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Abstract: Cardiovascular disease (CVD) is the most common cause of morbidity and mortality
worldwide, and early accurate diagnosis is the key point for improving and optimizing the prognosis
of CVD. Recent progress in artificial intelligence (AI), especially machine learning (ML) technology,
makes it possible to predict CVD. In this review, we first briefly introduced the overview development
of artificial intelligence. Then we summarized some ML applications in cardiovascular diseases,
including ML−based models to directly predict CVD based on risk factors or medical imaging
findings and the ML−based hemodynamics with vascular geometries, equations, and methods
for indirect assessment of CVD. We also discussed case studies where ML could be used as the
surrogate for computational fluid dynamics in data−driven models and physics−driven models.
ML models could be a surrogate for computational fluid dynamics, accelerate the process of disease
prediction, and reduce manual intervention. Lastly, we briefly summarized the research difficulties
and prospected the future development of AI technology in cardiovascular diseases.

Keywords: artificial intelligence; cardiovascular diseases; machine learning; cardiovascular
biomechanics modeling

1. Introduction

Cardiovascular disease (CVD) is an important cause that threatens human health and
represents a heavy economic burden on society and families [1,2]. Etiological investiga-
tions have found that the occurrence of cardiovascular disease involves a variety of risk
factors [3–5], including high cholesterol, hypertension, diabetes, age, gender, genetics,
unhealthy diet, obesity, smoking, alcohol, lack of exercise and environmental factors, as
shown in Figure 1. Although managing these risk factors contributes to the control of
cardiovascular disease, it remains the most common cause of morbidity and mortality
worldwide [6,7]. Therefore, early, accurate diagnosis and prognosis assessments are the
key point for improving and optimizing the prognosis of CVD [8].

Artificial intelligence (AI) is an exciting new field in cardiovascular disease, revolution-
izing medical practice [9]. AI can effectively assist physicians in diagnosing cardiovascular
diseases and conducting continuous monitoring so as to achieve early detection and treat-
ment, thus reducing the occurrence of acute cardiovascular events and improving the
prognosis [10]. AI has quite a few successful applications, such as imaging and pathological
diagnosis [11], drug design and discovery [12], health management [13], disease predic-
tion [14], medical rehabilitation [15], and laboratory medicine [16]. Advanced imaging and
testing techniques have accumulated vast amounts of raw data, which are the basis of AI
exploration. Fully use of artificial intelligence can revolutionize the current diagnosis and
treatment model due to the complex and changeable structure of the cardiovascular system
and play an important role in the prevention of cardiovascular diseases.
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Figure 1. Risk factors associated with cardiovascular disease.

In this review, we systematically summarized the recent research progress of arti-
ficial intelligence applications for cardiovascular diseases, including the prediction of
morbidity or mortality of the cardiovascular disease and the prediction of cardiovascular
biomechanics modeling. We focused on machine learning−based models to predict CVD
and ML−based vascular hemodynamic geometries, equations, and methods. Finally, we
briefly summarized several common difficulties of AI technology and prospected the future
development of AI technology in cardiovascular disease.

2. Overview of Artificial Intelligence

Artificial intelligence can be referred to as the science of realizing human intelligence
on machines (Computers). In the past 70 years, artificial intelligence has been widely
applied to many subjects and achieved fruitful results [17]. Machine learning (ML) is
a subset of artificial intelligence, which refers to algorithms and statistical models that
machines can learn independently, learn hidden patterns in data, and make accurate
predictions to improve the performance of specific tasks [18]. According to how the data
is learned, machine learning is mainly divided into reinforcement learning, supervised
learning, semi−supervised learning, and unsupervised learning [19].

Since the 2010’s, ML algorithms have continuously improved, becoming more sophis-
ticated and containing hierarchies, which gave rise to the popular Deep Learning (DL).
Deep learning, a sub−field of machine learning, has been extensively studied and imitates
the working model of the human brain and uses a multi−layer neural network to train
data and develop an automatic prediction model (Figure 2) [20–22]. The DL−based model
could automatically extract meaningful features from data on multiple levels. At the same
time, the algorithm requires a certain degree of judgment by analysts in ML approaches to
defining relevant features, such as feature selection, and it is popular in complex physical
modeling, especially in nonlinear and high−dimensional functions [23,24]. Today, DL
models have reached some important milestones, and various frameworks are emerging,
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such as the artificial neural network (ANN) [25], the deep neural network (DNN) [26],
the convolutional neural network (CNN) [27] and the physics−informed neural network
(PINN) [28], and so on.

Figure 2. The overview development of artificial intelligence and the relationship between artificial
intelligence, machine learning, and deep learning.

Machine learning and deep learning algorithms have been used to accelerate the
diagnosis and prediction of cardiovascular diseases [27,29–31]. For more detailed examples
of the performance of ML and DL approaches for cardiovascular applications, we refer to
Section 3.

