammalian GALT.
Together with the epithelial cells, these accumulations may form a microenvironment for food antigen
collecting such as M cells [63]. Accumulations of lymphoid cells and cells producing antibodies
have also been found in areas exposed to pathogens such as the skin epidermis, gills and pharynx,
heart, liver, and pancreas. Generally, in the abovementioned organs and tissues, the plasma cells and
lymphocytes are ultra-structurally similar to those of other ectotherms and endotherms.

Humoral factors are soluble proteins of the plasma and body fluids. These include transferrin,
interferons, protease inhibitors (notably C3 and α2-Macroglobulin), lytic enzymes, proteins of the
three complement pathways (classical, lytic and alternative), pentraxins, natural antibodies (NAbs),
cecropins, and a whole host of cytokine and chemokine signaling messengers, notably IL-1β, TNFα,
IL-2, IL-4, IL-6, IL-18, IFN1, IFN2, IFNγ, Th1, and possibly Th2 cytokines [43,44,64–67].

Bony fish are also the first vertebrates in which appeared genes of immunoglobulin superfamily
molecules, the TCRα/β TCRγ/δ, β2-microglobulin, major histocompatibility complex (MHC) I class
and MHC II class. Vβ, Dβ, Jβ, and Cβ regions are also present. It was suggested that fish TCR may be
close in shape to the ancestral molecule [68]. Teleostean B-cells produce IgM (tetrameric), IgD, and IgT
(also called IgZ) immunoglobulins but not IgA [69–71]. Immunoglobulins of fish are found in the skin,
gut, gill mucus, bile, and systemically in the blood plasma [72].

Finally, it should be noted that physiological reactions, including immunological ones,
are temperature-dependent in fish as in ectothermic animals, but are also affected by fluctuations
in other external stressors such as salinity, photoperiodicity, oxygen concentration, pH changes,
and especially by pollution.

Conversely, several food additives and modifiers of biological activity (especially with
proven immunostimulants effects) [73], particularly β-glucans and also nucleotides [74–78],
and probiotics [79–81] can enhance overall health of especially those fish species that are farmed
in aquacultures.

Mechanism of β-Glucan Action

β-Glucans have been proven to be highly efficient stimulators of the cellular and humoral branches
in mammals and lately in other species, including invertebrates. The best-known effects of β-glucans
consist of the augmentation of phagocytosis of granulocytes, macrophages, and DC. In this regard,
macrophages are considered the basic effector cells in host defense. Most of the PAMP studied activate
antigen-presenting cells together with native T cells into DC and T helper cells [82–85]. During microbial
breakdown/degradation, numerous PAMP may be released initiating inflammatory responses upon
receptor binding and intracellular activation of signal transducers and transcription factors.

The initial step of β-glucan–macrophage interaction is binding to specific receptors present on a
cell membrane. In most animals, several receptors are involved in β-glucan recognition and binding:
toll-like receptor 2 (TLR-2) [86], dectin-1 [87], CR3 (complement receptor 3, CD11b/CD18) [88–90],
lactosylceramide [91], and less defined scavenger receptors. The binding has been confirmed not only
by inhibition via specific antibodies, but also using KO mice [92].

The CR3 receptor, known also as Mac-1 or αMβ2-integrin, is highly promiscuous
pattern-recognition receptors recognizing many other ligands, among them β-glucan.

CR3, known as membrane attack complex 1, is mainly expressed on myeloid cells, such as NK cells,
DC, macrophages, monocytes and neutrophils, and functions as an eliminator to clear iC3b-opsonized
doddery/apoptotic cells as well as pathogens [93]. CR3 is a dimeric integrin consisting of aMb2
(CD11b/CD18), two transmembrane proteins, and can recognize and bind to β-glucans through aM [94].
β2 is responsible for transmitting signal of aM to Syk pathway, resulting in CR3-mediated cytotoxicity
(CR3-DCC) [95]. As the first observed β-glucan receptor, it is not surprising that most of our knowledge
about β-glucan receptor interaction was gained here. The binding is complement-mediated and
requires opsonization by iC3b, as confirmed by detection of iC3b and by direct binding (for review,
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see Bose et al. [88]). Details of the role of complement and β-glucan receptors in macrophage activation
are summarized by Chan et al. [96].

After establishing CR3 as the primary β-glucan receptor, dectin-1 was recognized as another
major β-glucan receptor, present on numerous cell types. Using specific anti-dectin-1 antibodies,
several studies found that this receptor is almost exclusively responsible for binding of β-glucan and
zymosan [97]. Dectin-1 receptor was also shown to be involved in recognition of pathogenic fungi and
in secretion of IL-12. Experiments using antifungal response of NK cells showed that dectin-1 response
to β-glucan binding starts IL-12 production by antigen-presenting cells with subsequent trigger of NK
cells to start IFN-γ production [98]. Major receptors are shown in Figure 1.
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Figure 1. Illustration of the general mode of action of β-1,3/1,6-glucan on leukocytes (neutrophils,
monocytes, natural killer cells, or macrophages). The β-glucan receptors may change according to the
vertebrate species and leukocyte type. Figure kindly provided by Biorigin.

Recently, the focus switched from dectin-1 and CR3 receptors to TLRs, which are receptors with
important roles in innate immunity. Curdlan (water-insoluble linear beta-1,3-glucan consisting of
β-(1,3)-linked glucose residues and forms elastic gel upon heating in aqueous suspension) was found
to act on various cell types via binding to TLR-2. This binding was acting through suppression of
expression of RANKL [99].

Although the mechanisms are unclear, the interaction among β-glucan and receptors might
depend on factors such as solubility, as only insoluble β-glucans cluster dectin-1 receptors with
subsequent expulsion of negative regulators such as CD148 or CD45 [100]. β-Glucan has been found
to active microglia via dectin-1, but the same group later described that nonsoluble β-glucan acted via
TLR-2 and TLR-4 and stimulated reactions, which were unaffected via dectin-1 [101]. The action via
TLRs is probably mediated by suppression of NF-κB activation.

Dectin-1 is a well-researched C-type lectin receptor (CLR) that is responsible for β-glucan
recognition and plays an important role in antifungal infection [102]. It recognizes β (1,3) and β (1,6)
linked β-glucans and the binding strength depends on the size, linkage type, and branching degrees of
the β-glucans [103,104]. This receptor can mediate the activation signal to enhance an immune response
and is called a β-glucan receptor. It is expressed on numerous cell types including DC, macrophages,
monocytes, neutrophils, and T cells. It mainly exists on cell passageways where pathogens can easily
invade and can mediate pathogen recognition and phagocytosis, which play an important role in
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host defense [105]. The activation of dectin-1 will also result in DC maturation, ligand phagocytosis,
respiratory burst, and arachidonic acid metabolization for host defensive immunity [106–108].

To further complicate the situation, some β-glucan can bind to dectin-1 in combination to
extracellular TLR [108]. This process might first involve activation of dectin-1 and subsequent
complexation of TLR, as described with TLR-2, TLR-6 [34], and TLR-4 [109]. A detailed study using
cells coexpressing dectin-1 with TLR-2, TLR-4, or TLR-5 found not only the differences in activity
of soluble and nonsoluble β-glucans, but also that the immune effects of β-glucan differed based on
the dectin-1/TLR combination [110]. This might explain at least some of the differences in β-glucan
activities. Even less clear claims were raised by Su et al. [111], who found that a (1-6)-(1,4)-β-d-glucan
inhibits cytokine production and that this activity is mediated via binding to TLR2 but not to dectin-1
or CR3 receptors. This study is confusing not only due to the rather unusual binding patterns, but also
due to the first description of inhibition of cytokine synthesis by β-glucan. So far, all β-glucans either
stimulated cytokine production or, as seen with betafectin, had no effects.

