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Aging is accompanied by impaired glucose homeostasis
and an increased risk of type 2 diabetes, culminating in
the failure of insulin secretion from pancreatic b-cells.
To investigate the effects of age on b-cell metabolism,
we established a novel assay to directly image islet me-
tabolism with NAD(P)H fluorescence lifetime imaging
(FLIM). We determined that impaired mitochondrial
activity underlies an age-dependent loss of insulin
secretion in human islets. NAD(P)H FLIM revealed a
comparable decline in mitochondrial function in the
pancreatic islets of aged mice (‡24 months), the result
of 52% and 57% defects in flux through complex I and II,
respectively, of the electron transport chain. However,
insulin secretion and glucose tolerance are preserved in
aged mouse islets by the heightened metabolic sensi-
tivity of the b-cell triggering pathway, an adaptation
clearly encoded in the metabolic and Ca2+ oscillations
that trigger insulin release (Ca2+ plateau fraction: young
0.211 6 0.006, aged 0.380 6 0.007, P < 0.0001). This
enhanced sensitivity is driven by a reduction in KATP

channel conductance (diazoxide: young 5.1 6 0.2 nS;
aged 3.5 6 0.5 nS, P < 0.01), resulting in an ∼2.8 mmol/L
left shift in the b-cell glucose threshold. The results
demonstrate how mice but not humans are able to suc-
cessfully compensate for age-associated metabolic dys-
function by adjusting b-cell glucose sensitivity and

highlight an essential mechanism for ensuring the main-
tenance of insulin secretion.

The incidence of type 2 diabetes is disproportionately
high in elderly people at .25% compared with 4.1% in
younger and 16.2% in middle-aged adults (1). Although
insulin resistance and b-cell mass have been extensively
studied as contributors to impaired glucose tolerance and
diabetes in elderly people (2–4), whether b-cell function
contributes to this effect remains uncertain. Confound-
ing our understanding is the misalignment of studies on
humans and laboratory mice. A number of reports have in-
dicated that aging mice are resistant to a decline in glucose
tolerance and b-cell function (5–8), factors that reportedly
decline in humans (2–4,9,10). One potential explanation is
that differences in mitochondrial function, which are pro-
posed to underlie the age-related decline of numerous tis-
sues (11), exist between mouse and human b-cells. If
b-cells are susceptible to age-related mitochondrial defects,
one expects glucose-stimulated insulin secretion (GSIS) to
significantly decline, considering that b-cells use metabo-
lism as a signaling pathway not only to trigger oscillations
of insulin secretion but also to augment the magnitude
of the secretory response through metabolic amplifying
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pathways (12). Indeed, age-associated factors intrinsic to
the b-cell, including defects in NAD+ synthesis (13), reduce
mitochondrial copy number (14), and epigenomic changes
affecting the expression of metabolic genes (7) have been
reported, but the extent to which they affect metabolic
function in mouse and human b-cells remains unclear.

In this work, we explored the species differences be-
tween aging mouse and human b-cells ex vivo to define
the effect of age on the intrinsic ability of the b-cell to
respond to glucose independently from other age-related
physiological changes. We also used this opportunity to
develop NAD(P)H fluorescence lifetime imaging (FLIM) as
a novel approach to image islet metabolism. This method
is more easily interpreted than intensity-based NAD(P)H
imaging (15–18), which cannot distinguish increases in NADH
production, for example, from the binding of NADH to
proteins (which can multiply the fluorescence [19]). Using
NAD(P)H FLIM, we report that aged human and mouse
b-cells exhibit similar defects in mitochondrial glucose sens-
ing. However, mouse b-cells are uniquely resistant to age-
associated defects in insulin secretion, which is maintained
in aged mice by the heightened metabolic sensitivity of the
b-cell plasma membrane, an effect driven by the reduction
of KATP channel activity.

RESEARCH DESIGN AND METHODS

Human Islets
An exemption was granted for all protocols by the insti-
tutional review board at the University of Wisconsin-
Madison under protocol number 2015-0356. Human
islets were obtained from the Integrated Islet Distribu-
tion Program, including the center at the University of
Wisconsin. The Integrated Islet Distribution Program iso-
lation protocols and insulin secretion quality control assays
can be found at https://iidp.coh.org/investigator_sops
.aspx. After shipment, the islets were cultured overnight
in RPMI 1640/10% FBS and used within 24 h for insulin
secretion measurements.

