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Abstract

Identification of differentially expressed genes (DEGs) is well recognized to be variable

across independent replications of genome-wide transcriptional studies. These are often

employed to characterize disease state early in the process of discovery and prioritize novel

targets aimed at addressing unmet medical need. Increasing reproducibility of biological

findings from these studies could potentially positively impact the success rate of new clini-

cal interventions. This work demonstrates that statistically sound combination of gene

expression data with prior knowledge about biology in the form of large protein interaction

networks can yield quantitatively more reproducible observations from studies characteriz-

ing human disease. The novel concept of Well-Associated Proteins (WAPs) introduced

herein—gene products significantly associated on protein interaction networks with the dif-

ferences in transcript levels between control and disease—does not require choosing a dif-

ferential expression threshold and can be computed efficiently enough to enable false

discovery rate estimation via permutation. Reproducibility of WAPs is shown to be on aver-

age superior to that of DEGs under easily-quantifiable conditions suggesting that they can

yield a significantly more robust description of disease. Enhanced reproducibility of WAPs

versus DEGs is first demonstrated with four independent data sets focused on systemic

sclerosis. This finding is then validated over thousands of pairs of data sets obtained by ran-

dom partitions of large studies in several other diseases. Conditions that individual data sets

must satisfy to yield robust WAP scores are examined. Reproducible identification of WAPs

can potentially benefit drug target selection and precision medicine studies.

Author summary

Gene expression studies are commonly used to characterize biological systems. Genes

identified in such experiments as expressed at different levels between conditions (e.g.

healthy vs. disease) can indicate biological functions that are important in this context.
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However, it is well-recognized that such findings can vary substantially across indepen-

dent investigations. We quantified reproducibility here under a conservative control sce-

nario that partitions a given data set in two, independently of experimental conditions, for

multiple data sets characterizing several diseases in humans. Furthermore, we have shown

that it is possible to obtain more reproducible findings than DEGs, which we term Well-

Associated Proteins, characterizing differences in gene expression between healthy and

disease states. This was accomplished by combining gene expression and prior knowledge

of functional relationships between gene products accumulated over many studies and

publications. Resulting Well-Associated Proteins can be computed efficiently enough to

enable permutation controls and demonstrate on average higher reproducibility than dif-

ferentially expressed genes, both within and across data sets. This suggests that Well-Asso-

ciated Proteins may better reflect differences in biology when comparing disease and

healthy states than DEGs, thus representing an important step towards identification of

key disease drivers.

Introduction

Microarrays and RNA sequencing are experimental technologies convenient for generating

lists of Differentially Expressed Genes (DEGs) that characterize differences between two con-

ditions, e.g. a disease versus its absence. It is commonly recognized that DEG identification

can be highly variable over independent studies [1–3]. Some of the advances aimed at improv-

ing reproducibility of the DEG discovery included removal of DEGs with small fold changes

between conditions [3, 4], as well as accounting for correlation among DEGs [5, 6], and relying

on ranked lists of DEGs [7] when comparing DEGs across independent experiments. It has

also been argued that high variability in the identified DEGs is an inherent property of gene

expression studies and that development of new metrics of reproducibility might be desirable

in this context [8].

The modular vision of biology [9] inspired development of a vast array of systems-based

methodologies [10] quantifying differential regulation of gene sets representing known biolog-

ical functions such as Gene Ontology (GO) categories [11], curated collections of pathways

(e.g. KEGG [12] or Reactome [13]) or molecular signatures observed in previous gene expres-

sion studies (e.g. MSigDB [14]). These methods can potentially improve sensitivity and

interpretability of gene expression experiments and have been benchmarked in several con-

texts [15–18]. Networks of known interactions between gene products represent a comple-

mentary approach for organizing genes by their functional relationships and have been used

for differential analysis of gene expression data by multiple methods that have been extensively

reviewed [10, 19, 20] and benchmarked [21, 22] as well. Studies using pathway networks in

combination with genome-wide patient profiling data include works by [23] that developed

permutation tests to demonstrate significant connectedness on PPI network of genomic loci

associated with several common diseases and [24] that found higher replicability of the predic-

tions of patient response to treatment in an independent study, when patient-level gene

expression data was combined with the network of causal relationships representing transcrip-

tional regulation. These approaches utilize prior biological knowledge, are well established for

the analysis of gene expression data and are routinely used within high throughput biology

studies [25].

Assessing the gain in reproducibility of the systems-based analyses results due to the use of

prior biological knowledge (e.g. functional categories or pathway networks) still remains
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difficult to address. A survey of the studies evaluating reproducibility of the findings at the

level of genes and/or gene sets [26–31] illustrates a variety of challenges associated with this

task. They include: the choice of reference gene expression data and gene set knowledgebase,

the selection of analyses methodologies to compare, the definition of reproducibility metrics,

and, most importantly, the burden of interpreting results when comparing reproducibility

metrics for different types of entities (e.g. as calculated for genes vs. those for GO categories).