Latest experiments suggested the role of programmed cell death protein 1 (PD-1)
immuno-checkpoints and the involvement of c-Maf. Treatment withβ-glucan reduced c-Maf expression
in M2 macrophages together with reduction of some populations of monocytes. In clinical trials,
the same treatment decreased the numbers of inflammatory monocytes and increased the numbers of
classical “patrolling” monocytes responsible for regulation of tumor metastases. These data suggest
the possible benefits of targeting immunosuppressive macrophages and offer a new look at possible
mechanisms of β-glucan action [112]. The pathways in which β-glucans mediate their activity in fish
are not fully elucidated but, as expected by the well-conserved innate system, so far appear similar to
that of mammals.

Complement protein C3 and lectins (possibly dectin-1 homologues or similar) have been identified
as β-glucan pattern recognition receptors, as well as a β-glucan pattern recognition receptors on
salmon macrophages and catfish neutrophils [43]. In a model of regulation of a gene expression profile,
the typical signaling pathway associated with CLR activation and the identification of several candidate
β-glucan receptors suggested that immunomodulatory effects of β-glucan in carp macrophages could
be a result of signaling mediated by a member of the CLR family [113]. TLR homologues have also
been described in Atlantic salmon, Zebrafish, flounder, goldfish, and pufferfish [44].

However, the situation in fish is less clear. So far, no clear homologue of dectin-1 has been found.
A detailed study of β-glucan recognition by fish cells suggested possible receptors belonging to the
CLR family [113]. An analysis of the carp genome found 239 genes encoding proteins with some C-type
lectin domains, but even after additional analysis, no receptor was found on macrophages. Therefore,
even when CLR family is the most promising β-glucan-binding moiety, the exact mechanisms of
β-glucan recognition in fish are still unclear. However, effects of curdlan, β-glucan known to bind to
dectin-1, suggest the presence of a similar binding side. Detailed studies found several candidates
with similar protein architecture. Subsequent mining of the zebrafish genome revealed two genes as
candidate β-glucan receptors [113]. With respect to the CR3 receptor, there is only indirect proof of the
existence of this receptor in fish.

5. Routes of β-Glucan Administration

β-Glucans can be administered internally and externally in a number of different routes such as
intravenous, intraperitoneal, or subcutaneous (parenteral) injections; orally; bathing; or as part of a
cream [114–116]. Efficacies of different routes (intraperitoneal injection, bathing, and oral administration)
have been tested. In a model with Cyprinus carpio, fish were fed with β-glucan and LPS to investigate
survival and immune response after challenged with Aeromonas hydrophila. Intraperitoneal injection
showed 100% relative percentage survival at all concentrations ofβ-glucan, whereas oral administration
showed high relative percentage survival at higher concentrations (1% β-glucan + 0.25% LPS),
but bathing did not improve relative percentage survival levels [117]. In a model of streptococcus
caused by Streptococcus iniae, a formalin-killed vaccine was applied in red tilapia by injection, immersion,
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and oral vaccination. The result from the study indicated that the best route regarding efficacy was
through intraperitoneal injection and that soluble β-glucan increased further the effectiveness of the
vaccine [118].

5.1. Injection

The protective effect of β-glucan injection in a dose-dependent response has been demonstrated
in different species against several infections [119–121]. The intraperitoneal injection certainly is an
effective method to deliver β-glucan and stimulate the immune system but is not the most practical
method. For example, a single dose of β-glucan injected intraperitoneal in rainbow trout resulted
in a level of protection against infection with the microsporidian, Loma salmonae, similar to the level
of protection induced by a 3-week feeding trial using 10 times higher concentrations of β-glucan.
Interestingly, the effects of the single intraperitoneal injection could be measured for a prolonged
period of up to 9 weeks in vivo [122] and up to 20 days ex vivo (no further time points measured) [123].
This concept may explain the application of β-glucan as a vaccine adjuvant. Glucan does not need to
be a direct part of the vaccine, it can serve as an important supplement, as shown by experiments that
found significant enhancement of the immersion efficacy on inactivated herpesvirus vaccine in Gibel
carp [124].

Phagocytes could be responsible for long-lived effects induced by β-glucans since intraperitoneal
injection with β-glucan leads to an increase in oxidative burst, phagocytosis, and lysozyme activity
of macrophages in Atlantic salmon [123]. In addition to this, another study showed that increased
macrophage activity was still measurable at 10–20 days post-injection, providing clear indications that
single intraperitoneal injections with β-glucans can induce long-lived effects in fish [125].

Due to this immunomodulator action, β-glucans have been extensively studied as vaccine
adjuvants or as vaccine delivery systems [126–128]. In a model with Vibrio damsela vaccine,
turbot (Scophthalmus maximus L.) were injected prior, together, and post-application of yeast β-glucan.
The highest activity among all the immune parameters was obtained when β-glucans were injected
after the bacterin application. The finding of this study indicates that the sequence of β-glucan
administration is critical in order to use β-glucan as a vaccine adjuvant [129].

Apart from the studies about adjuvant activity of β-glucan in vaccine formulation directly,
pattern antigens such as ovalbumin (OVA) or bovine serum albumin (BSA) are commonly combined
to investigate the adjuvanticity and mechanism of β-glucans. When microparticulate β-glucan (MG)
was covalently conjugated to OVA or BSA and administered to animals, the MG-antigen complex
was phagocytosed by DC or macrophages via specific receptors that recognize β-glucan, then resided
in vesicles and presented by MHC II to activate CD4+ T cells or by MHC I to activate CD8+ T cells
through cross-presenting, and the expression of costimulatory molecules, such as CD25, CD69, and B7,
were upregulated to strengthen the activation signals [130].

5.2. Dietary

Orally delivered β-glucans make their way to the gastrointestinal tract, where they must first be
captured into the circulation before being conducted the bone marrow. The linear β (1,3) backbone
ends up undigested in the proximal part of the intestine, where a proportion is captured by M cells
in cooperation with neutrophilic granulocytes or macrophages and degraded by the latter under a
reactive oxygen species-driven process [131]. Despite the low systemic blood levels of β-glucans
(less than 0.5%), significant systemic immunomodulating effects in terms of humoral and cellular
immune responses were demonstrated [96]. In addition, the higher part of the non-digestible β-glucans
may induce alterations in the composition of the gut microbiota, thereby indirectly influence the local
immune system or the bacterial community in the gut. These effects are most probably manifested
through decreasing Firmicutes and increasing Akkermansia populations. This bacterial community may
help to digest non-digestible oligosaccharides, such as β-glucans, into short-chain fatty acids with a
physiological effect of their own [132]. Taken together, these different paths can help explain part of the
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previously described effects of β-glucans. In short, in promoting hepatic glycogen synthesis through
improving IRS/Akt insulin signaling pathway, inhibiting the sodium-glucose linked transporter 1
(SGLT-1) expression in intestines and decreasing blood glucose, suppressing macrophage infiltration in
adipose tissues, and decreasing of TNF-α in blood and muscles [133]. A seven-week supplementation
of carp (Cyprinus carpio) with β-glucan did not stimulate expression of bactericidal innate immune genes
but changed bacterial composition in the gut [134]. Some studies suggested that the effects of β-glucan
might not be strong enough to elevate the immune response of fish. However, the simultaneous
use of oxytetracycline with β-glucan supplementation ameliorated the immunosuppressive effects
of antibiotics and help protect fish against bacterial infections [135]. The stimulation resulting from
β-glucan supplementation is dependent on numerous factors including dose, time of supplementation,
water temperature, and species [136]. In vitro experiments showed the high doses of β-glucan inducted
apoptosis in primary cells isolated from carp pronephros, but the doses routinely used in aquaculture
do not induce apoptosis, but stimulate immune system [136]. The short-term feeding with β-glucan
did not change expression of immune genes in striped catfish (Pangasianodon hypophthalmus), but after
subsequent challenge with Edwardsiella infection, the β-glucan-supplemented group showed significant
stimulation of immune genes in all tested organs [137]. These results suggest that the effects of β-glucan
feeding in healthy adult fish are minimum, but this feeding has immediate effects even 24 h after
infection. Similar results were found in case of juvenile pompano (Trachinotus ovatus), where the effects of
β-glucan feeding to healthy individuals were small, but after infection with Streptococcus iniae, β-glucan
offered significant protection [138]. A model of silver catfish (Rhamdia quelen) and Aeromonas hydrophila
infection offered similar results [139]. In general, these studies demonstrated a lack of β-glucan effects
when fish are in resting and a significant and positive effect when fish are exposed to a disturbance in the
homeostasis, usually by stimuli such as stress [140], immunological challenges by pathogens [137,138]
or chemicals (“immunocompromised”) [141]. Therefore, authors should consider this point to discuss
the lack of β-glucan effect in resting.