Mice
All animal studies were approved by the Institutional
Animal Care and Use Committees of the University of
Wisconsin-Madison and the William S. Middleton Memo-
rial Veterans Hospital. Aged (18-, 24-, and 30-month-old)
and young (4- to 6-month-old) C57BL/6J male mice used
for the insulin secretion and mitochondrial assays were
from the National Institute on Aging (NIA) Aged Rodent
Colony. Additional 4- to 6-month-old C57BL/6J male mice
used for the calcium and electrophysiology experiments
were purchased from The Jackson Laboratory. The median
life expectancy of C57BL/6J male mice from these sources
is ;28 months (20) (http://phenome.jax.org).

In Vivo Studies
Glucose tolerance tests were performed by fasting the mice
overnight for 16 h and then injecting 1 g/kg glucose intra-
peritoneally; glucose measurements were then performed at
the indicated times by using a Bayer Contour blood glucose

meter and test strips. In vivo GSIS and fasting insulin levels
were determined by fasting the mice overnight for 16 h,
measuring blood glucose, and collecting tail blood (using
Sarstedt heparinized tubes) immediately before and 15 min
after injecting 1 g/kg glucose. Insulin levels in heparinized
plasma were determined using Mouse Insulin ELISA kits
(Crystal Chem).

Islet Isolation and Adenoviral Infection
The mouse pancreas was inflated through the common
bile duct with 3–5 mL of 0.5 mg/mL collagenase (C5138;
Sigma) and 0.2 mg/mL BSA (A8806; Sigma) in Hanks’
balanced salt solution (HBSS) (Invitrogen), excised, and
incubated in a glass vial at 37°C in 5 mL HBSS/BSA/
collagenase solution for 5 min on an orbital shaking water
bath (SHKA7000; Thermo Fisher Scientific) at 250 rpm.
Beginning 6 min postincubation, the digest was agitated
for 20 s at 375 rpm every 2 min until minute 28, washed
three times with 30 mL ice-cold HBSS/BSA solution, and
pelleted at 50g for 2 min. The pellets were resuspended
by vortex at medium speed in 1–2 mL of solution and
hand-picked from 60 mL of ice-cold HBSS/BSA solution.
After isolation, the islets were maintained in RPMI
1640 supplemented with 10% FBS (volume for volume),
100 units/mL penicillin, and 100 mg/mL streptomycin
(Invitrogen). Adenoviruses were used to express PercevalHR
ATP/ADP sensors (49082; Addgene) in islet b-cells un-
der control of the rat insulin promoter as in Merrins
et al. (21). Groups of 25 freshly isolated islets were imme-
diately infected with 2,000 multiplicity of infection of each
adenoviral construct for 2 h in a 95%/5% air/CO2 incuba-
tor at 37°C followed by removal to fresh culture media
lacking virus. Islets were imaged after 1–3 days in culture.
We confirmed that the presence of the PercevalHR sensors,
which were expressed in only a small fraction of b-cells,
had no effect on downstream Ca2+ oscillations.

Respirometry
After overnight incubation, 150 islets/condition/mouse
(six mice/condition) were transferred to a 35-mm Petri
dish containing 2 mL of MiR05 (in mmol/L: 0.5 EGTA,
3 MgCl2, 60 lactobionic acid, 20 taurine, 10 KH2PO4,
20 HEPES, 110 sucrose, 1% BSA; pH 7.1, adjusted with
5 mol/L KOH) (22) and 5 mg/mL saponin. Preliminary ex-
periments showed that permeabilized islets demonstrated
higher coupled respiration rates. Islets were gently rocked
in the permeabilization medium for 20 min. After 20 min,
the islets were rinsed with fresh MiR05 in the absence of
saponin, and then pipetted into an Oxygraph-2k chamber
(OROBOROS) containing 2 mL of MiR05 at 37°C. Oxygen
electrodes were calibrated to air-saturated MiR05 buffer
at 37°C using published oxygen solubilities (23) corrected
for local atmospheric pressure. Oxygen concentration
and oxygen flux were recorded using DatLab software
(OROBOROS). A modified substrate-uncoupler-inhibitor
titration protocol based on Votion et al. (24) was applied.
Respiratory flux through complex I was measured by
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adding 5 mmol/L glutamate and 1 mmol/L malate followed
by 1.25 mmol/L ADP to induce oxidative phosphorylation.
To assess the integrity of the outer mitochondrial mem-
brane, cytochrome c was added to the chamber (8 mmol/L)
(25), and no significant increases in respiration were ob-
served. Damage to the outer mitochondrial membrane dur-
ing permeabilization would result in a loss of cytochrome c
and a large increase in respiration upon the addition of
exogenous cytochrome c to the respiration chamber. Con-
vergent electron flow through complexes I and II was mea-
sured with the addition of 10 mmol/L succinate, allowing
the electron transport system to achieve maximal coupled
respiration. Next, a stepwise addition of carbonyl cyanide
p-trifluoromethoxyphenylhydrazone was used to comple-
tely uncouple mitochondria (0.250 mmol/L initial + 0.250
mmol/L additions). To assess oxygen flux through complex
II, 0.5 mmol/L of rotenone was added to inhibit complex I.
Finally, electron transfer was blocked at complex III with the
addition of 5 mmol/L of antimycin A and allowed to run
long enough to obtain a residual oxygen consumption.
Oxygen flux was expressed per milligram of total protein
(Pierce 660-nm protein assay; Thermo Fisher Scientific).