This paper introduces a novel concept of a Well-Associated Protein (WAP) that quantifies

the association of gene (product) on a protein interaction network (STRING [32]) with the

genes that are more significantly regulated in the experiment. This development enables com-

parison of the reproducibility of findings across independent experiments within the same

universe of genes represented in the protein interaction network that can be scored both for

their individual differential expression (as DEG) or, as a WAP, for their association on the net-

work with the most significantly regulated genes. The significance of the WAP association

accounts for the total number of interactions of each protein (protein degree) on the network,

and computation of this significance is fast enough to enable permutation controls. This allows

for identification of gene products which have a significantly large number of known associa-

tions to the genes that are most perturbed in the experiment, without actually choosing a

threshold of differential expression (consequently incurring inevitable information loss).

Therefore resulting WAPs can attain statistical significance while not being themselves differ-

entially expressed. Thus they can extend standard gene expression analysis results while

leveraging the systems-level of information encoded in the protein network and the entire

compendium of data obtained in a gene expression experiment.

By considering only genes which are represented both in gene expression data and on the

protein interaction network, this approach enables the direct comparison of the reproducibil-

ity metrics for DEG and WAP rankings. Comparisons presented in this paper demonstrate

that, under easily-quantifiable conditions, higher average reproducibility of WAP identifica-

tion versus that of DEG is observed over nine types of diseases.

This paper is organized as follows. After presenting computational details, reproducibility

of WAP and DEG identification is examined over four large data sets where gene expression

in skin samples is compared between Systemic Sclerosis (SSc) patients and non-SSc subjects,

demonstrating greater reproducibility of top WAPs as compared to that of top DEGs across

these data sets. Superior average robustness of top WAPs versus top DEGs in disease versus

normal comparisons is then validated over thousands of data set pairs obtained by random

partitions of eighteen large gene-expression studies incorporating eight other diseases (colon

cancer, gastric cancer, endometriosis, hepatocellular carcinoma, non-small-cell lung carci-

noma, lung adenocarcinoma, oral squamous cell carcinoma and psoriasis). Additionally, con-

ditions for individual data sets contributing to the higher robustness of WAPs are examined.

Finally, limitations of the approach and potential for further work are discussed.

In summary, the WAP score is a robust statistic which ranks gene products by the signifi-

cance of their known interactions with the genes most perturbed in the experiment without

having to choose a threshold of differential expression. Because WAP scores can be efficiently

computed, false discovery rates can be numerically estimated by permutation techniques that

preserve correlation of gene expression [33]. Identification of genes with significant WAP

scores complements standard gene expression analysis, and extends it by identifying genes

that are not themselves DEGs. Enhanced reproducibility of WAP identification versus tradi-

tional selection of DEGs is demonstrated under specific conditions, and holds at least across

nine types of disease. Such an increase in reproducibility of the findings from gene expression

studies, driven by the prior biological knowledge encoded in a protein network, suggests that
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the resulting WAPs may represent a robust description of the disease-related biology that is

likely to be beneficial to drug target selection and precision medicine approaches.

Materials and methods

The concept of well-associated protein

The approach presented herein identifies proteins, termed Well-Associated Proteins (WAPs),

which have a large number of known functional relationships (i.e. interactions) in a protein

interaction network with the genes that are significantly perturbed in gene expression data.

The method utilized to identify WAPs is illustrated with Fig 1A. Consider the n genes which

are represented both in a gene expression data set and the protein interaction network. Genes

are ranked from the most differentially expressed (i = 1) to the least (i = n) using results of

gene-level statistical models as warranted by a given study design (e.g. t-test, linear or mixed

effects model, etc.).

The association of any gene product j to the top i DEGs is a function of xj,i, the number of

known interactions in the protein network between j and this set. The value of xj,i depends not

only on i but also on the degrees (total numbers of interactions) of all considered gene prod-

ucts. A possible approach to account for degrees is to compare xj,i to the expected number of

interactions when randomly rewiring edges in the whole network, while exactly preserving the

degree k of each gene product [34]. This however requires extensive numerical simulations,

because explicit derivation of the expected number of interactions under this random graph

model is a hard problem [35].

By considering a relaxed random graph model, which only preserves degrees on average

over realizations [36], one can easily obtain the distribution of random variable Xj,i [37].

Briefly, any possible interaction between two proteins of degrees ku and kv is represented by a

Bernoulli random variable of parameter buv = kukv/2M (buv is the probability of this interaction

to exist), where M is the total number of interactions in the network, and interactions are

modeled as independent variables (Section 1 in S1 Text provides additional technical details).