The orally delivered pathway is much slower and said to have a less profound effect than
injectable methods. However, this is often a more practical method as β-glucans can simply be added
to food/feed [94,115,141–143]. For example, Rodriguez et al. [140] fed salmon a diet supplemented with
β-glucan and found that the β-glucan diet potentiated the immune response to vaccine by increasing
innate and adaptive immune responses through the transcription of key cytokine genes such as INF-γ
and IL-12.

In sea bass fed with β-glucans for 4 or 8 weeks, pyrosequencing of the intestinal microbiota
revealed a transient alteration at the family taxonomic level in the composition of the autochthonous
microbiota [144]. It took a period of 4 weeks to completely shift the dominance within the microbial
communities, which returned to the original composition after another 4 weeks of feeding. The data
presented in these studies imply that effects of oral administration of β-glucans on the microbial
composition in the gut are present but could be transient and require further investigation. In line with
these findings, the effect of long-term feeding with β-glucans on TLR3 expression in the gut of carp
could also be due to an indirect effect of β-glucans on the composition of the microbiota [125].

Studies investigating the effects of β-glucans on maintaining the integrity of the gut have found no
adverse effects and provide evidence for an assumed favorable increase in frequency of mucus-secreting
cells in the epithelial barrier [145,146]. Approaching this subject, oral administration of β-glucans to
rainbow trout appears to downregulate the expression of immunoregulatory genes (e.g., IL-1β and
lysozyme) in the presence of a microbial stimulus [147,148], but upregulate the expression of such
genes (e.g., IL-1β and cathelicidins) in the absence of a microbial stimulus [146,148]. These apparent
contrasting effects of β-glucans on the expression of immunoregulatory genes, in the presence or
absence of a microbial stimulus, could possibly help explain the variable outcomes with respect to
increased resistance against pathogens [125].

In most of the studies performed on bass species, oral administration of β-glucans not only
increased innate immune parameters, such as phagocytic capacity and oxidative burst, lysozyme
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and complement activity [149–152], but also protected against challenge with numerous bacterial
pathogens including Aeromonas hydrophila and Vibrio alginolyticus [149,151].

Bagni et al. [153] reported duration-dependent effect of dietary application where significant
elevation of serum complement activity in sea bass fed with β-glucans at 15 days was seen; however,
serum lysozyme, gill, and liver heat shock protein concentrations were enhanced at 30 days. Long-term
use had no significant impact on innate and specific immune parameters, survival, growth performances,
and conversion index in treated and control fish. Continuous feeding with β-glucans for a number of
subsequent days also appears to induce long-lived effects on the immune system of fish. For example,
rainbow trout fed with β-glucans for a period of 2 weeks still showed higher antibody responses after
vaccination against enteric redmouth disease and higher concanavalin A-induced proliferation of head
kidney derived leukocytes 4 weeks after switching back to a control diet [154]. Grouper fed a diet
containing a mixture of mushroom-derived β (1,4) (1,3) and β (1,6) glucan for a continuous period of
12 days still showed higher protection against challenge with Vibrio alginolyticus 15 days after switching
back to a control diet [149].

Continuous administration of β-glucans generally appears to result in an increased expression
of pro-inflammatory genes, with a gradual decline over time depending on, among others, route of
administration and immune organ under investigation [155,156]. Oral administration (25 days) of
β-glucans can result in the upregulation of anti-apoptotic genes in gut and head kidney, and of both
anti- and pro-apoptotic genes in the spleen of common carp [157]. The effects of β-glucans on apoptosis
were further investigated and show that, in vitro, β-glucans can have a significant effect on apoptosis,
but only at very high concentrations [136]. Taken together, these findings support the notion that oral
administration of β-glucans may modulate the intestinal immune response and protect cyprinid fish
from an acute (over)reaction [155,158].

In an in vitro study, head-kidney macrophages of pink snapper (Pagrus auratus) pre-incubated with
commercial β-glucan (EcoActiva) and subsequently exposed either by phorbol myristate acetate (PMA)
or LPS resulted in significant stimulation of superoxide anions and respiratory burst activity compared
to induction of macrophage with EcoActiva alone [159]. The result of this study demonstrates that
feeding of β-glucan may enhance the recognition of LPS present in the cell wall of Gram-negative fish
pathogenic bacteria resulting in improved killing efficiency of macrophages of these pathogens [160].
In another study, oral administration of EcoActiva in pink snapper increased macrophage O2 radicals
especially in wintertime, but no enhancement in classical and alternative pathway activities was seen,
indicating wintertime to be the most favorable to feed snappers for disease resistance [161].

Yeast β (1,3)(1,6) glucans have been used for in vitro and in vivo experiments to study
degranulation of primary granules in fish neutrophils [162]. β-Glucan supplied to nonstress (NS),
acute stress (AS), and chronically stressed (CS) fish showed increase degranulation in NS and prevented
decrease of degranulation in AS, whereas in CS fish, degranulation reached NS level after 3 days of
feeding in fathead minnows (Pimephales promelas, Rafinsesque). These results indicate that β-glucan
supplementation to fish diet prior to AS and during CS can enhance neutrophils function and increase
disease resistance and survival rate [154].

Large yellow croaker were fed with diets supplemented with 0% (control), 0.09% (low),
and 0.18% (high) of β (1,3) glucan for 8 weeks; the results showed low β-glucan levels enhanced fish
growth, while high levels significantly enhanced the lysozyme activity. Respiratory burst activity
in head-kidney macrophages was enhanced with low concentration of β-glucan. Overall growth,
lysozyme, phagocytosis, respiratory burst, and protection against Vibrio harveyi were enhanced but
there was no effect on alternative complement pathway [163].

Dietary supplementation of aflatoxin (AFB1) in fish showed reduced immunity with affected
biochemical parameters related to organ damage. Nile tilapia immunocompromised with aflatoxin
(200 Lg/feed aflatoxin B1) and fed for 21 days with diet supplemented with 0.5% ofβ (1,3) glucan showed
enhanced resistance against Streptococcus iniae and improved non-specific immunity levels compared to
AFB1 non-treated fish. Superoxide anion, myeloperoxidase, phagocytic activity, and hemagglutination
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were also increased [164,165], and the authors concluded that the use of β (1,3) glucan as feed
supplement resulted in enhanced immune response in immunocompromised fish.

Cyclophosphamide, a multifunctional alkylating agent, as well as a cytotoxic drug and a
well-known immunosuppressant, was used to induce an immunocompromised state in Asian catfish
(Clarias batrachus) [164,165]. The cyclophosphamide-treated fish showed lowered levels of respiratory
burst, myeloperoxidase, and phagocytic activities in blood phagocytes, and decreased hemagglutination
activity. β-Glucan delivered as feed supplement significantly enhanced these immune parameters.
Taken together, the use of β-glucan may have advantages during immunosuppressive states, such as
during physiological and environmental stress. The feed manufacturers are also advising to use feed
with immunostimulants during such circumstances [166].

Overall, it is becoming clear that oral administration of β-glucans stimulates the innate immune
system of cyprinids as it stimulates the innate immune system of salmonid and perciform fish species,
suggesting that the capacity to stimulate the innate immune system of fish is a capacity intrinsic to
(large molecular weight) β-glucans [125].