3. Application of Artificial Intelligence in the Prediction of Cardiovascular Disease

We mainly discuss two types of ML−based approaches to predict cardiovascular
diseases. The first approach is to build a machine learning model that directly outputs the
incidence, mortality, or prognosis of CVDs by inputting clinical follow−up data and risk
factors of subjects without CVDs, or clinical data and medical imaging of patients with
CVDs. However, it requires massive patient data for training, and conventional prediction
models are inadequate for assessing disease progression in complex lesions owing to the
patient−specific anatomical, physiological, and functional difficulties. Another approach is
to predict the complex patient−specific pathological process of CVDs by learning cardio-
vascular biomechanics based on numerical simulation. Computational models based on
physical principles of cardiovascular systems, combined with medical imaging and patient
characteristics, enable the derivation of hemodynamic information (e.g., velocity, pressure,
and stress) inaccessible by medical images alone. Machine learning could be applied to
the basic model and governing equations of the cardiovascular system and new numerical
methods to accelerate the simulation process and realize personalized flow simulation.
Both approaches are of great significance in evaluating the occurrence of cardiovascular
diseases (Figure 3).
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Figure 3. Two types of machine learning−based approaches were applied to evaluate cardiovascular
disease risk.

3.1. Prediction of Cardiovascular Morbidity or Mortality

Cardiovascular disease has long incubation periods and complicated pathogenic fac-
tors, which leads to the failure of timely identification and treatment [8]. A risk assessment
system for CVDs could be established by mining the quantitative relationship between var-
ious related risk factors and their influence on the results. The most widely used model for
cardiovascular diseases is the Framingham risk score (FRS) [32]. It predicted the occurrence
probability of cardiovascular and cerebrovascular diseases in the next ten years according
to the cholesterol level and non−cholesterol level factors and evaluated the risk by scoring
the corresponding indicators. In addition to the FRS, the commonly adopted conventional
risk prediction models are the systematic coronary risk evaluation score (SCORE) [33] and
the atherosclerosis cardiovascular disease (ASCVD) [34]. Different predictive indicators
were constructed through their research methods to study the risk factors of CVDs.

To improve the accuracy and speed of disease diagnosis of the above prediction
models, AI−based approaches were applied to CVDs, which would help doctors to iden-
tify patients with different risk layers in advance and further reduce the incidence of
mortality and adverse events. Several studies compared the ML−based model with the
traditional risk prediction model (Table 1). For example, 13−year follow−up data from
6459 participants without cardiovascular disease were used to construct a machine learning
model to calculate CVDs risk, which believed that the machine learning risk calculator
could significantly improve risk stratification and reduce adverse events, resulting in the
sensitivity of 0.86, specificity of 0.95, and the area under the curve (AUC) of 0.92 [35]. Data
from the prospective study of 2020 adults trained in three ML models obtained similar
results, in which random forest gave the best results [36]. Additionally, Alaa et al. [37]
developed a DL−based prediction model with 473 reference variables in each case from
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423,604 residents without cardiovascular disease, and their AutoPrognosis model improved
risk prediction (AUC: 0.774) compared to the FRS (AUC: 0.724) and COX PH mode (AUC:
0.758), which proved that the automatic prediction model has better performance.

Table 1. Machine learning−based prediction models of cardiovascular diseases.

Focus Algorithm Data
Size Input Variables Performance

(AUC) Significant Discovery

CVD risk
prediction [35] ML (SVM) 6459 clinical data 0.92

ML algorithms significantly
improved risk stratification while

reducing adverse events.

CVD risk
prediction [36]

ML (KNN, RF
and DT) 2020 clinical data

Accu.: 0.83
Sens.: 0.89
Spec.: 0.46

The RF gave the best results, while
the k−NN gave the poorest results.

CVD risk
prediction [37]

AutoPrognosis
(SVM, RF, kNN,
AdaBoost and

GBM)

423,604 clinical data 0.774 ML model had better efficiency than
traditional risk calculators.

CAD mortality
prediction [38] ML (LogitBoost) 10,030 clinical and

CCTA data 0.79
The accuracy of the ML model was

better compared to the traditional or
CCTA severity scores alone.

CAD risk
prediction [39] ML (XGBoost) 8844 clinical and

CCTA data 0.771
The risk score based on ML had
greater prognostic accuracy than

current CCTA integrated risk scores.

CAC
identification [40] CNN + RF 50 CCTA data /

CAC could be automatically
identified and classified in CCTA
using CNN and RF algorithms.

Coronary artery
stenosis

identification [41]

CNN + CAE
+ SVM 166 FFR and

CCTA data 0.74
The CNN could be used to

automatically identify functionally
significant coronary artery stenosis.