For sparse networks (buv� 1), counting interactions is then equivalent to summing

Fig 1. Illustration of WAP scores. A: Gene products are scored for their association xi (number of interactions) to the top i DEGs, where i varies

from 1 to the total number n of genes. Values of xi are compared via edge-count probabilities Pi, and a gene product is scored with its best corrected

attachment p-value: c mini Pi. B: The profile of ranked c min P values is compared to profiles estimated after randomly assigning disease and control

labels to samples (104 permutations). This yields an estimated Proportion of False Positive (PFP) of WAPs at each rank j.

https://doi.org/10.1371/journal.pcbi.1007684.g001
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independent Bernoulli variables of small parameters and the resulting distribution can be

approximated by a Poisson distribution [38]. The distribution of random variable Xj,i is there-

fore Poisson with parameter

lj;i ¼
kj

2M

X

h�i;h6¼j
kh: ð1Þ

After some normalization [37], the probability of observing at least xj,i interactions is given by

Pr Xj;i � xj;i
� �

¼
e� lj;i
aj;i

Xi

h¼xj;i

l
h
j;i

h!
; aj;i ¼

Xi

h¼0

l
h
j;i

h!
: ð2Þ

Notice that, because λj,i increases with i, the p-value is conditional not only to the observed

number xi of interactions, but also to the considered number i of DEGs. This implies that

there is no need for choosing a threshold (bound on i) which defines differential expression.

The above p-value is referred to as Pj,i for short. This type of p-value enables comparison of

diverse protein sets for their connectedness in a network, while taking into account protein

degrees [37, 39–41]. One can compare values of Pj,1, Pj,2,. . ., Pj,n and the best association of

gene product j to DEGs corresponds to mini Pj,i. Again, this quantity does not require choos-

ing a threshold of differential expression. To compare best association scores across proteins

one must further correct by their degree, because the operation of taking the minimum can

yield bias towards proteins with large degrees and due to lower values of Pj,i attainable for

them (Section 3 in S1 Text). The corrected best association score for gene product j of degree

kj in the protein interaction network used herein is given by

c min Pj ¼ ðrðkjÞ=rð1ÞÞmin
i

Pj;i;

with rðkÞ ¼ k� ae� b; a ¼ 0:1799; and b ¼ 1:056:
ð3Þ

When the total number n of proteins in the network is at least a few thousand, the correction

depends only on kj. Gene products are next sorted by ascending values of corrected best associ-

ation score c min P:

c min Pð1Þ � . . . � c min PðjÞ � . . . � c min PðnÞ: ð4Þ

Computation of all c min P values can be optimally performed in OðMÞ, where M is the total

number of interactions in the network (Section 2 in S1 Text).

Fast computation makes it possible to estimate a false discovery rate (FDR; the expected

proportion of false positives at a given cutoff) for the observed values of c min P(j) via permuta-

tion techniques in a reasonable time. Permutation, randomizing sample labels (healthy vs. dis-

ease) as described below, was employed to estimate proportion of false positives under the null

hypothesis of interchangeability of observations in these two groups. The null hypothesis of

randomizing sample labels is that of the primary interest for identifying WAPs representing

differences between these two groups, unlike the null hypothesis of random rewiring of the

pathway network, yielding actual values of minP, that was used to account for the wide ranging

disparity of vertex degrees when scoring them for connectedness to more differentially regu-

lated genes. For the sake of clarity, different acronyms will be used to emphasize the distinction

between permutation-based estimates of FDR for WAPs and Benjamini-Hochberg [42] esti-

mates of FDR for DEGs. Throughout this paper the former will be referred to as a Proportion

of False Positives (PFP) and use of FDR will be reserved to represent the latter—Benjamini-

Hochberg FDR for DEGs. To estimate PFP values for WAPs disease states are randomly
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shuffled between samples (thus preserving gene co-expression), genes are ranked for differen-

tial expression and values of c min P(j) are estimated again. Observed values are compared to

simulated ones: for the observed WAP score of rank j, the simulated profile yields k more sig-

nificant scores, hence a first estimation of PFP(j) = min(k/j, 1). The estimation is refined by

averaging values of PFP(j) over at least 103 simulations. This process is illustrated with Fig 1B.

WAPs with small PFP values are said to be significantly associated to the most differentially

expressed genes.

Fig 2 provides an example of a c min P profile obtained with data set GSE58095 [43], where

skin samples of Systemic Sclerosis (SSc) patients are compared to skin samples of healthy sub-

jects. Differential expression is assessed by a two-sided t-test. The solid blue line in Fig 2A dis-

plays observed values of c min P(j) as a function of rank j. For the sake of display, the vertical

scale has been restricted to values between 10−8 and 1, and ranks j� 70 yield smaller values

down to c min P(1)’ 10−38. The red solid line shows PFP values for each observed c min P(j)

estimated with 104 permutations. There are 215 genes with PFP value less than 0.05, suggesting

that DEGs in SSc versus healthy are specifically organized within the network of known pro-

tein functional relationships. To illustrate the importance of biological knowledge encoded in

the protein network on WAP scores, results are also displayed for a randomly rewired net-

work, as described in [34], which preserves vertex degrees (dashed lines) and for a similarly

rewired network but containing the same number of triangles as the original network (dotted

lines). The utilized method to create random triangles while preserving vertex degrees is

described in [44]. Randomly rewired networks do not yield small PFP values, except for one

gene: Ubiquitin C. This is because it connects to nearly half of the vertices on the network, so

that the probability of the removal by random rewiring of all of the existing ubiquitin C inter-

actions is negligibly small. All other proteins yield PFP values greater than 0.1 after rewiring,

showing that true protein functional relationships are required to obtain significant WAP

scores.