Kock et al. (manuscript in preparation) fed Nile tilapia for 0, 15, 30, or 45 days with a diet containing
0.1% of β-glucan (MacroGard), and evaluated the growth performance at the end of the feeding trial,
and the innate immune function immediately after the feeding trial, and 7 and 14 days post-treatment
(i.e., withdrawal period). The authors found that independent of the administration periods, fish fed
with β-glucan had relatively higher innate immune responses, such as lysozyme activity in plasma,
liver, and intestine and respiratory burst, compared to control and, overall, these differences became
smaller over the withdrawal period. Moreover, at day 10 post-treatment, fish were challenged with
bacteria (Aeromonas hydrophila); the control group had early mortalities (2 vs. 4–5 days post-infection,
respectively) and lower survival rate (60% vs. 80%, respectively) compared to fish fed with β-glucan for
15 or 30 days, and, interestingly, fish fed for 45 days withβ-glucan had no mortality. This study indicates
that independent of the administration periods (i.e., 15 to 45 days), the β-glucan improved the innate
immune responses and tilapia resistance to disease, and this protection could be observed up to 10 days
post-treatment. The most relevant is that long-term administration did not cause immunosuppression
as previously hypothesized due to an exhaustion of the immune system, but surprisingly promoted an
even better growth and immune performance.

Regarding the period of administration, some studies have proposed that the longer administration
may cause an overstimulation or a distress generated by the high energy cost due to prolonged
exposure to β-glucan [21,167–169]. However, none of the studies that compared periods of β-glucan
administration [149,153,170–175] found evidence that longer administration periods (up to 56 days)
negatively impact the immune system. The studies that reported a negative effect used a high
dietary inclusion level (e.g., >0.1%) or injected fish. These treatment protocols may have led to
an exacerbated/toxic amount of β-glucan [163,167,174,176]. Taken together, these findings indicate
that longer administrations periods (i.e., >4 weeks) can be beneficial at a low dose, reinforcing the
hypothesis suggested by Ai, Mai, Zhang, Tan, Zhang, Xu and Li [163], Douxfils, Fierro-Castro, Mandiki,
Emile, Tort and Kestemont [174], and Do Huu, Sang and Thanh Thuy [175] that immunosuppression
may be caused by high dose.

5.3. Bath

A potentially interesting alternative application of immunostimulation induced by β-glucans is
provided by the immersion treatment. For example, a short β-glucan bath of 3 min in fertilized eggs or
gametes of chum salmon (Oncorhynchus keta) was sufficient to provide significant protection against
infection with Saprolegnia spp., [177]. This finding was supported by the observation that both pro-
and anti-inflammatory genes were upregulated after immersion of rainbow trout fry in a solution
containing β-glucan [178].

It is essential to know the correct dosages of immunostimulants and appropriate administration
route to achieve the desired results. Chinook salmon were fed with a diet containing 0%, 0.01%, 0.1%,
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and 1.0% of β-glucan for 7 days or immersion administration of β-glucan, and thereafter fish were
bath challenged with Aeromonas salmonicida. Diet containing 0.1% and 1.0% of VitaStim-Taito glucan
resulted in significant protection against A. salmonicida, but no significant protection was noted in any
of the group bath treated [179].

Administration of β-glucans by immersion, as modulators of mucosal surfaces of the skin or
gills, could be a promising new area of research, especially now that tools to reliably measure mucosal
immunity are becoming available [180]. Possible explanations for immunostimulating effects ofβ-glucan
immersion baths could be sought, for example, in effects on the composition of microbial communities
in the skin mucus [181] or increased local populations of alternatively activated macrophages expressing
a healing phenotype [182].

A summary of β-glucan effects on fish is shown in Table 1.



Molecules 2020, 25, 5378 13 of 33

Table 1. Major effects of feeding with β-glucan.

Species Dose Trial Duration Main Effects Reference

Atlantic salmon
(Salmo salar) 500 or 1000 mg/kg diet 70 days MacroGard reduced the number of lice-infested fish by 28%. Refstie, et al. [183]

Red tilapia
(Oreochromis niloticus x

O. mossambicus)

Vaccine with adjuvant,
the vaccine was emulsified
in an equal volume of 2%

28 days MacroGard increased the effectiveness of vaccine produced
from Streptococcus iniae in fish. Suanyuk and Itsaro [118]

Common carp
(Cyprinus carpio) 10 mg/kg body weight 14 days

β-Glucan feeding did show significant effects on both CRP and
complement profiles, suggesting that MacroGard stimulated
CRP and complement responses to A. salmonicida infection in

common carp.

Pionnier, Falco, Miest,
Frost, Irnazarow, Shrive

and Hoole [156]

Persian sturgeon
(Acipenser persicus) 0.1, 0.2, or 0.3% 6 weeks

Lysozyme activity and ACH50 were significantly higher in 0.2%
and 0.3% β-glucan fed fish. Elevated growth performance

(final weight, specific growth rate, and food conversion ratio)
was observed in fish fed 0.1; 0.2, or 0.3% β-glucan compared to

the control group.

Aramli, Kamangar and
Nazari [25]

Pompano fish
(Trachinotus ovatus) 0, 0.5, 1, 2, or 4 g/kg diet 8 weeks

β-Glucan supplementation is effective for improving growth,
intestinal Vibrio counts. Fish fed 0.05% or 0.20% β-glucan

showed better resistance against salinity.

Do Huu, Sang and Thanh
Thuy [175]

Common carp
(Cyprinus carpio) 100 µg/mL (in vitro) Not mentioned

β-Glucans stimulate carp macrophages to increase the
production of reactive oxygen and nitrogen radicals and affect
the expression patterns of cytokine genes that can differ among

activated pattern recognition receptors.

Pietretti, et al. [184]

Atlantic salmon
(Salmo salar) 0.1% 35 days

Results showed that the tested β-1,3/1,6-glucan diets increased
the levels of transcripts of key genes involved in innate and

adaptive immune response of salmon, potentiating the response
to a model vaccine and also antagonizing the effects of hypoxia

Rodriguez, Valenzuela,
Farias, Sandino and

Imarai [140]

Nile tilapia
(Oreochromis niloticus)

0.1% β-glucan + 600 mg
vitamin C

7, 15, 30, or 45 days
before challenge

Diet supplemented with 0.1% of β-glucan and 600 mg of
vitamin C/kg fed for at least 15 days is recommended especially

when fish are likely to encounter transport-induced stress.
Barros, et al. [185]
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Table 1. Cont.

Species Dose Trial Duration Main Effects Reference

Nile tilapia
(Oreochromis niloticus) 0.1% of each glucan 30 days

Different β-glucan samples exhibited biologically differently
behaviors, but both increased the resistance against bacterial
infection. Specifically, BG01 increased immunostimulation,

while BG02 improved growth performance.

Pilarski, Ferreira de
Oliveira, Darpossolo de
Souza and Zanuzzo [11]

Turbot
(Scophthalmus maximus)

0.5 g/L MacroGard
(Artemia enrichment)

13 days post
hatching

Mortality was significantly reduced by 15% and an alteration of
the larval microbiota was observed. At 11 DPH, gene

expression of trypsin and chymotrypsin was elevated in the
MacroGard fed fish, which resulted in heightened tryptic

enzyme activity. MacroGard induced an immunomodulatory
response and could be used as an effective measure to increase

survival in rearing of turbot.

Miest, et al. [186]

Matrinxa
(Brycon amazonicus) 0.1% β-glucan 15 days

β-Glucan modulated the cortisol profile prior to and after the
stressor, increasing the number and activity of leukocytes.

Our results suggest that β-glucan-induced cortisol increase is
one important mechanism to improve the innate immune

response in matrinxa.

Montoya, et al. [187]

Nile tilapia
(Oreochromis niloticus)

0.1, 0.2, 0.4, or 0.8% and
vitamin C (400 or
600 mg/kg diet)

60 days 0.1–0.2% β-Glucan and 600 mg/kg vitamin C increased fish
resistance to stress. Barros, et al. [188]

Nile tilapia
(Oreochromis niloticus)

0.1 or 0.2% of
β-1,3/1,6-Glucans

21 successive days
prior to bacterial

challenge and
during the seven
days of sampling

β-Glucan can modulate the antioxidant, inflammation, stress,
and immune-related genes in Nile tilapia, moreover, 0.2%
β-glucans showed better protective effect with Streptococcus

iniae challenge.