FLIM of NAD(P)H
Islets were imaged in glass-bottom dishes on a custom-built
multiphoton laser scanning system based around a Nikon
TE-300 inverted microscope equipped with a Plan Apo
603/1.4 NA oil immersion objective (Nikon Instruments)
in a standard external solution containing (in mmol/L)
135 NaCl, 4.8 KCl, 5 CaCl2, 1.2 MgCl2, 20 HEPES, and
10 glucose (pH 7.35). Temperature was maintained at
35°C by using a LiveCell incubator (Pathology Devices).
NAD(P)H was excited with a Mai Tai DeepSee Ti:Sapphire
laser (Spectra-Physics) at 740 nm with a 450/70m band-
pass emission filter (Chroma) before being collected by a
Hamamatsu H7422P-40 GaAsP photomultiplier tube.
FLIM images were collected at 256 3 256 resolution
with 120 s (1/s) collection using SPC-830 Photon Counting
Electronics (Becker & Hickl GmbH). In each experiment,
urea crystals were used to define the instrument response
function with a 370/10 bandpass emission filter (Chroma),
and coumarin was used as a reference for lifetime (2.5 ns)
by using a 450/70m bandpass emission filter (Chroma).
For analysis, raw SDT files were imported into MATLAB
(MathWorks), and a custom script was used to generate a
phasor histogram for each treatment by using the equa-
tions in Digman et al. (26). To avoid contamination from
lipofuscin fluorescence in the aged cells (27), which forms a
short lifetime tail in the phasor plot, all data were reported
as the phasor histogram peak (1-gmax,smax).

Time-lapse Imaging of NAD(P)H, ATP/ADP, and Ca2+

For measurements of cytosolic Ca2+, islets were preincu-
bated in 2.5 mmol/L Fura Red (Molecular Probes, Eugene,
OR) for 45 min at 37°C. Islets were then placed in an
RC-24N glass-bottom chamber (54 mL volume) (Warner
Instruments) on a Nikon Eclipse Ti-E inverted microscope
equipped with Super Fluor 103/0.5 NA and 203/0.75 NA

objectives (Nikon Instruments). The chamber was per-
fused with standard external solution (as previously de-
scribed). The flow rate was 0.3 mL/min, and temperature
was maintained at 33°C using inline solution and chamber
heaters (Warner Instruments). Excitation was provided by
a SOLA SE II 365 (lumencor) set to 10% output. Excitation
(x) or emission (m) filters (ET type; Chroma Technology)
were used in combination with an FF444/521/608-Di01
dichroic beamsplitter (Semrock) as follows: Fura Red 430/
20x and 500/20x, 630/70m (R430/500); NAD(P)H 365/20x,
470/24m; and PercevalHR 430/20x and 500/20x, 535/35m
(R500/430). Fluorescence emission was collected with a
Hamamatsu ORCA-Flash4.0 V2 Digital CMOS camera at
0.125–0.2 Hz. A single region of interest was used to
quantify the average response of each islet using Nikon
NIS-Elements and MathWorks MATLAB software.