Fig 2. WAP and DEG scores for data set GSE58095. A: c min P(j) values (blue solid line) and PFP values (red solid line, 104 permutations) as a function

of their rank j. Dashed lines correspond to values obtained with a randomly rewired protein network and dotted lines to a randomly rewired network

preserving the number of triangles. B: Scatterplot of WAP PFP and DEG FDR values. Thresholding DEG FDR and WAP PFP at 5% yields four categories

of genes based on their significance: DEG and not WAP (green), DEG and WAP (red), WAP and not DEG (blue) and neither DEG nor WAP (gray).

https://doi.org/10.1371/journal.pcbi.1007684.g002
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In Fig 2B, genes are partitioned into four categories by choosing a threshold of 0.05 on

WAP PFP and/or DEG FDR, so as to yield an expected false-positive rate of only 5% for both

DEGs and WAPs that are deemed significant. Gray dots correspond to genes which are neither

significant DEGs (FDR> 0.05) nor significant WAPs (PFP > 0.05). Significant DEGs are rep-

resented by the union of green and red dots, for a total of�1100 genes. Among those,�50 are

significant WAPs as well (red dots). These genes are not only differentially expressed, but also

significantly connected to other DEGs via known interactions and this can be seen as addi-

tional evidence for their potential involvement in SSc. Lastly, significant WAPs which are not

significant DEGs are represented by blue dots (�160 genes). These genes can only be identified

by combining gene expression and protein network knowledge: even though they are not sig-

nificantly perturbed at the mRNA level, their significant connectedness on the network to the

most perturbed genes in the SSc-normal comparison suggests their potential involvement in

SSc.

Quantification of gene scores reproducibility across data sets

In order to compare rankings of WAP and DEG scores for their robustness across data sets, it

is required to define a measure of reproducibility. Reproducibility is quantified with the Jac-

card index, which is a well-accepted measure of overlap [45]. Call Ai and Bi the top i genes,

based on WAP or DEG scores, in two data sets A and B. The two data sets have been reduced

to their common n genes, which are also represented in the protein network. The relative over-

lap of sets Ai and Bi is the Jaccard index:

Ri ¼
Ii
Ui
; with Ii ¼ jAi \ Bij; Ui ¼ jAi [ Bij; ð5Þ

and where jSj stands for the number of genes in set S. Plotting Ri as a function of Ui provides

a display of overlap between two data sets. The two curves obtained with WAP and DEG

scores can then be visually compared. For i! n one trivially has Ri! 1. But local maxima of

Ri for values of Ui less than n are indicative of remarkable overlap.

To illustrate the quantification of reproducibility, two Systemic Sclerosis (SSc) data sets are

considered: GSE58095 [43] and GSE32413 [46]. Gene expression was measured in skin sam-

ples of both SSc patients and non-SSc subjects. Differential expression is assessed by an abso-

lute t-statistic between the two groups. Fig 3A displays overlap profiles across the two data sets,

i.e. graphs of Ri as a function of Ui, for WAP (blue) and DEG (green) scores. Relative overlap

Ri tends to be higher with WAP scores than with DEG scores.

Overlap profiles provide visual representation of reproducibility across two data sets. To facil-

itate assessment over many pairs, two summary statistics are defined and illustrated with Fig 3B.

The first statistic is called maxR and represents the height of the peak in the overlap profile:

maxR ¼ max
a�Ui�b

Ri: ð6Þ

Lower bound a = 50 is chosen to avoid large values due solely to the discrete nature of Ri at

small i values. Upper bound b = 1, 000 is chosen, so that Ri does not trivially increase with i
(Rn = 1 and n’ 14, 000). The second statistic is the area under the curve (overlap profile)

between i = 1 and i = b:

AUC ¼
w1R01 þ wbR0b

2
þ
Xb� 1

i¼2

wiR
0

i with wi ¼ U 0iþ1
� U 0i : ð7Þ

Notice that lower bound a = 50 on i is not utilized, because contribution of i� a to the sum is
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small (a/b = 0.5%). The prime notation is used with U and R to reflect that these variables need

to be modified when two or more successive values of Ui are equal: R0i is then the average of the

Ri values and U 0i is the smallest U value. As empirically demonstrated below using random parti-

tioning of gene expression datasets, maxR and AUC statistics, although strongly correlated, are

far from being entirely collinear, therefore representing complementary metrics for quantifying

reproducibility of ranked lists of genes.