Salah, et al. [189]

Carp (Cyprinus carpio) 10 g MacroGard kg-1 diet 14 days prior
bacterial application

In β-glucan fed carp, mucus was quickly released from the
intestinal goblet cells and was probably washed out of the gut
together with a high number of intestinal bacteria. This could

indicate a form of protection against bacteria.

Jung-Schroers, et al. [190]

Atlantic salmon
(Salmo salar)

15 mg/kg of fish
(intubated fishes) Not mentioned This study provides some clues on the mechanisms by which

the β-glucan evokes response in the fish, at the intestinal level. Kiron, et al. [191]
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Table 1. Cont.

Species Dose Trial Duration Main Effects Reference

Carp (Cyprinus carpio) 1% of feed 14

β-Glucan can boost the host innate immune defense by
inducing neutrophil extracellular trap formation and by

stabilizing neutrophil extracellular traps against bacterial
nuclease degradation, and thereby reduce the severity of an

infection of A. hydrophila.

Brogden, et al. [192]

Carp (Cyprinus carpio) 20 mg/mL in in vitro
head-kidney cells Not mentioned β-Glucan stimulation of scratch-wounded fibroblasts cultures

did not enhance wound recovery.
Vera-Jimenez and Nielsen

[193]

Carp (Cyprinus carpio) 20 mg/mL in in vitro
head-kidney cells Not mentioned

Both methods compared during this study, showed the capacity
to detect and measure the respiratory burst response of carp

head kidney cells after stimulation with β-glucans.
Vera-Jimenez, et al. [194]

Rainbow trout
(Oncorhynchus mykiss) 0; 0.1; 0.2; 0.5% of feed 15 × 30 days

Feeding low doses of β-glucans may help to boost immune
function in case of a bacterial infection, especially the

inflammatory response, while feeding high doses of β-glucans
may result in a more or less rapid stress and immune

exhaustion or feedback regulation, making appropriate
response to subsequent pathogenic threat impossible.

Additionally, the effects of β-glucans on the immune-related
gene expression mainly concern spleen tissue, both prior and

after bacterial infection, suggesting a targeted reinforcement of
immune functions in this organ.

Douxfils, Fierro-Castro,
Mandiki, Emile, Tort and

Kestemont [174]

Matrinxã (Brycon
amazonicus) 0.1% on feed 15 Inclusion of β-glucan in fish diet may help to prepare them to

face stressful practices in fish farming. Montoya, et al. [195]

Carp (Cyprinus carpio) 0.1; 1.0; 2.0% of feed 14 and 28

Dietary MacroGard may affect the composition of the carp
intestinal microbial communities. Furthermore, positive effects
on intestinal microvilli length and density were also observed.

Indeed, these changes at 1% and 2% MacroGard
supplementation might be contributory factors to the improved
growth performance recently observed in carp fed 1% and 2%

dietary MacroGard.

Kuhlwein, et al. [196]
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Table 1. Cont.

Species Dose Trial Duration Main Effects Reference

Juvenile Pompano
(Trachinotus ovatus) 0.1; 0.2% of feed 21 + 10 challenge

Supplementation of β-glucan in the diet is beneficial in boosting
nonspecific immunity, growth performance, survival rate, and
tolerance to Streptococcus iniae infection of pompano T. ovatus.

The addition of 0.10% of β-glucan to the pompano diet is
recommended to boost disease resistance, immunity,

and growth performance.

Do-Huu, Nguyen and
Tran [138]

Juvenile pompano
(Trachinotus ovatus)

0; 0.05; 0.1; 0.2; 0.4; 0.5%
of feed 56

The results of the present study confirmed that supplementation
of β-glucan in the diet could improve the growth,

protein content in flesh, feed conversion ratio, feed conversion
efficiency, protein efficient ratio, and protein productive value
in pompano, T. ovatus. It is recommended that supplementation
of 0.5–1.0 g/kg β-glucan in the diet to obtain maximal growth,
feed utilization and protein utilization of juvenile pompano.

Do-Huu, et al. [197]

Carp (Cyprinus carpio) 0.1% in vivo
42 days. Fish were

sampled every week
from week 2 to 6.

Application of MacroGard after the third week post hatching
resulted in a significant increase in classical complement

activity when compared to fish fed the control diet. The results
demonstrate that feeding with β-glucan enriched diet enhances

the immune defense parameters of juvenile carp.

Sych, et al. [198]

Carp (Cyprinus carpio) 6 mg/kg in vivo 14 days

β-Glucan supplemented diet administered to common carp
decreased the transcript levels of several pro-inflammatory

cytokines in gut and head kidney tissues. The infection with
A. salmonicida did not modify this tendency in gut. Levels of

TNFα1, TNFα2, IL-1β, and IL-6 became significantly higher in
fish fed β-glucan supplemented diet at 6 h post infection.

Such differential effects may reflect the complex interactions
between the bacterium and the immunostimulant relationship

with the inflammatory response of the host.

Falco, Frost, Miest,
Pionnier, Irnazarow and

Hoole [155]

Carp (Cyprinus carpio) Not mentioned Kidney cells
incubated for 30 min.

β-Glucan stimulated the kidney derived neutrophil to produce
more neutrophil extracellular traps and entrapped a

significantly higher percentage of bacteria than the head kidney
derived neutrophil extracellular traps.

Brogden, et al. [199]
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Table 1. Cont.

Species Dose Trial Duration Main Effects Reference

Carp (Cyprinus carpio) 0–1000 µg incubated for 6,
24, and 48 h (in vitro)

pronephric primary
cell culture

(in vitro test)

With the concentration higher than 500 µg, MacroGard induces
to a higher percentage of apoptosis in vitro. Miest and Hoole [136]

Pacu
(Piaractus mesopotamicus) 0.1% 15 days

The results of the present study provide additional evidence
that β-glucan modulated not only the immune system, but also
the release of cortisol. The β-glucan modulated cortisol levels
differently after transport and after inoculation of pacu with

Aeromonas hydrophila. Up to 24 h after transport, β-glucan
increased the levels of cortisol, while in fish that were

additionally inoculated with the bacterium, the elevation of the
hormone levels was prevented. In inoculated fish, with reduced
levels of cortisol because of β-glucan, we observed a reduction

of monocytes (3 h after inoculation) and a reduction of
lymphocytes as well as enhanced complement system activity

(24 h).

Marinho de Mello, et al.
[200]

Zebrafish (Danio rerio) 12.5 mg/kg BW or
0.35 g/kg of feed

14 days
(after amputation)

Results showed that 1,3–1,6 β-glucans decreased fish mortality
rate and enhanced both daily and cumulative regenerated fin

area, independent of the ß-glucan extraction method used.
Based on the mechanisms similarities of the innate immune

system and tissue regeneration among different teleost species,
these results may likely be extended to species of interest for the

aquaculture sector.

Fronte, et al. [201]

Nile tilapia
(Oreochromis niloticus) 100 mg/L (added in water) 8 days

Larvae that received the β-glucan treatment were ~20% heavier
(10.2 mg—control; 12.3 mg—β-glucan) and ~8.5% longer
(0.82 cm—control; 0.89 cm—β-glucan) compared to the

control larvae.

de Jesus, et al. [202]

Carp (Cyprinus carpio)

0.1 µg/mL (a stock
solution was prepared

(0.5 g MacroGard/500 mL
Milli-Q water)

14 days

The images showed significantly faster wound contraction in
both treated groups compared to the control. The obtained
results clearly demonstrated that β-glucan enriched bath

promotes the closure of wounds in common carp and induced a
local change in cytokine expression.

Przybylska-Diaz, et al.
[203]
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Table 1. Cont.

Species Dose Trial Duration Main Effects Reference

Carp (Cyprinus carpio) 0 1% diet or 10 mg glucan
per kg body weight. 25 days

β-Glucan mediated protection against viral diseases could be
due to an increased TLR-3 mediated recognition of ligands,
resulting in an increased antiviral activity of macrophages.

Falco, Miest, Pionnier,
Pietretti, Forlenza,

Wiegertjes and Hoole [158]

Rainbow trout
(Oncorhynchus mykiss) 0, 0.1, 0.2, and 0.5% in food 15 versus 30 days

Results suggest that spleen may be a highly responsive organ to
dietary β-glucans both in healthy or infected fish, and that this

organ may therefore significantly contribute to the immune
reinforcement induced by such immunostimulatory diet.