Obstructive
disease

prediction [27]
DL 1638 MPI data 0.80/0.76

The DL algorithm could
automatically

interpret MPI more accurately.

CHD Plaque
detection [42] CNN 49 IVOCT data

Accu.: 0.917
Sens.: 0.909
Spec.: 0.924

It’s feasible to construct a DL−based
clinical decision support system for

plaque detection.

HCM
discrimination

[43]

ML (SVMs + RF)
+ ANN 139 STE data 0.795 The ML−based models had higher

diagnostic sensitivity and specificity.

CP/ RCM
discrimination

[44]

ML (AMC, RF,
SVM and kNN) 94 Clinical and

STE data 0.962 The AMC gave the best results.

Prognosis
prediction [31] DL 10,019 Clinical and

ECG data Accu.: 0.906
It was feasible to build a DL−based
model to estimate the prognosis in

ACHD.

CHF
identification [45] ML (RF) + DL 947

Clinical and
heart sounds

data
0.893

The heart sound−based detection
methods for different CHF phases

were proposed through ML and DL.

ACI
identification [25] ANN 260 clinical data Spec.: 0.862

Sens.: 0.8

ANN could be used for the
recognition of ACI and

differentiation of ACI from stroke
intelligently.
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Table 1. Cont.

Focus Algorithm Data
Size Input Variables Performance

(AUC) Significant Discovery

Perioperative
mortality

prediction +
Readmission [46]

ML (RF) 11,709 Perioperative
clinical data 0.9/0.88

ML was more predictive in
identifying postoperative mortality
180d after PCI and rehospitalization

for CHF 30d after surgery.

Perioperative
Mortality

prediction [47]

ML (GBM, RF,
Naïve Bayes, SVM) 6520 Perioperative

clinical data 0.795

ML model was more accurate in
predicting mortality after elective

cardiac surgery than the traditional
prediction model.

(AUC: Area under the curve; CVD: Cardiovascular disease; ML: Machine learning; SVM: Support vector ma-
chine; KNN: K−Nearest neighbor; RF: Random forests; DT: Decision tree; Accu.: Accuracy; Sens.: Sensitivity;
Spec.: Specificity; GBM: Gradient boosting machines; CAD: Coronary artery disease; CCTA: Coronary computed
tomography angiography; CAC: Coronary artery calcification; CNN: Convolutional neural network; CAE: Convo-
lutional autoencoder; FFR: Fractional flow reserve; DL: Deep learning; MPI: Myocardial perfusion imaging; CHD:
Coronary heart disease; IVOCT: Intravascular optical coherence tomography; HCM: Hypertrophic cardiomyopa-
thy; ANN: Artificial neural network; STE: Speckle−tracking echocardiographic; CP: Constrictive pericarditis;
RCM: Restrictive cardiomyopathy; AMC: Associative memory classifier; ECG: Electrocardiograph; ACHD: Adult
congenital heart disease; CHF: Chronic heart failure; ACI: Acute cerebral ischemia; PCI: Percutaneous coronary
intervention; GBM: Gradient boosting machines).

Artificial intelligence is also utilized in prognosticating cardiovascular outcomes based
on imaging data combined with clinically available risk predictors, effectively reducing
complications and sudden death events. Motwani et al. [38] used a regression model based
on an iterative LogitBoost algorithm for mortality prognostication of 10,030 patients with
suspected coronary artery diseases (CADs) who underwent coronary computed tomogra-
phy angiography (CCTA) imaging and 5−year followup, and their performance (AUC: 0.79)
was better compared to the FRS or CCTA severity scores alone. Another study [39] obtained
similar results by using the ML−based model to predict the prognosis of 8844 patients
with complete CCTA risk score information and at least 3−year follow−up for myocardial
infarction and death, resulting in an AUC of 0.771. Coronary artery calcification (CAC) is
one of the independent predictors of cardiovascular events, and machine learning has been
combined with coronary artery calcification measurement to realize automatic identifica-
tion [40]. Wolterink et al. [48] used a CNN to automatically identify and quantify CAC
in CCTA images of 50 patients, which eliminated the need for coronary artery extraction
and was expected to reduce unnecessary radiation doses in the future. Determining the
degree of coronary artery stenosis is particularly important for patients with CADs, which
determines the next treatment plan for patients. Detection and quantification of coronary
artery stenosis is probably the most important clinical application of CCTA. Kelm et al. [49]
used the ML algorithm to automatically identify and classify coronary artery stenosis
caused by calcified and non−calcified plaques. Similarly, Zreik et al. [41] used multi−scale
CNN to automatically identify functionally significant coronary artery stenosis in CCTA
images of 166 patients. The results suggested that functional coronary artery stenosis could
be determined by automatic analysis of myocardium in resting CCTA images without
observation of the patient’s coronary artery anatomy, which might reduce unnecessary
invasive fractional flow reserve (FFR) examination in the future. Besides CCTA, other
imaging techniques combined with artificial intelligence methods have also been applied
to predict CADs. Myocardial perfusion imaging showed [27] that the DL algorithm could
predict the occurrence of adverse events more accurately and with higher accuracy than
traditional prediction models. In addition, a CNN−based plaque detection system was
employed to learn plaque classification directly from intravascular optical coherence to-
mography (IVOCT), resulting in an accuracy of 0.917, sensitivity of 0.909, and specificity of
0.924. Their results demonstrated that it was feasible to establish a plaque detection system
based on deep learning [42].