Electrophysiology
b-Cell membrane potential and KATP conductance were
measured as in Ren et al. (28). Briefly, a Sutter MP-225
micromanipulator was used together with a HEKA EPC
10 patch clamp amplifier in the perforated patch clamp
configuration to record membrane potential from intact
islets perfused with standard external solution (as previ-
ously described). Pipette tips were filled with an internal
solution (in mmol/L: 28.4 K2SO4, 63.7 KCl, 11.8 NaCl,
1 MgCl2, 20.8 HEPES, 0.5 EGTA, 40 sucrose; pH 7.2) con-
taining 0.36 mg/mL of amphotericin B. Islet b-cells were
identified by the presence of slow oscillations in 10 mmol/L
glucose. The amplifier was then switched into voltage
clamp mode. Conductance changes were determined from
the current-voltage relation using 2-s voltage ramps from
2120 to 250 mV every 20 s during the silent phase of
bursting and following application of 200 mm diazoxide.
Assuming that diazoxide acts by maximizing steady-state
KATP open probability, changes in conductance primarily re-
flect changes in the number of open KATP channels.

Ex Vivo Insulin Release
The GSIS assay was performed on human and mouse islets
by using a high-throughput multiple-well plate technique
(29) in which islets were individually incubated in a tissue
culture–treated 96-well V-bottom plate, allowed to adhere
for 24 h, and incubated with Krebs-Ringer bicarbonate
buffer at 1.7 mmol/L glucose (preincubation) followed by
a stimulatory 16.7 mmol/L glucose incubation for 45 min
each. Secretory medium was then collected, and the islets
were lysed with a cell lysis buffer (9803; Cell Signaling
Technology). Insulin secretion as a percentage of total islet
insulin content was measured by ELISA.

Statistics
Data are expressed as mean 6 SE. Statistical significance
was determined using one- or two-way ANOVA with Sidak
multiple comparisons test post hoc or Student t test as
appropriate. Differences were considered to be statistically
significant at P , 0.05. Statistical calculations were per-
formed with GraphPad Prism software.
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RESULTS

Human Aging Is Associated With Defects in GSIS
and Islet Metabolism
Insulin secretion measured in islets isolated from 31
human donors ranging in age from 19 to 64 years
(Supplementary Table 1) revealed a significant decline in
b-cell function with age that was prominent at high glu-
cose levels (R2 = 0.51, P , 0.0001) (Fig. 1A). The stimu-
lation index, defined as the fold-change in GSIS, pointed
to the same age-related deficiency (R2 = 0.26, P = 0.0046)
(Fig. 1B). There was no change in insulin content with
age (Fig. 1C) or trend in BMI across the donor population
(Fig. 1D). Neither the insulin secretion in high glucose nor
the stimulation index was correlated with BMI (Fig. 1E
and F).

To ascertain the relationship between insulin secretion
and glucose metabolism in these islets, we used multiphoton
FLIM of NADH and NADPH to directly image human islet
metabolism. Rather than reporting NAD(P)H fluorescence
intensity (Fig. 2A, left) (16), FLIM measures the duration
that NAD(P)H remains in the excited state (its fluorescence
lifetime), which increases approximately sixfold when the
coenzymes are bound to protein (19,30). The discrete life-
times imparted on NADH and NADPH by each of their
binding proteins were plotted as phasor histograms (26)
so that each distinct mixture of lifetimes occupies a unique
position on the plot (Fig. 2A, right). Note that the images of
aged islets especially contain lipofuscin puncta (arrows), a
cellular waste product identifiable by its broad-spectrum
excitation (31) that accumulates with age independently
of obesity or diabetes phenotypes (27); on the basis of its
very short lifetime, lipofuscin was excluded from the anal-
ysis of the phasor histogram peak. Relative to islets from
an older donor (58 years old, ACKH054A), the application
of 17 mmol/L glucose to islets from a younger donor
(24 years old, ACJ3270) shifted the phasor peak significantly
further along the abscissa, reflecting an increase in bound
NAD(P)H, which has a long lifetime (32). The difference in
islet metabolism between aged and young islets was even
more pronounced at 2 mmol/L glucose (Fig. 2B and C). A
shift in the histogram peaks toward free NADH was induced
by rotenone, which blocks NADH utilization at complex
I and serves as a positive control to calibrate the FLIM.
Changes in the islet phasor histogram peak along
the 1-gmax axis reflect the metabolic consequences of
activating/inactivating the electron transport chain, con-
sistent with NAD(P)H FLIM studies that used alternative
electron transport chain inhibitors (e.g., KCN [32,33]).
Of note, donor age was correlated with the progressive
loss of glucose-dependent NADH utilization (R2 = 0.63,
P = 0.006) (Fig. 2D), indicating that a reduction in
mitochondrial metabolism contributes to the loss of
insulin secretion with age.