Random partitions of a data set in two

The number of available pairs of independent gene expression studies which describe the same

disease is limited. To enable larger sampling, an approach consists in partitioning a large data

set in two. Namely, a data set having n disease samples and m control samples is randomly split

in two data sets of sizes bn/2c + bm/2c and dn/2e + dm/2e. Even with n = m = 10 there are more

than 3 × 104 possible partitions. This enables reasonable sampling and thus accurate estimation

of overlap statistics distributions for DEG and WAP scores. In addition to being partitioned,

data sets can also be perturbed for their disease/control composition. This enables sampling of

data set pairs in which individual data sets have tunable characteristics (Section 4 in S1 Text).

A multivariate statistic based on sample dissimilarities

A statistic to summarize the entire differential expression (i.e. over all genes) between two

groups of samples is estimated as follows. Call dij the Pearson dissimilarity [47] between two

samples i and j. Values of dij close to 0 mean that the two samples have similar expression val-

ues across all genes, and values close to 1 indicate dissimilarity. Such dissimilarities are com-

monly used, for instance in cluster analysis [48]. Call D and C disease and control groups of

samples. A statistic called MVT, for Multi-Variate T [49, 50], is defined by

mvt D; Cð Þ ¼
dðD; CÞ

sðDÞ þ sðCÞ
with d D; Cð Þ ¼

P
i2D;j2Cdij

jDjjCj

and s Dð Þ ¼
2
P

i<j2Ddij

jDjðjDj � 1Þ
:

ð8Þ

Fig 3. Illustrations of overlap profiles. A: Overlap profiles of WAP (blue) and DEG (green) scores across two gene expression data sets, where

skin samples of SSc patients are compared to samples of non-SSc subjects. Values of jAij ¼ jBij and jI ij indicate sizes of gene sets and

intersection between them corresponding to maxR values for WAP and DEG score profiles. B: The two summary statistics of an overlap profile.

https://doi.org/10.1371/journal.pcbi.1007684.g003
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Much like a t-statistic, mvt is the ratio of difference between groups (d) to their spread (s).
Large values of mvt therefore indicate separation of the two groups. To define what large is,

permutation testing is utilized. The observed value (mvt) is compared to values (MVT)

obtained when randomly shuffling samples between groups D and C, and the numerically esti-

mated p-value

p ¼ PrðMVT � mvtÞ ð9Þ

is small compared to 1 if the two groups are markedly different.

Protein networks and gene expression data sets

The network of protein functional relationship utilized throughout this study is based on

STRING V10 [32]. Interactions were restricted to those having a confidence score of at least

0.7 [51]. Results presented next for Systemic Sclerosis data sets are shown to be robust to

changing this threshold (Section 4.2 in S1 Text). Additionally, PPI networks evaluated and/or

derived in [52] and deposited to the Network Data Exchange (NDEx) repository [53–55] have

been retrieved from NDEx using their identifiers provided by [52] (“Deposited Data” in “Key

Resources Table” therein) using the Bioconductor package “ndexr” [56]. All utilized gene

expression data sets were downloaded from the Gene Expression Omnibus database [57].

Results

Robustness of WAP scores across Systemic Sclerosis studies

Greater robustness of WAP scores as compared to that of traditional DEG scores is first illus-

trated with four gene expression Systemic Sclerosis (SSc) data sets (GSE58095 [43], GSE32413

[46], GSE9285 [58] and GSE45485 [59]). Skin samples of SSc patients are compared to skin

samples of healthy subjects.

To first assess reproducibility in a visual way, overlap profiles over the entire set of the top

1000 DEGs and WAPs are utilized. Panels A and B of Fig 4 display overlap profiles obtained

with two pairs of data sets. Solid green lines show results obtained when ordering genes by

their differential expression (SSc vs. healthy) based on a two-sided t-test. Solid blue lines dis-

play overlap profiles over the two data sets for WAP scores and green lines correspond to DEG

scores. Ranks of WAP scores tend to be more reproducible than those of DEG scores, as

attested by larger values of R over most of the overlap profile. WAP scores obtained with ran-

domly rewired networks (brown) are less reproducible than DEG scores, illustrating that supe-

rior robustness of WAP scores over DEG scores relies on the existence of true biological

interactions between gene products and is not a trivial artifact of different scoring between

WAPs and DEGs.

Dashed lines in Fig 4A correspond to the results obtained by combining two-sided t-test

and average fold change to account for the observation that “ranking and selecting differen-

tially expressed genes solely by the t-test statistic predestine a poor concordance in results”

made by one of the early community-wide cross-institutional assessments of the quality of

microarray data [4]. Namely, genes are ordered for differential expression by the average of

their absolute values of t-statistic and fold-change ranks. Green dashed lines tend to be higher

than solid green lines. This is in agreement with the fact that combining fold change and t-test

tends to increase reproducibility between data sets [4]. It is also informative to notice that blue

dashed lines tend to be higher than solid blue lines. That is, an increase in DEG score repro-

ducibility tends to yield a larger WAP score reproducibility, and it remains above that of DEG

scores.
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Panels C and D of Fig 4 summarize score reproducibility over the six possible pairs of SSc

data sets with overlap statistics maxR and AUC (as explained in “Materials and methods”).