Artificial intelligence also has many applications for other cardiovascular diseases
besides CADs. Based on echocardiographic data, ML algorithms were used to establish the
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discrimination models between hypertrophic cardiomyopathy from physiological hyper-
trophy seen in athletes [43] and between hypertrophic cardiomyopathy and constrictive
pericarditis [44]. Their ML−based models had higher diagnostic sensitivity and specificity.
Diller et al. used a Deep learning algorithm to categorize diagnosis, disease complexity,
and NYHA class in adult congenital heart disease or pulmonary hypertension through
an 8−year follow−up of 10,019 adult patients, with an accuracy of 0.911, 0.97, and 0.906,
respectively [31]. Additionally, the heart sound−based detection methods for heart failure
were proposed through machine learning and end−to−end deep learning [45]. Based
on the records of 947 subjects, 15 repeatable machine learning models were identified to
distinguish the different stages of chronic heart failure with an accuracy of 0.929. This
approach made it easier to identify patients with heart failure, which has the potential of a
home chronic heart failure monitor. Artificial neural networks (ANNs) could also identify
stroke and stroke−like diseases intelligently by analyzing a large amount of data [25]. The
application of ML in predicting postoperative mortality and rehospitalization after surgery
would also be of great significance. Data from 11,709 patients undergoing percutaneous
coronary intervention verified that machine learning was more predictive in identifying
postoperative mortality 180d after surgery and rehospitalization for chronic heart failure
30 d after surgery [46]. Another study [47] also showed that the ML model (AUC: 0.795)
was more accurate in predicting mortality after elective cardiac surgery than EuroSCORE II
(AUC: 0.737) or the logistic regression model (AUC: 0.742). Compared with the traditional
prediction score and prediction model, the ML−based model would be faster and more
accurate, which could alter the prediction method of cardiovascular disease and improve
the prediction accuracy.

3.2. Prediction of Cardiovascular Biomechanics Modeling

Cardiovascular biomechanics could also be applied to predict the occurrence of car-
diovascular diseases [50,51] as the critical roles of blood flow and arterial wall mechanics
and their interactions in the function of the human cardiovascular system [52–55]. There-
fore, from the perspective of cardiovascular biomechanics, it is feasible to diagnose or
prevent cardiovascular diseases indirectly through hemodynamic parameters, such as
velocity [56,57], pressure [56,58], and wall shear stress (WSS) [59–62]. It is well documented
that the flow in blood vessels is very complicated, and it is difficult to predict directly [63].
The development of vascular fluid dynamics has depended on basic geometries, equations,
and computational methods [64–66]. Based on artificial intelligence technology, the basic
model and governing equations of the fluid system and new numerical methods could be
developed to accelerate the process and reduce manual intervention.

3.2.1. Traditional Computational Modeling and Simulation

Computational modeling and simulation methods were frequently applied to solve
flow problems in blood vessels. Numerical analysis methods of cardiovascular biomechan-
ics mainly rely on a grid−based approach, including finite difference analysis (FDA) [67],
finite volume analysis (FVA) [68], or finite element analysis (FEA) [69,70]. Combined with
medical images, it is very effective for cardiovascular function analysis in solving the basic
physical equations of the flow field with high precision in discrete form and studying
the fluid motion and its interaction with other media [71–76]. The current workflow for
patient−specific computational modeling and simulation applications mainly consists
of three steps [77]: (1) the vascular anatomic geometry of the patient is obtained from
clinical image data, mainly through manual labeling; (2) the specifying constitutive relation
of material properties, boundaries, and hemodynamic loading conditions are set up in
the computational model; (3) the computational model is submitted to an appropriate
numerical solver to obtain the simulation results. The computational modeling needs a
lengthy model setup and long computing time to complete the analysis of one single pa-
tient [78,79]. Therefore, the computational fluid dynamics (CFD) method cannot be applied
for large queues of patients or time−sensitive clinical applications requiring rapid feed-
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back to clinicians, such as percutaneous coronary intervention [46]. Although the present
model reduction methods, such as dynamic modal decomposition (DMD) [80] and proper
orthogonal decomposition (POD) [81], greatly reduce the solution of complex systems and
improve the efficiency of modeling and solving, the traditional model reduction methods
are still difficult to be applied to multi−scale, transient and discontinuous processes [82,83].