Our study further reveals that overdoses of β-glucans and/or
prolonged medication can lead to a non-reactive physiological

status and, consequently, to a poor immune response.

Douxfils, Fierro-Castro,
Mandiki, Emile, Tort and

Kestemont [174]

Atlantic salmon
(Salmo salar) 1 g/kg feed 12 weeks before

vaccination

Dietary supplementation decreased mortality in both
unvaccinated and vaccinated M. viscosa-challenged fish

compared to the non-supplemented groups. Similarly, mortality
of infectious salmon anemia virus-challenged fish decreased

from 87.5% in vaccinated fish without supplementation to 70.9%
in the supplemented and vaccinated group (RPSend 26.4).

Filho, et al. [204]

Pacu
(Piaractus mesopotamicus)

0.1% β-glucan or diet
containing 1% β-glucan

7 days before
inoculation

Feeding β-glucan up to 7 days significantly increased resistance
against A. hydrophila, as well the leukocytes production and

lysozyme activity of pacu suggesting benefits of the use of this
immunostimulant in the farming of this species.

Biller-Takahashi, et al.
[205]

Mirror carp
(Cyprinus carpio L.)

0% (control), 0.1%, 1%,
or 2% MacroGard 8 weeks

High dietary inclusion levels of β-glucan can enhance growth
performance and localized intestinal leucocyte infiltration in the
anterior intestine of mirror carp without detrimental effects on

carcass composition, intestinal morphology, or the
hemato-immunological parameters investigated.

Kuhlwein, et al. [206]

Carp (Cyprinus carpio) 6 mg/kg live weight 25 days

The 25-day period of β-glucan oral administration induced and
enhanced an immune response in carp, and subsequent
lipopolysaccharides and polyinosinic:polycytidylic acid

injections significantly affected carp C-reactive protein and
complement responses.

Pionnier, et al. [207]
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Table 1. Cont.

Species Dose Trial Duration Main Effects Reference

Carp (Cyprinus carpio) 10 g MacroGard/kg
live weight 14 days

In the present study, it is shown that feeding carp with a diet
supplemented with MacroGard for a period of 2–3 weeks

significantly raised the diversity and significantly altered the
composition of the microbial community in the gut and,

therefore, could be health promoting for this species.

Jung-Schroers, et al. [208]

Silver catfish
(Rhamdia quelen)

0.01% of β-glucan or 0.1%
of β-glucan 28 days

The addition of β-glucan to the diet improved natural
complement hemolytic activity, reduced bacteremia levels and,

most importantly, increased fish resistance to challenge with
A. hydrophila.

Di Domenico, Canova,
Soveral, Nied, Costa,

Frandoloso and Carlos
[139]

Rainbow trout
(Oncorhynchus mykiss)

0.1 mg MacroGard/L
water (bath). 14 days (as a bath) Prolonged healing dynamics of rainbow trout muscle wounds

and a very limited response to stimulation with β-glucans. Schmidt, et al. [209]

Common carp
(Cyprinus carpio)

25 µg/mL (in vitro study,
macrophage stimulation) —–

The identification of several candidate β-glucan receptors
suggests that immune-modulatory effects of β-glucan in carp

macrophages could be a result of signaling mediated by a
member of the C-type lectin receptor family.

Petit, Bailey, Wheeler,
de Oliveira, Forlenza and

Wiegertjes [113]

Nile Tilapia
(Oreochromis niloticus) 1 g MacroGard/kg diet

β-glucan for 4 weeks
and then switching
to the basal diet for

2 weeks

Tilapia continuously fed the β-glucan supplemented diets had
improved weight gain and feed efficiency than those fed the

control diet uninterrupted or switched from the β-glucan.
Feeding tilapia β-glucan for 4 w and then switching to the basal
diet for 2 w caused a significant increase in the respiratory burst,
but other immune parameters were unaffected. No differences
in survival to S. iniae infection occurred between dietary groups.

Welker, et al. [210]

Silver catfish (Rhamdia
quelen)

0.1% (0.1 mg/L) or 0.5%
(0.5 mg/L) 28 days Results indicate that in silver catfish, wound healing occurs

rapidly and improves greatly by daily bathing with β-glucan.
Dos Santos Voloski, et al.

[211]
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6. New Insights about the Use of β-Glucan in Aquaculture

β-glucan seems to affect more physiological conditions than “only” the immune system. A study
of rainbow trout (Oncorhynchus mykiss) given a food supplement for 60 days and using proteomic
analysis, found changed expression of structural muscle proteins. The authors speculate that these
alterations might be responsible for improved growth rate in fish [212].

Among direct effects on improvement of various immune reactions, β-glucan supplementation
can have additional nutritional effects including amelioration of toxic effects caused by deltamethrin.
Experiments using Nile tilapia showed improved cortisol levels and significantly reversed inflammatory
and transcriptomic damages caused by the toxin [213]. In addition, β-glucan feeding ameliorate cold
stress-related mortality in Pangasianodon hypophthalmus [214], but glucose and cortisol levels remained
unchanged. Environmental stress caused by either overcrowding or by environmental pollution, is one
of the problems the current aquaculture suffers from. Food supplementation with β-glucan was found
to improve ammonia-related stress in Oreochromis mossambicus via improvements of cellular, humoral,
and antioxidant response [215].

Recent insights in the field of innate immunity provide indications that β-glucans could also
have effects for a longer period, possibly explained by the phenomenon of ‘trained immunity’ [125].
At present, the strict absence of a form of memory for innate immune responses is challenged by a
new concept named trained immunity, which is characterized by three criteria: (i) it can be induced
after a primary infection or immunization and subsequently provide protection against a secondary
infection in a T- and B-lymphocyte independent manner; (ii) it may be less specific than the adaptive
immune response but still confers increased resistance upon reinfection of the host; and (iii) innate cell
types, such as macrophages and NK cells, are key players in the mechanism, which involves improved
pathogen recognition and an increased inflammatory response [216]. A concept of trained immunity is
shown in Figure 2.
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Another possibility of glucan action is the potential effect on neuroendocrine axis. It is
well established that the neuroendocrine and immune systems communicate bidirectionally via
numerous cytokines acting as auto/paracrine or endocrine factors regulating pituitary development,
cell proliferation, hormone secretion, and feedback control of the hypothalamic-pituitary-adrenal axis.
However, the information on these possible effects of glucan in fish is still lacking.

Effects induced by vaccination with Bacille Calmette-Guerin (BCG) [218,219], prepared from
attenuated live Mycobacterium bovis, support the proposed benchmarks of trained immunity that it can
elicit cross-specific protection in a T- and B-cell independent manner with innate immune cell types,
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such as macrophages, acting as key players [216]. Of evolutionary interest, long before the recent
discussions on the presence of trained immunity in humans and mice [220], similar cross-specific
protection was observed in plants [221–223] and invertebrates [224], which, typically without T and B
lymphocytes, can build up a form of immunity to protect the organism from a secondary exposure.
Owing to the basal position of teleost fish as early vertebrates, it makes evolutionary sense to expect
that trained immunity could be an important mechanism determining immunostimulation of fish by
β-glucans [125].

There are a few studies providing evidence for the presence of a form of trained immunity in
fish, primarily based on experiments with mycobacteria. Olivier et al. [225] observed a long-lived
increase in phagocytic activity of peritoneal macrophages from brook trout (Salvelinus fontinalis), for a
period up to 33 days after intraperitoneal injection with modified Freund complete adjuvant containing
killed Mycobacterium butyricum. Only macrophages from trout injected with modified Freund complete
adjuvant showed a significantly higher bactericidal activity

Vaccination of Japanese flounder (Paralichthys olivaceus) with BCG resulted in an upregulation of
pro-inflammatory cytokines and conferred protection against Mycobacterium sp. [226]. Moreover,
vaccination of Amberjack (Seriola dumerili) with BCG led to protection against challenge with
Mycobacterium sp. [226]. Importantly, these researchers could measure cross-specific protection,
one of the proposed benchmarks of trained immunity. The cross-specific protection could be induced
in Japanese flounder by BCG, shown by challenge with Nocardia seriolae, and was possibly mediated by
bacteriolytic activity of the serum [227].