Both statistics are larger with WAP scores than DEG scores, hence demonstrating the larger

reproducibility of WAP scores’ rankings over the six data set pairs. WAP scores obtained with

randomly rewired networks on average tend to yield lower reproducibility than DEG scores,

showing again that true biological knowledge encoded in the protein network is a likely driver

of WAP score robustness. Additionally, results shown in Sections 4.3 and 4.4 of S1 Text illus-

trate that such higher reproducibility of the ordering of WAP scores is relatively robust with

respect to: a) removal of interactions between co-expressed genes in the network, b) partial

random rewiring of the network (as approximation for simultaneous introduction of both

false negative and false positive interactions to the graph), and c) reproducibility of WAP find-

ings is less sensitive to false positives as compared to false negatives randomly added to the

pathway networks.

While higher reproducibility of WAP findings as compared to that of DEGs is observed

with the considered SSc data sets, it is obviously not a feature universal to all possible data set

pairs. Robustness actually requires that a data set contains differential expression for disease

versus control which is specifically organized within the protein network. This topic will be

explored later. First, higher robustness of top WAPs than that of top DEGs is shown to hold

over diseases others than SSc.

Fig 4. Reproducibility of WAPs and DEGs among four SSc data sets. Four gene expression data sets comparing skin samples between SSc

patients and non-SSc subjects—GSE58095 (1), GS32413 (2), GSE9285 (3) and GSE45485 (4)—are used to obtain WAP and DEG scores. Blue

and green colors represent overlaps between top scoring WAPs and DEGs respectively. A-B: Overlap profiles for two pairs of data sets. Solid

profiles correspond to genes ordered by a two-sided t-test and dashed profiles—to ordering which further accounts for fold change (a gene rank

is the average of its t-statistic and fold-change ranks). Brown profiles display results for ten randomly rewired protein networks. C-D: Overlap

statistics maxR and AUC for all six data set pairs, when genes are ordered by a two-sided t-test. For randomly rewired networks, displayed

values are averages.

https://doi.org/10.1371/journal.pcbi.1007684.g004
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Validation of WAP score robustness in other diseases

To further evaluate robustness of the rankings of WAP scores versus those of DEG scores, a

large number of data set pairs is required. There however exists only a limited number of avail-

able independent gene expression studies which focus on the same disease and the same tissue.

This limitation can be alleviated by partitioning individual data sets with a sufficiently large

number of samples.

Namely, a data set can be randomly split in two data sets with the goal of comparing disease

and control samples. If n is the smallest number of disease or control samples, then a lower

bound for the possible number of random partitions is n!2/(n/2)!4/2. With n as small as 10 this

gives over 3 × 104 possible splits, and thus enables reasonable statistical estimation. Note that

comparing robustness of WAPs’ rankings against that of DEGs in partitions of individual data

sets is actually a quite conservative approach, because reproducibility of gene expression find-

ings is expected to be the highest within individual studies.

In the following random data-set partitions, DEGs are defined by comparing disease and

control samples via a two-sided t-test. Included diseases are colon cancer (GSE41258 [60],

GSE44076 [61], GSE44861 [62]), endometriosis (GSE51981 [63]), gastric cancer (GSE13195

[64], GSE19826 [65], GSE27342 [66], GSE30727 [67], GSE63089 [68], GSE79973 [69]), hepato-

cellular carcinoma (GSE36376 [70]), non-small cell lung carcinoma (NSCLC; GSE19188 [71]),

lung adenocarcinoma (GSE43458 [72]), oral squamous cell carcinoma (OSCC; GSE30784

[73]) and psoriasis (GSE13355 [74], GSE30999 [75], GSE34248 [76], GSE41662 [76]). Distribu-

tions of overlap statistic maxR which are estimated over one thousand random partitions of

each data set are displayed in Fig 5. Panels A to H detail results over eight individual data sets

and diseases. Vertical bars near the top display 99% confidence intervals on median values of

maxR. Reproducibility of the top WAPs (blue) tends to be on average significantly higher than

that of the top DEGs (green) and approximately comparable to the reproducibility of the

WAPs ordered by their PFP values (pink). Similar plots for the entire collection of the data sets

cited above are shown in Section 5 of S1 Text that also includes using AUC to quantify repro-

ducibility of top WAPs and DEGs (median Spearman correlation of maxR and AUC values for

WAP score profiles over 1,000 random partitions of each dataset in two across all 22 NCBI-

GEO datasets analyzed in this study is ρ = 0.86, interquartile range 0.27). For reference, plots

shown therein also include results obtained on the network rewired to preserve on average

50% of the original edges.