Machine learning could break down computing tasks and make all kinds of machine
assistance possible in cardiovascular biomechanics modeling. In particular, the ML ap-
proach could be applied to the extraction of geometric features, the study of governing
equations, and the surrogate for CFD [84–86]. In addition, replacing certain finite element
components with machine learning models can achieve faster computation time, especially
for multi−scale problems that require nested finite element simulations [87–89].

3.2.2. ML−Based Hemodynamics with Vascular Geometries, Equations and Methods
Geometric Modeling

The traditional method of computational fluid dynamics needs to extract structures
and features of blood vessels manually [77–79], which is labor and time−consuming. In
recent years, artificial intelligence technology was proposed to automatically and quickly
extract geometric features as input in the computational model. For example, the nearest dis-
tance was used between each grid point in the rectangular grid and the boundary as input to
predict the resistance coefficient, which achieved good results in simple two−dimensional
geometric shapes such as circles [90]. In addition, there were related studies using features
extracted by deep learning technology [91,92], and the compressed expression of geomet-
ric shapes of autoencoders was put into neural networks. Other studies represented the
geometry by image pixels [93], which are discretized into a 2D/3D image.

ML models have been used to automatically segment medical images for creating 3D
computer models in recent years. Especially in patient−specific biomechanical modeling,
each cardiovascular disease leads to multi−feature 3D morphologies, such as atheroscle-
rosis [94], aneurysm [95], and occlusive diseases [96,97]. For instance, Berhane et al. [98]
used deep learning to generate an automatic 3D segmentation model of the aorta based on
4D−flow magnetic resonance imaging (MRI). The feasibility of using ML techniques and
deformable methods for automatic geometry reconstruction and modeling of human organs
from 3D medical images has been proved [99–101]. Liang et al. [85,102] used ML algo-
rithms for automatic geometry modeling of aortic aneurysms from 3D medical images. Luo
et al. [103] developed ML classifiers to infer the strength of ascending thoracic aneurysm
from elastic properties. Zheng et al. [104] reduced the complexity of computerized to-
mography (CT) data for carotid artery bifurcation detection. Moeskops et al. [105] trained
a single CNN model to segment the coronary arteries in cardiac computed tomography
angiography. The complex shapes of atherosclerosis are mainly derived from vascular imag-
ing [106], including intravascular ultrasound (IVUS) [107,108], angioplasty [109], MRI [98],
and IVOCT [110]. ML−based approaches have been used for the analysis of imaging data
to characterize plaque morphology. Iyer et al. [111] designed a CNN model for vessel
segmentation in X−ray angiography images. To visualize the severity of coronary artery
stenosis, Lee et al. [112] constructed a CNN−based fully−automated semantic segmenta-
tion model of coronary plaque in IVOCT images, resulting in high sensitivity and specificity
classification of lipid and calcified plaque (the sensitivity/specificity were 87.4%/89.5%
and 85.1%/94.2%, respectively). In addition, Tang et al. [113] proposed a deep neural net-
work based on multi−scale features for automatic lumen segmentation for IVOCT images.
Athanasiou et al. [114] used the ML−based OCT image segmentation to identify areas
of atherosclerotic plaque. Abdolmanafifi et al. [115] compared the image segmentation
accuracy of three models, and they demonstrated that the convolutional neural network
(CNN) was very effective when applied as a feature extractor. In addition, ML was also
widely used in cardiac image segmentation, including congenital heart disease [116] and
whole−heart [117]. A fully automated approach has been developed for segmenting the
mitral leaflets from 3D transesophageal echocardiography image data to facilitate visual
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and quantitative image analysis [118] and aortic valve modeling [119,120]. Oktay et al. [121]
confirmed that CNN could accurately segment the left ventricle and depict anatomical
morphological changes related to cardiac pathology. Other studies obtained similar re-
sults [122,123]. At present, the ML segmentation models cannot fully reach an agreement
with anatomical structures or experts [124]. It is difficult to build ML−based models that
can appropriately represent all morphologies due to the complexity of patient−specific
shapes, and feature extraction with wide generalization remains a challenge (Table 2).

Table 2. Artificial intelligence−based surrogate for computational fluid dynamics.

Algorithms Name of Authors Objectives Training Set Significant Discovery

ML Jordanski et al.
[125] WSS FEA results

Three ML models (MLR, MLP, GCRF) were developed for
the calculation of WSS distribution, and the GCRF
achieved the highest coefficient of determination

(0.930–0.948) for the AAA model and (0.946–0.954) for
carotid bifurcation model.

ML Feiger et al. [58] Pressure, WSS LBM results
The 3D simulation−based ML model was developed to
accurately predict pressure gradient across the stenosis

and WSS for patients with coarctation of the aorta.