Despite Mitochondrial Decline, Insulin Secretion and
Glucose Tolerance Are Preserved in Aged Mice
Given the strong relationship between b-cell secretory
dysfunction and human aging, we investigated organismal
glucose homeostasis in young (4- to 6-month-old), mid-
dle-aged (18-month-old), and aged ($24-month-old)
C57BL/6J mice from the NIA Aged Rodent Colony. Glu-
cose tolerance, measured in fasted animals, was equiva-
lent between the young and aged mice (Fig. 3A and B) as
reported previously (5,8). However, middle-aged and aged
animals trended toward increased fasting insulin levels,
and aged animals exhibited an augmented insulin secre-
tory response after intraperitoneal glucose injection (Fig.
3C and D). To determine whether this effect can be
explained by a b-cell autonomous mechanism, pancreatic
islets isolated from young and aged mice were subjected
to an ex vivo GSIS assay. Islets from the aged mice se-
creted significantly more insulin than islets from young

Figure 1—Insulin secretion declines with age in human islets. In-
sulin secretion (2 mmol/L glucose [2G] and 17 mmol/L glucose
[17G]) (A), stimulation index (SI) (i.e., stimulated/basal secretion)
(B), insulin content (C ), and BMI (D) are shown as a function of
donor age (n = 31). E and F: Insulin secretion (17G) and SI as a
function of BMI (n = 31). Donor information is listed in Supplemen-
tary Table 1.
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mice at both basal and stimulatory glucose concentrations
(Fig. 3E); no difference in insulin content was observed
(data not shown). These data, which align with recent
reports (7,34), imply that b-cell compensation is neces-
sary to maintain euglycemia in aged mice, which could
reflect increased b-cell mass (islet area was 43% larger
in the aged mice relative to controls [Fig. 3F]) as well as
functional compensation.

As a means to compare metabolic function in young and
aged mice with the human islet phenotype, multiphoton
NAD(P)H FLIM was again used to directly image mito-
chondrial metabolism (Fig. 4). Although glucose induced an

increase in free NAD(P)H in both groups, quantification of
the phasor histogram peaks showed that the NAD(P)H re-
sponse is depressed in the aged islets in response to glucose
(Fig. 4A and B). NADH consumption by the mitochondrial
respiratory chain was assessed by acute application of ro-
tenone (5 mmol/L, complex I inhibitor) and oligomycin
(5 mmol/L, complex V inhibitor). In all four treatments, a
decline in mitochondrial function (reflected by the decline
in bound NAD[P]H) was evident in aged islets relative to
young control islets (Fig. 4C). The relative difference in the
cellular response to oligomycin and rotenone, which reveals
the proton leak (35), was not altered.
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As a second approach, we measured mitochondrial
oxygen consumption in permeabilized islets stimulated
with glutamate, malate, succinate, and ADP. In excellent
agreement with the NAD(P)H FLIM, mitochondrial res-
piration was strongly decreased in the aged islets (Fig.
4D). Flux through complexes I and II was similarly re-
duced (by 52% and 57%, respectively), indicating that
defects in aged cells manifest within the electron trans-
port chain. Because age-associated mitochondrial dysfunc-
tion afflicts both human and mouse islets, these findings

prompted us to seek an explanation for the augmented
insulin secretion we observed in aged mice.

Hypersensitivity of the b-Cell Plasma Membrane,
Driven by a Reduction in KATP Conductance,
Compensates for Mitochondrial Dysfunction in Aged
Mice
Downstream of the mitochondria, ATP/ADP, KATP chan-
nels, and Ca2+ control the triggering pathway of insulin
secretion. Oscillations in these parameters between active
and silent phases occur within an intermediate range of
glucose levels (Fig. 5A). Within this range, an analysis of
the oscillatory plateau fraction (the fraction of the time
the islet spends in the active state [21,36,37]) can provide
direct information on the b-cell glucose threshold without
the need for a full glucose dose-response curve. This is
because of the direct relationship between b-cell glucose
metabolism and plateau fraction, which can be calculated
from ATP/ADP or Ca2+ oscillations (Fig. 5B). Note that
increased ATP/ADP plateau fraction does not equal in-
creased ATP level; the plateau fraction of ATP/ADP fol-
lows the activity of membrane potential oscillations
strictly (21), whereas the plateau fraction of Ca2+ oscilla-
tions (in the same islet) is slightly longer due to extended
Ca2+ release from the endoplasmic reticulum (ER) during
the silent phase (38).