As was already observed with SSc data sets, rankings of WAP scores with randomly rewired

protein networks (brown) tend to have lower reproducibility than those of DEG scores. This,

along with demonstrated lower informativeness of recently introduced differential expression

(DE) prior [77] for predicting significant WAPs (as compared to that for DEGs—Section 7 of

S1 Text), demonstrates again that true biological knowledge encoded in the protein network is

required for robustness of WAP scores. Furthermore, comparison of the reproducibility of

gene ranking by their WAP and DEG scores for a selected subset of these datasets that repre-

sent the same disease (and therefore are also impacted by inter-study variability) across 23 dif-

ferent PPI networks made available through NDEx [53–55] by Huang et al. [52] (see Section 6

in S1 Text) illustrates higher robustness of WAP score ranks as compared to that of DEGs for

multiple PPI networks, especially for those with higher information content.

Fig 5I shows distributions of maxR differences (WAP maxR minus DEG maxR, values

being paired in each partition) that are obtained with all eighteen data sets. Based on the raw

WAP score, but not its PFP value, all data sets but one yield distributions which are shifted

towards positive values, indicating higher reproducibility of WAP scores versus DEG scores.

The only exception is colon-cancer data set GSE44861. Values of maxR in GSE44861 are small
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Fig 5. Comparison of WAP and DEG scores reproducibility in eighteen large gene expression data sets representing eight diseases. A-H: Each data set is randomly

split in two sets one thousand times, and the resulting distributions of overlap statistic maxR are estimated for WAP scores (blue), PFP values of WAPs (pink), DEG

scores (green) and WAP scores with randomly rewired protein network (brown). Vertical bars display 99% confidence intervals on median values estimated by

bootstrapping with 106 samples. I: summary of results over 18 data sets for distributions of maxR differences between DEG and WAP scores (paired values of maxR in

each partition (WAP versus DEG scores)).

https://doi.org/10.1371/journal.pcbi.1007684.g005
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(less than 0.1) for both WAP scores and DEG scores. Moreover, for this data set overlap statis-

tics on WAP scores have similar distributions with original and randomly rewired protein net-

works and even lower for WAP scores ordered by their PFP values (Figure 18, bottom row, in

S1 Text). Differential expression in this data set is therefore not specifically organized within

the protein network and the smallest PFP value is quite large (0.88). The other seventeen data

sets, representing eight diseases, show that reproducibility of WAP scores tends to be on aver-

age higher than that of DEG scores. In summary, even though the random partition of a data

set in two is a rather conservative control that disregards between studies variability, WAP

scores tend to be on average significantly more robust than DEG scores over such partitions in

seventeen data sets which represent eight diseases.

Utility of WAP scores for small data sets

The potential value of the WAP score when a data set has a limited number of samples is illus-

trated next with Psoriasis data set GSE30999 [75], which has a rather large number of samples

(83 lesions and 81 no-lesion samples). Pairs of data sets of varying sizes 2m (m lesions and m
no-lesion) are drawn one thousand times for each value of m, and average values of maxR are

estimated for both DEG and WAP scores. Bootstrapping with 106 trials is then utilized to esti-

mate 95% confidence intervals on these averages. Results are presented in Fig 6. Panel A shows

that for large values of m (m� 30) average values of maxR are quite large (e.g. at least 0.5) for

DEG scores, with even larger values for WAP scores. Large DEG reproducibility is less likely

to happen with small sample sizes m. This can be seen in Fig 6A: values of maxR become

smaller for both DEG and WAP scores when m decreases.

Furthermore, it is instructive to examine the difference of maxR between WAP and DEG

scores. Results are displayed in Fig 6B. Because WAP and DEG scores are not independent,

confidence intervals on maxR differences are estimated via bootstrapping on paired values for

WAPs and DEGs. One can see that even though maxR values of WAP and DEG scores

decrease as m becomes smaller (A), the maxR difference (WAP minus DEG) instead increases

until m becomes less than 5 (B). This clearly shows that WAP scores are less sensitive than

DEG scores to reduction of sample size m. When DEG score reproducibility is small due to a

Fig 6. Comparison of gene expression in m skin samples with psoriasislesions to m healthy skin samples. Statistic maxR is estimated with 103 draws of two data sets of

size 2m from GSE30999. Differences between average ranks of pathway members by WAP and DEG are estimated for 103 data sets of size 2m randomly drawn from

GSE30999. Confidence Intervals (CI, 95%, bootstrapping with 106 trials, vertical lines) are estimated for average maxR values (dots) based on WAP scores, DEG scores

(A), their differences (B) and average difference between pathway member ranks based on DEG and WAP scores (C). Color and labels represent the following Reactome

pathways—IFNA (green): Regulation of IFNA signaling, NFkB (magenta): TNFR1-induced NFkappaB signaling pathway, TNF (dark blue): TNF signaling, TNFR1 (light

blue): Regulation of TNFR1 signaling, IFNG (teal): Regulation of IFNG signaling, IL-17 (yellow): Interleukin-17 signaling, IL-12 (red): Interleukin-12 family signaling.

https://doi.org/10.1371/journal.pcbi.1007684.g006
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small number of samples, WAP scores can in some cases yield a significantly more robust gene

ranking than DEG scores.