DL Li et al. [57]
Velocity,
Pressure
gradient

FEA results
The hemodynamic prediction results of deep learning was
in agreement with the conventional CFD method, but the

calculation time was reduced 600−fold.

DL Raissi et al. [126] Velocity,
Pressure DNS results

A physics−informed deep−learning framework was
capable of encoding the Navier−Stokes equations into the
neural networks while being agnostic to the geometry or

the initial and boundary conditions.

DNN Madani et al. [127] Stress FEA results The DNNs outperformed alternative prediction models
and performance scales with the amount of training data.

DNN liang et al. [102] Pressure,
Velocity FEA results

The trained DNNs were capable of predicting the
steady−state distributions of pressure and flow velocity

inside the thoracic aorta with an average error
of 1.9608% and 1.4269%.

CNN Kai et al. [128] Velocity DNS results
The CNN model was found to reconstruct turbulent flows

from extremely coarse flow field images
with remarkable accuracy.

PINN Arzani et al. [129] WSS N−S
equations

PINN was used to obtain near−wall hemodynamics and
WSS data from sparse velocity measurements and without

knowledge of the inlet/outlet boundary conditions.

FC−NN Sun et al. [86] Velocity,
Pressure

N−S
equations

A physics−constrained deep neural network−based
approach was developed for surrogate modeling of fluid

flows without relying on any simulation data.

(ML: Machine learning; WSS: Wall shear stress; FEA: Finite element analysis; MLR: Multivariate linear regression;
MLP: Multilayer perceptron neural network; GCRF: Gaussian conditional random fields; AAA: Abdominal
aortic aneurysm; LBM: Lattice Boltzmann method; DL: Deep learning; CFD: Computational fluid dynamics;
DNS: Direct numerical simulation; DNN: Deep neural network; CNN: Convolutional neural network; PINN:
Physics−informed neural network; N−S equations: Navier−Stokes equations; FC−NN: Fully−connected neural
network).

Governing Equation (ML−Based Partial Differential Equation)

The governing equation of the flow in blood vessels is generally regarded as Navier−Stokes
(N−S) equation, which is a highly nonlinear partial differential equation (PDE) system [130],
and the solution of the equation is always a difficult problem because of its complicated process.
Nowadays, the machine learning approach is explored to assist solutions from the perspective
of partial differential equations.

The sparse regression technology was used to learn the coefficients and derivative
forms of each order in the Taylor series. This method implemented interpretable machine
learning techniques but requires the construction of function libraries to ensure that the
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function involved is included [131,132]. Raissi et al. [87] learned coefficients and function
terms in the Taylor series by constructing two neural networks of different depths. Since
the function items were represented by neural networks, this approach could only learn the
abstract expression of the original function but did not affect its application for practical
problems, such as the solution of the N−S equation. Additionally, the data−driven method
with the data assimilation method was combined to identify PDEs, which broadened
the application scope of PDEs identification. For the known structure of PDEs, machine
learning methods based on the Gaussian process were introduced into linear differential
equation systems [133] and nonlinear partial differential equation systems [134] to identify
scalar coefficients in the equations. In addition, the multi−fidelity Gaussian process
was also introduced to predict random fields [135]. However, these methods were only
applicable to models with fewer data.

A more recent ML paradigm, a physics−informed neural network, has been proposed
to identify scalar parameters in partial differential equations [28,136,137]. It took partial
differential equations as regularization terms in the process of neural network fitting
data, which avoided the inapplicability of traditional numerical differentiation to noisy
data. Alternatively, some methods were mainly introduced into the network training
process in the form of the loss function, which focused on data fitting rather than solving
mathematical equations itself [126,138]. In terms of future work, quantifying the uncertainty
associated with neural network predictions is the focus of research. For data−driven
differential equations, how to combine the basic law of conservation of physics to ensure
the conservation law is worthy of being studied further.

A ML−Based Surrogate for Computational Fluid Dynamics

The artificial intelligence−based solution method for computational fluid dynamics
is driven by data or physical models. The data−driven model is based on existing model
equations, which constantly update or optimize the original empirical coefficients [129].
The physics−driven model completely abandons the existing model equations and builds
a specific input−output relationship through machine learning based on certain physical
knowledge (Table 2) [86].