When measured simultaneously, Ca2+ and ATP/ADP os-
cillations in mouse islets (Fig. 5C) are out of phase because
of ATP consumption by Ca2+-ATPases located in the ER
and plasma membrane (39,40). Compared with young is-
lets, aged islets displayed an increased oscillatory plateau
fraction, reflecting increased sensitivity to glucose (Fig.
5D); based on data shown in Fig. 5B, we estimated that this
effect corresponds to an ;2.8 mmol/L left shift in the
plasma membrane glucose threshold. Although enhanced
insulin secretion is consistent with enhanced Ca2+ activity
in aged b-cells (Fig. 3), this observation was unexpected
because of the respiratory chain failure we observed in the
aged mouse islets (Fig. 4), which would be expected to
restrict KATP channel inhibition and Ca2+ channel activa-
tion. These findings suggest that the b-cell plasma mem-
brane in aged cells is hypersensitive to glucose metabolism.

Because KATP channels are the primary metabolic sen-
sor for the b-cell plasma membrane (41,42), we hypoth-
esized that the loss of KATP channel conductance (GKATP)
could account for the enhanced Ca2+ oscillations we ob-
served in aged islets. GKATP was calculated from voltage
ramps (28) during islet bursting and in the presence of
the KATP channel opener diazoxide (200 mmol/L) (Fig.
5E). The more KATP channels present in the plasma mem-
brane, the larger the change in GKATP seen in response to
diazoxide; by this measure, GKATP was reduced by 31% in
aged relative to young b-cells (Fig. 5F, left). There was no
difference in cell size between groups (data not shown).
We also confirmed that these results were not due to
differences in leak resistance between individual islets
by subtracting the conductances measured during the
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silent phase of bursting from the same b-cell during diazoxide
application, which yielded the same fundamental conclu-
sion (Fig. 5F, right). The age-dependent loss of KATP chan-
nels would be expected to reduce the ATP/ADP ratio
required to initiate membrane depolarization and account
for the enhanced plateau fraction of calcium oscillations
and elevated insulin release we observed in aged islets.

DISCUSSION

The focus of this work was to compare the effects of age
on b-cell metabolism and insulin secretion in mouse and
human islets. To do so, we developed a novel assay for
metabolic fingerprinting of the pancreatic islet, NAD(P)H

FLIM. We demonstrated that both human and mouse
islets exhibited an age-associated decline in mitochondrial
NADH utilization due to defects in the electron transport
chain. Of note, we found that islets from aged mice
significantly compensated for this defect with re-
stricted b-cell GKATP, which in turn increased the glu-
cose sensitivity of plasma membrane Ca2+ triggering
and insulin secretion. Although the results help to
explain the resistance of mice to age-induced defects
in insulin secretion, human islets apparently lack this
compensation.

Human aging is accompanied by declining glucose
tolerance (2–4), and we detected a corresponding defect
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in insulin secretion in pancreatic islets isolated from aged
human subjects. Of note, our measurements revealed an
age-dependent defect in stimulated insulin secretion (R2 =
0.51, P , 0.0001), with a much weaker effect on the
stimulation index (R2 = 0.26, P = 0.0046). A decline in
the stimulation index based instead on an age-dependent
increase in basal insulin secretion has also been reported
(9,10), whereas another study found no age-related de-
fects (5). Although we find no fault with these studies,
or a satisfactory explanation for the discrepancy between
them, our results are qualitatively similar to those
of an unpublished study by Benninger and colleagues
(R. Benninger, personal communication) that showed
a significant age-dependent decline in both stimulated

and basal insulin secretion (21 preparations); in our study,
basal secretion trended lower with age but was not signif-
icant (P = 0.08, 31 preparations).