Cross-specific protection occurring in a T- and B-cell independent manner [216] was also studied
in fish. Exposure of Rag-KO zebrafish to a sublethal infection with Edwardsiella ictaluri significantly
protected the same animals from a subsequent lethal infection with the same bacteria. Importantly,
protection could be transferred to native Rag-KO individuals by injection with kidney leukocytes from
animals pre-exposed to the sublethal infection [228].

According to Petit and Wiegertjes [125], it remains to be investigated if trained immunity has the
predicted, pronounced role in the immune defense of fish, and is indeed mediated by innate immune
cell types, such as macrophages.

7. Conclusions

Currently, more than 3000 papers have reported the effect of β-glucan on immune responses in
fish; however, several questions remain. Detailed knowledge of the receptors involved in recognition
of β-glucans and of their downstream signaling is missing for teleosts, leaving obscure whether the
observed potentiation should be attributed to direct effects on leukocytes or to indirect effects on,
for example, the composition of microbial communities in the gut. Typically, studies investigating the
effects of β-glucans have mostly focused on relatively short-lived effects, in the order of days up to
a few weeks, but recent insights in the field of innate immunity provide indications that β-glucans
could also have effects for a longer period of time, possibly explained by the phenomenon ‘trained
immunity’.

Funding: We thank the support of institutional grants RVO 61388971 (CZ).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dimler, R.J.; Davis, H.A.; Hilbert, G.E. A new anhydride of d-glucose: d-glucosan <1,4>beta<1,6>. J. Am.
Chem. Soc. 1946, 68, 1377–1380. [CrossRef] [PubMed]

2. Wooles, W.R.; Diluzio, N.R. Reticuloendothelial function and the immune response. Science 1963,
142, 1078–1080. [CrossRef] [PubMed]

3. Murphy, E.A.; Davis, J.M.; Carmichael, M.D. Immune modulating effects of beta-glucan. Curr. Opin. Clin.
Nutr. Metab. Care 2010, 13, 656–661. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/ja01211a085
http://www.ncbi.nlm.nih.gov/pubmed/20991009
http://dx.doi.org/10.1126/science.142.3595.1078
http://www.ncbi.nlm.nih.gov/pubmed/14068228
http://dx.doi.org/10.1097/MCO.0b013e32833f1afb
http://www.ncbi.nlm.nih.gov/pubmed/20842027


Molecules 2020, 25, 5378 22 of 33

4. Vetvicka, V.; Oliveira, C. beta(1-3)(1-6)-d-Glucans modulate immune status in pigs: Potential importance for
efficiency of commercial farming. Ann. Transl. Med. 2014, 2, 16. [CrossRef] [PubMed]

5. Vetvicka, V.; Vannucci, L.; Sima, P. The effects of beta-glucan on pig growth and immunity. Open Biochem J.
2014, 8, 89–93. [CrossRef]

6. Eicher, S.D.; Patterson, J.A.; Rostagno, M.H. β-Glucan plus ascorbic acid in neonatal calves modulates
immune functions with and without Salmonella enterica serovar Dublin. Vet. Immunol. Immunopathol. 2011,
142, 258–264. [CrossRef]

7. Paap, P.; Roberti, F. Race horses perform better with beta-glucans. Health Nutr. 2014, 22, 500–502.
8. Waller, K.P.; Colditz, I.G. Effect of intramammary infusion of beta-1,3-glucan or interleukin-2 on leukocyte

subpopulations in mammary glands of sheep. Am. J. Vet. Res. 1999, 60, 703–707.
9. Tian, X.; Shao, Y.; Wang, Z.; Guo, Y. Effects of dietary yeastβ-glucans supplementation on growth performance,

gut morphology, intestinal Clostridium perfringens population and immune response of broiler chickens
challenged with necrotic enteritis. Anim. Feed. Sci. Technol. 2016, 215, 144–155. [CrossRef]

10. Crumlish, M.; Inglis, V. Improved disease resistance in Rana rugulosa (Daudin) after beta-glucan administration.
Aquac. Res. 1999, 30, 431–435. [CrossRef]

11. Pilarski, F.; Ferreira de Oliveira, C.A.; Darpossolo de Souza, F.P.B.; Zanuzzo, F.S. Different beta-glucans
improve the growth performance and bacterial resistance in Nile tilapia. Fish Shellfish Immunol. 2017,
70, 25–29. [CrossRef] [PubMed]

12. Wu, Y.S.; Liau, S.Y.; Huang, C.T.; Nan, F.H. Beta 1,3/1,6-glucan and vitamin C immunostimulate the
non-specific immune response of white shrimp (Litopenaeus vannamei). Fish Shellfish Immunol. 2016,
57, 269–277. [CrossRef] [PubMed]

13. Zhang, X.; Zhu, Y.T.; Li, X.J.; Wang, S.C.; Li, D.; Li, W.W.; Wang, Q. Lipopolysaccharide and
beta-1,3-glucan binding protein (LGBP) stimulates prophenoloxidase activating system in Chinese mitten
crab (Eriocheir sinensis). Dev. Comp. Immunol. 2016, 61, 70–79. [CrossRef] [PubMed]

14. Mazzei, M.; Fronte, B.; Sagona, S.; Carrozza, M.L.; Forzan, M.; Pizzurro, F.; Bibbiani, C.; Miragliotta, V.;
Abramo, F.; Millanta, F.; et al. Effect of 1,3-1,6 beta-glucan on natural and experimental deformed wing virus
infection in newly emerged honeybees (Apis mellifera ligustica). PLoS ONE 2016, 11, e0166297. [CrossRef]

15. Kim, Y.S.; Ryu, J.H.; Han, S.J.; Choi, K.H.; Nam, K.B.; Jang, I.H.; Lemaitre, B.; Brey, P.T.; Lee, W.J. Gram-negative
bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and beta-1,3-glucan that
mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J. Biol. Chem.
2000, 275, 32721–32727. [CrossRef]

16. De Oliveira, C.A.F.; Vetvicka, V.; Zanuzzo, F.S. β-Glucan successfully stimulated the immune system in
different jawed vertebrate species. Comp. Immunol. Microbiol. Infect. Dis. 2019, 62, 1–6. [CrossRef]

17. Tort, L.; Balasch, J.C.; Mackenzie, S. Fish immune system. A crossroads between innate and adaptive
responses. Inmunologia 2003, 22, 277–286.

18. Sohn, K.S.; Kim, M.K.; Kim, J.D.; Han, I.K. The role of immunostimulants in monogastric animal and
fish-Review. Asian Australas. J. Anim. Sci. 2000, 13, 1178–1187. [CrossRef]

19. Scholz, U.; Garcia Diaz, G.; Ricque, D.; Cruz Suarez, L.E.; Vargas Albores, F.; Latchford, J. Enhancement of
vibriosis resistance in juvenile Penaeus vannamei by supplementation of diets with different yeast products.
Aquaculture 1999, 176, 271–283. [CrossRef]

20. Bondad-Reantaso, M.G.; Subasinghe, R.P.; Arthur, J.R.; Ogawa, K.; Chinabut, S.; Adlard, R.; Tan, Z.; Shariff, M.
Disease and health management in Asian aquaculture. Vet. Parasitol. 2005, 132, 249–272. [CrossRef]

21. Sakai, M. Current research status of fish immunostimulants. Aquaculture 1999, 172, 63–92. [CrossRef]
22. Zanuzzo, F.S.; Sabioni, R.E.; Montoya, L.N.F.; Favero, G.; Urbinati, E.C. Aloe vera enhances the innate immune

response of pacu (Piaractus mesopotamicus) after transport stress and combined heat killed Aeromonas hydrophila
infection. Fish Shellfish Immunol. 2017, 65, 198–205. [CrossRef] [PubMed]