The neural networks based on data firstly obtain high fidelity data according to the ex-
isting flow field simulation or experimental methods and then construct the neural network
mapping relationship to replace the original partial differential equation after learning the
data based on machine learning technology, which could obtain the numerical solution to
the flow field quickly and efficiently [86,103]. Moreover, various data assimilation methods
have been developed to combine experimental data with computational hemodynamic
data to improve data fidelity [139–141]. Artificial intelligence algorithms usually take
biomechanics simulation results as training data to predict interested hemodynamic param-
eters. For instance, Jordanski et al. constructed three ML approaches (Gaussian conditional
random fields, multilayer perceptron neural network, and multivariate linear regression) to
predict the WSS distribution of abdominal aortic aneurysm and carotid bifurcation models,
and the strong determination coefficient of CFD simulation was verified [125]. Another
study used the decision tree to estimate FFR from 34 pre−defined coronary arteries [142].
Similarly, other ML models were proposed to measure FFR from coronary computed tomog-
raphy angioplasty, in which ML models were trained on a synthetic FFR dataset obtained
from CFD simulation [143,144].

The successful development of ML models has been verified in massive applications.
Recent work in machine learning combined with finite element calculations has also shown
promise for collagen tissues [145].

The deep learning approach has gradually emerged in cardiovascular biomechanics
modeling with the rapid development of artificial intelligence. For example, DL models
were developed to directly evaluate the stress distribution of thoracic aortic aneurysms
bypassing the finite element calculation process [102]. Liang et al. [77] demonstrated that
DL models could quickly and accurately substitute for stress analysis, which is shown
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in Figure 4. Recent studies using ML models to predict blood flow velocity vector fields
have obtained similar results [58], which is shown in Figure 5. Subsequently, the study
demonstrated the feasibility of using a deep neural network as a fast and accurate surrogate
for computational fluid dynamics to estimate the hemodynamics of the human arteries [57].
In addition, the convolutional neural networks have been wildly constructed as finite
element alternatives to fluid dynamics analysis, which could compress the simulated state
size and learn dynamics [91,146]. For instance, CNN could be used to reconstruct the
high−resolution turbulent field without solving the governing equation. The input of
the network was the low−resolution flow field pooled from high−resolution flow field
images obtained from the direct numerical simulation method (DNS), and the method was
validated in laminar cylindrical flow and isotropic turbulence [147]. Similarly, CNN also
could be used to perform the parameter estimation in cardiovascular hemodynamics [128].
Five different neural networks were used to predict arterial wall stress in atherosclerotic
patients, which also proved the superiority of convolution networks [127].

Figure 4. Case study using the deep learning (DL) technique as a surrogate of finite−element analysis
for stress analysis. (a) The overall structure of the DL model, in which the input is an aorta shape and
the output is the stress distribution of the artery wall. (b) The neural network for the shape encoding,
mapping the shape code to the stress code, and the stress decoding and encoding. Panel (a,b) are
adapted with permission from Reference [77], Journal of the Royal Society Interface.
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Figure 5. Case study for machine learning framework for surrogate modeling of pressure gradi-
ent and WSS for patients with coarctation of the aorta [58] (a) Design of experiments workflow.
(b) ML results comparing predicted and simulated pressure. (c) ML results comparing predicted and
simulated TAWSS.

As a general−purpose function approximation [148], the AI−based model only ap-
proximates the complex nonlinear relationship between the input and output variables of
the system. Given input parameters such as initial/boundary/operating conditions, param-
eters of interest such as velocity, pressure, and shear stress are obtained without traditional
CFD simulations. For example, a physics−informed neural network has been proposed
recently [149,150], in which the governing physical equation, such as Navier−Stokes
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equations, could be integrated into the neural network frameworks where the physical
variables of interest could be expressed as functions of space and time. Raissi et al. [126,151]
developed a physics−informed deep−learning framework to solve partial differential
equations, and the neural networks were trained in several observed values of a specific
flow field. With the governing equation as the constraint, the flow field prediction in a
specific region could be realized without introducing boundary conditions, which is shown
in Figure 6. Similarly, the conservative PINN method could be used to solve the flow
field in multiple different sub−regions, which improved the applicability of the original
method for solving complex boundary flow field problems [152]. The physics−informed
neural network, which uses sparse measurement data to solve uncertain problems and
simultaneously identify unknown parameters, has gained much attention in cardiovascular
modeling [129,153]. In addition, PINN could be applied to improve the WSS quantification
in blood flow problems where the inlet and outlet boundary conditions were not known
but instead by assimilating a few measurement points [154].