Studies of glucose homeostasis in aged mice are more
consistent. The widely studied C57BL/6 inbred mouse
strain exhibits normal glucose tolerance with age (Fig. 3)
(5,6,43,44), and in addition to the current study, three
reports of mice from the NIA Aged Rodent Colony found
that insulin secretion increases with age (Fig. 3) (5,7,8).
What, then, explains the discrepant phenotype of human
and mouse islets? We considered the possibility that mi-
tochondrial health, which declines with age in human
b-cells (14), might be unaffected in mouse islets. How-
ever, using NAD(P)H FLIM, we showed that mitochondrial
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NADH utilization declines with age in both species (Figs. 2
and 4). Using respirometry, we directly identified defects in
complexes I and II of the electron transport chain, which
likely underlie the impairment in glucose-dependent hyper-
polarization of the mitochondrial membrane potential in
aged C57BL/6J mouse islets (6). However, by quantifying
the dynamics of glucose-dependent b-cell oscillations in
metabolism and Ca2+, we discovered that these age-associated
defects in metabolism are compensated for by hyper-
sensitivity of the mouse b-cell plasma membrane. The
mechanism of this effect was specifically due to a reduction
in KATP channel conductance, which was accompanied by
increased insulin secretion.

The appeal of an age-dependent shift in the b-cell glu-
cose threshold is that insulin secretion can increase de-
spite defects in mitochondrial respiration. Two lines of
evidence might explain how regulation of KATP occurs.
The first is based on experiments demonstrating that
exposure of islets to hyperglycemic conditions can reduce
b-cell KATP conductance by adjusting KATP channel traf-
ficking to the plasma membrane (45,46). This trafficking
mechanism requires autocrine feedback of insulin (46),
which is reminiscent of a second potential mechanism
involving insulin-dependent transcriptional regulation of
KATP. In this case, insulin receptor signaling activates
cyclin-dependent kinase 4 (Cdk4), which phosphorylates
Rb to activate the E2F transcription factors required for
Kir6.2 (KCNJ11) promoter activity (47). By activating
Kir6.2, which comprises the pore-forming subunits of
KATP, the insulin receptor signaling pathway limits b-cell
excitability. Several groups have demonstrated that b-cells
exhibit increased expression of cell cycle inhibitors with age
(reviewed in Gunasekaran and Gannon [3]), most promi-
nently the Cdk4 inhibitor p16/Ink4a (34,48), which would
be expected to restrict E2F activation and Kir6.2 transcrip-
tion. In this second model, the reduced KATP channel ac-
tivity we observed in mouse islets is an inevitable but
welcome adaptation to b-cell senescence. Ultimately, how-
ever, distinguishing between these two alternative models
will require additional experimentation in genetically mod-
ified aged mice (e.g., mice lacking Cdk4).

In addition to advancing our understanding of b-cell
aging, we have made a significant technical leap by using
FLIM of NAD(P)H to quantify the metabolic health of
islet cells. Although we do not currently possess a way
to distinguish between the endocrine cell types, NAD(P)
H FLIM addressed a number of issues inherent to the
intensity-based NAD(P)H measurements used in our prior
studies (49,50). First, the autofluorescence signal in aged
islets is dominated by lipofuscin, which accumulates with
age (27). We were able to exclude lipofuscin from our
analysis by its short lifetime through the phasor approach
to FLIM (26,32); because lipofuscin is accumulated by
many cell types in aging rodents and humans, we expect
this approach to be broadly applicable to the study of
metabolism in other tissues. Second, we noted that
NAD(P)H fluorescence intensity, when determined using

epifluorescence, strongly depends on islet size. Size matching
would have skewed our comparison of young and aged islets,
which were 42% larger, and would be impossible when study-
ing islets isolated from some genetic models of obesity, such
as ob/ob mice. Islet size is normalized when using multipho-
ton microscopy, which ensures that a uniform volume is
measured from each islet.

As the population ages, it seems likely that the al-
ready high prevalence of diabetes among older people will
continue to rise. In this work, we determined that a
reduction in the b-cell glucose threshold allows mice, but
apparently not humans of the studied age-group, to cir-
cumvent age-associated mitochondrial decline and main-
tain insulin secretion. This left shift in the glucose
threshold for Ca2+ activation may also be found in studies
of genetic (db/db), pharmacologic (streptozotocin), and
diet-induced diabetes models (51,52), hinting that thresh-
old shifting is an important mechanism of b-cell compen-
sation for all ages.
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