23. Wang, Q.; Sheng, X.; Shi, A.; Hu, H.; Yang, Y.; Liu, L.; Fei, L.; Liu, H. β-Glucans: Relationships between
modification, conformation and functional activities. Molecules 2017, 22, 257. [CrossRef] [PubMed]

24. Barsanti, L.; Passarelli, V.; Evangelista, V.; Frassanito, A.M.; Gualtieri, P. Chemistry, physico-chemistry and
applications linked to biological activities of beta-glucans. Nat. Prod. Rep. 2011, 28, 457–466. [CrossRef]

25. Aramli, M.S.; Kamangar, B.; Nazari, R.M. Effects of dietary beta-glucan on the growth and innate immune
response of juvenile Persian sturgeon, Acipenser persicus. Fish Shellfish Immunol. 2015, 47, 606–610. [CrossRef]

http://dx.doi.org/10.3978/j.issn.2305-5839.2014.01.04
http://www.ncbi.nlm.nih.gov/pubmed/25332992
http://dx.doi.org/10.2174/1874091X01408010089
http://dx.doi.org/10.1016/j.vetimm.2011.05.014
http://dx.doi.org/10.1016/j.anifeedsci.2016.03.009
http://dx.doi.org/10.1046/j.1365-2109.1999.00345.x
http://dx.doi.org/10.1016/j.fsi.2017.06.059
http://www.ncbi.nlm.nih.gov/pubmed/28666865
http://dx.doi.org/10.1016/j.fsi.2016.08.046
http://www.ncbi.nlm.nih.gov/pubmed/27561624
http://dx.doi.org/10.1016/j.dci.2016.03.017
http://www.ncbi.nlm.nih.gov/pubmed/26995767
http://dx.doi.org/10.1371/journal.pone.0166297
http://dx.doi.org/10.1074/jbc.M003934200
http://dx.doi.org/10.1016/j.cimid.2018.11.006
http://dx.doi.org/10.5713/ajas.2000.1178
http://dx.doi.org/10.1016/S0044-8486(99)00030-7
http://dx.doi.org/10.1016/j.vetpar.2005.07.005
http://dx.doi.org/10.1016/S0044-8486(98)00436-0
http://dx.doi.org/10.1016/j.fsi.2017.04.013
http://www.ncbi.nlm.nih.gov/pubmed/28433715
http://dx.doi.org/10.3390/molecules22020257
http://www.ncbi.nlm.nih.gov/pubmed/28208790
http://dx.doi.org/10.1039/c0np00018c
http://dx.doi.org/10.1016/j.fsi.2015.10.004


Molecules 2020, 25, 5378 23 of 33

26. Chen, J.; Seviour, R. Medicinal importance of fungal beta-(1→3), (1→6)-glucans. Mycol. Res. 2007, 111,
635–652. [CrossRef]

27. Miura, N.N.; Ohno, N.; Aketagawa, J.; Tamura, H.; Tanaka, S.; Yadomae, T. Blood clearance of
(1→3)-beta-d-glucan in MRL lpr/lpr mice. FEMS Immunol. Med. Microbiol. 1996, 13, 51–57. [CrossRef]

28. Chihara, G. Recent progress in immunopharmacology and therapeutic effects of polysaccharides.
Dev. Biol. Stand. 1992, 77, 191–197.

29. Behall, K.M.; Scholfield, D.J.; Hallfrisch, J. Effect of beta-glucan level in oat fiber extracts on blood lipids in
men and women. J. Am. Coll. Nutr. 1997, 16, 46–51. [CrossRef]

30. Bell, S.; Goldman, V.M.; Bistrian, B.R.; Arnold, A.H.; Ostroff, G.; Forse, R.A. Effect of beta-glucan from oats
and yeast on serum lipids. Crit. Rev. Food Sci. Nutr. 1999, 39, 189–202. [CrossRef]

31. Braaten, J.T.; Wood, P.J.; Scott, F.W.; Wolynetz, M.S.; Lowe, M.K.; Bradley-White, P.; Collins, M.W.
Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur. J. Clin. Nutr.
1994, 48, 465–474. [PubMed]

32. Pick, M.E.; Hawrysh, Z.J.; Gee, M.I.; Toth, E.; Garg, M.L.; Hardin, R.T. Oat bran concentrate bread products
improve long-term control of diabetes: A pilot study. J. Am. Diet. Assoc 1996, 96, 1254–1261. [CrossRef]

33. Wood, P.J. Physicochemical properties and physiological effects of the (1→3)(1→4)-beta-d-glucan from oats.
Adv. Exp. Med. Biol. 1990, 270, 119–127. [CrossRef] [PubMed]

34. Gantner, B.N.; Simmons, R.M.; Canavera, S.J.; Akira, S.; Underhill, D.M. Collaborative induction of
inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 2003, 197, 1107–1117. [CrossRef]
[PubMed]

35. Herre, J.; Gordon, S.; Brown, G.D. Dectin-1 and its role in the recognition of beta-glucans by macrophages.
Mol. Immunol. 2004, 40, 869–876. [CrossRef] [PubMed]

36. Raa, J. The Use of Immune-Stimulants in Fish and Shellfish Feeds; Cruz-Suarez, L.E., Ricque-Marie, D.,
Tapia-Salazar, M., Olvera-Novoa, M.A., Civera-Cerecedo, R., Eds.. Available online: http://www.aquatech.
com.ve/pdf/raa.pdf (accessed on 16 November 2020).

37. Helfman, G.; Collette, B.B.; Facey, D.E.; Bowen, B.W. The Diversity of Fishes: Biology, Evolution, and Ecology,
2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2009.

38. Nelson, J.S. Fishes of the World, 4th ed.; John Wiley: Hoboken, NJ, USA, 2006.
39. Carroll, R.L. Vertebrate Paleontology an Evolution; WH Freeman and Co.: New York, NY, USA, 1988.
40. Fricke, R.; Eschmeyer, W.N.; van der Laan, R. Eschmeyer’s Catalog of Fishes: Genera, Species, References;

Eschmeyer, W.N., Ed.; California Academy of Sciences: San Francisco, CA, USA, 2019.
41. Colbert, E.H. Evolution of Vertebrates; John Wiley and Sons: New York, NY, USA, 1980.
42. Rombout, J.H.; Huttenhuis, H.B.; Picchietti, S.; Scapigliati, G. Phylogeny and ontogeny of fish leucocytes.

Fish Shellfish Immunol. 2005, 19, 441–455. [CrossRef]
43. Magnadottir, B. Innate immunity of fish (overview). Fish Shellfish Immunol. 2006, 20, 137–151. [CrossRef]
44. Magnadottir, B. Immunological control of fish diseases. Mar. Biotechnol. 2010, 12, 361–379. [CrossRef]
45. Magnadottir, B. Comparison of immunoglobulin (IgM) from four fish species. Icel. Agric. Sci. 1998, 12, 47–59.
46. Fearon, D.T.; Locksley, R.M. The instructive role of innate immunity in the acquired immune response.

Science 1996, 272, 50–53. [CrossRef]
47. Fischer, U.; Koppang, E.O.; Nakanishi, T. Teleost T and NK cell immunity. Fish Shellfish Immunol. 2013,

35, 197–206. [CrossRef]
48. Holland, M.C.; Lambris, J.D. The complement system in teleosts. Fish Shellfish Immunol. 2002, 12, 399–420.

[CrossRef] [PubMed]
49. Sakai, D.K. Repertoire of complement in immunological defense mechanisms of fish. Ann. Rev. Fish Dis.

1992, 2, 223–247. [CrossRef]
50. Uribe, C.; Folch, H.; Enriquez, R.; Moran, G. Innate and adaptive immunity in teleost fish: A review. Vet. Med.

2011, 56, 486–503.
51. Du Pasquier, L. The immune system of invertebrates and vertebrates. Comp. Biochem. Physiol. B Biochem.

Mol. Biol. 2001, 129, 1–15. [CrossRef]
52. Sima, P.; Vetvicka, V. Evolution of Immune Functions; CRC Press: Boca Raton, FL, USA, 1990.
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