Figure 6. Case study for the physics−constrained, data−driven framework and data−free frame-
work for surrogate modeling of fluid flows in aneurysms. (a) The data−driven structure of the
Navier−Stokes−informed neural networks. The input data c is generated by using a direct numerical
simulation, and the output is the quantitative hemodynamic parameters. (b) Contours of reference
and regressed concentration, velocity, and pressure fields within the 3D intracranial aneurysm sac.
(c) The data−free neural network is developed by coding boundary conditions with construction
and trained by minimizing the loss function based on equations instead of CFD simulation data.
(d) Contours of physics−constrained deep neural network predictions and CFD solutions of three
different aneurysm geometries. Panel (a,b) are adapted with permission from Reference [126]. Science.
Panel (c,d) are adapted with permission from Reference [86]. Elsevier.
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The data−driven neural network requires quantities of high−fidelity data, but it
is difficult to apply it when the sample data is small or cannot be obtained [155]. In
the context of surrogate modeling, if boundary conditions are properly applied, the
physical−driven deep learning model without labeled data could be developed to di-
rectly integrate physical equations and boundary conditions into the loss function of the
neural networks. For instance, a physics−constrained, deep learning model could be
developed to solve the high−dimensional stochastic elliptic partial differential equations
based on the sample−free data method [156]. Similarly, CNN models also could be used in
solving the partial differential equation with numerical methods. The image data of the
flow field was put into networks as the initial solution instead of training sample data, and
their result was better than data−driven networks [157,158]. Recent studies demonstrated
that DL models also had great promise in solving high−dimensional nonlinear uncertainty
quantification (UQ) problems [159]. PINN could find flow velocity, stress or pressure fields
satisfying N−S equations at any specified point in the domain without any training data,
which can be used as a substitute for traditional CFD. For example, Sun et al. [86] used a
physics−constrained neural network−based alternative model to solve the parameterized
N−S equations and simulated the ideal vascular flow without using any labeled training
data (Figure 6). The flexibility provided by PINN makes it possible to solve complex
cardiovascular biomechanical problems. In addition, PINN could also be used in varieties
of complex flow fields [160–162].

Both data−driven models and physical−driven models have promoted the devel-
opment of computational fluid dynamics and explored a new way for cardiovascular
disease prediction. However, the success has only been demonstrated on several canonical
issues [86,126,127], and further research is needed on the broader impact of complex car-
diovascular disease. Therefore, the prediction and modeling techniques of cardiovascular
fluid mechanics should be problem−oriented, and a broadly applicable ML model may
require more effort in the future.

4. Challenges and Future Prospects

The increasing maturity of artificial intelligence and the continuous expansion of
its application in the medical field brought revolutionary changes to medical practice.
ML−based models could predict the morbidity or mortality of CVDs more accurately and
faster than the traditional prediction model, which could alter the prediction method of
CVDs. ML models could also provide new theories, methods, and research paradigms for
biomechanics modelling. However, there are still several challenges that need ironing out.
(1) Database: The early prediction of CVDs is inseparable from massive datasets and data
quality. The high−precision mechanical calculation needs huge computing resources, and it
is difficult to obtain data on some rare diseases [163]. In addition, the applications of medical
data also involve patient privacy and ethical issues [164]. Therefore, it is necessary to obtain
more accurate, authentic, and appropriate datasets and train and improve the algorithm on
small samples [165]. High−quality data and appropriate storage methods are critical to
the development of AI technology. (2) Validity and stability: Studies demonstrated that
AI−based models usually have better prediction performance compared with traditional
prediction models [38]. To make the models have clinical practical value, further testing
with massive pathological datasets is significant to verify the effectiveness and stability of
the proposed method [166], and the results from single−center also need to be verified by
the multi−center and massive cases. (3) Generalization: Numerous ML models have been
successfully used to predict CVDs in recent years [57,58,102,127]. However, it remains a
challenge to better generalize the AI−based prediction models to future data for specific
patients. For example, in patient−specific biomechanics applications, it is hard to develop
ML−based models that can appropriately represent all complex 3D morphologies of
each cardiovascular disease. Thus, a broadly applicable ML−based prediction model
might require learning vast physiologically possible datasets. (4) Explainability: Artificial
intelligence technology has high predictive performance in the medical field, but it is
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still hard to explain the decision−making process clearly. Machine learning has always
been used as a “black box” in the research process, which leads to the inexplicability and
uncertainty of the model [167,168]. Moreover, various subjective factors and the complexity
of models affect the design and evaluation of AI models. The explainable AI model has
received sustained attention in recent years [169], but the results were not perfect, and a
universal system and unified evaluation index are lacking. In addition, models are valued
more for accuracy than explainability. A research method with reproducibility and standard
must be found in the future to compare and evaluate the explainability of the AI-based
prediction model.

Given the above, artificial intelligence has made remarkable achievements in the
past decades, but the data quality, as well as the validity, stability, generalization, and
explainability of the model need to be further improved. AI will be a development direction
and trend of medical treatment in the future, and it will alleviate the pressure of medical
treatment in some aspects, improve the speed and quality of medical services, and promote
the continuous development and progress of human medicine.

5. Conclusions

We summarized the recent advances of the machine learning−based model to directly
predict CVDs based on risk factors or medical imaging findings, as well as the machine
learning−based hemodynamics with vascular geometries, equations, and methods for indi-
rect assessment of cardiovascular diseases. Machine learning models could be a surrogate
for computational fluid dynamics, accelerate the process of disease prediction and reduce
manual intervention.
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