Finally, it is interesting to note that for this psoriasis dataset besides achieving higher repro-

ducibility as quantified by maxR statistic, WAP scores also result in more prominent, as com-

pared to that by DEG, ranking of gene sets that are representative of pathways known to be

involved in the psoriasis pathogenesis. Fig 6C depicts average differences between the ranks of

the significance of DEG and WAP scores (where lower rank represents greater significance,

i.e. smaller p-value) for the genes included in Reactome [13] pathways selected for their impor-

tance in, and history of clinical development for, this disease (e.g. signaling by TNF, IFN-

gamma, IL-12, etc.) [78].

Across all sample sizes evaluated here, the average ranks of the members of these pathways

are consistently lower (representing smaller, more significant, p-values) by WAP than by DEG

scores. Here the rank of zero corresponds to the most significant DEG or WAP score, and the

rank of one represents the least significant WAP or DEG score across the entire set of genes

included in the analysis. On average, in case of this psoriasis dataset, WAP scores of the mem-

bers of Reactome pathways depicted in Fig 6C rank more significantly than DEG scores by

about 5% to 35% of the size of the entire gene set. Such more prominent ranking by WAP

scores of pathways well recognized for their involvement for psoriasis pathogenesis further

emphasizes potential merits of the WAP score for identification of new molecular targets for

therapeutic intervention.

Necessary conditions for WAP score robustness

Robustness of the gene ranking by their WAP scores is obviously not guaranteed for an arbi-

trary data set. Conditions which are required for robustness of WAP scores are now examined.

Robustness relies on meaningful signal contained in differential expression with respect to bio-

logical information encoded in the protein network. This was first demonstrated by showing

that WAP scores obtained with randomly rewired networks yield lower reproducibility than

with the original network and on average lower than reproducibility of DEG scores (Figs 4 and

5). An already-introduced method for quantifying how specifically differential expression is

organized within the protein network is estimation of a PFP profile (Fig 2). Intuitively, small

PFP values of the top ranking WAPs suggest that the top WAPs might be robust to small

changes of DEG ranks.

To test this conjecture, simulations based on SSc data set GSE58095 [43] are utilized.

GSE58095 is chosen because it yields large differences in overlap statistics (maxR and AUC)

between genes ordered by their WAP and DEG scores (skin samples of SSc patients versus

non-SSc subjects), when this large data set is randomly partitioned in two (Section 4.4 in S1

Text). Partitions tend to yield two data sets which have small WAP PFP values, as measured

for instance by the average PFP value over the top 200 WAPs. In order to explore a wider

range of average PFP values, the two data sets of a partition are randomly perturbed for their

composition in disease/control samples. Perturbations are controlled by a parameter 0� ρ�
1, which can be seen as the probability of swapping disease/control state between two samples.

Setting ρ = 0.41 yields a close to uniform distribution of PFP values averaged over the 200 top

WAPs (Section 8.1 in S1 Text). With this value of ρ, 9 × 104 pairs of data sets are sampled, so as

to approximately draw 100 pairs in each cell of a 30 × 30 uniform grid. An additional 9 × 104

partitions are generated with ρ = 1 for reasons which will be explained next, and 2 × 104 parti-

tions are also sampled with ρ = 0.

Fig 7 summarizes results obtained with the 2 × 105 sampled partitions of GSE58095. On

average, both overlap statistics (maxR and AUC) tend to be higher for WAP scores as
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compared to DEG scores, when both data sets are rich in WAPs having small PFP values

(lower left corners). Absence of small PFP values in both data sets yields similar reproducibility

of WAP and DEG scores (upper right corners). Notice that if one of the data sets has a small

average PFP value (e.g. 0.05), then it might still yield better reproducibility of WAP scores ver-

sus DEG scores even if the second data set has a larger average PFP value (e.g. 0.3). One can

therefore state that a necessary condition for larger reproducibility of WAP scores versus DEG

scores between two data sets is that at least one of the data sets yields WAP scores having small

PFP values. A large proportion of small PFP values indicates that observed differential expres-

sion is specifically organized within the protein network, as compared to differential expres-

sion obtained when randomly reassigning disease states to samples.

One can also characterize differential expression just for its magnitude, independently of

the protein network. This can be done, for instance, with the average FDR value [42] over the

top 200 DEG scores. This would however be too computationally expensive given the very

large number of sampled data set pairs. Instead, a more efficient approach is based on a statis-

tic of Pearson dissimilarities between entire samples, i.e. dissimilarities based on all genes. The

statistic is called Multi-Variate T (MVT) and significance of its value is assessed via permuta-

tion testing (as explained in “Materials and methods”). Small MVT p-values correlate well

with small average FDR values over the top 200 DEGs (Section 8.3 in S1 Text). The advantage

of the MVT p-value is that the control distribution can be estimated once and then rapidly uti-

lized with all simulated data set pairs (a similar approach was utilized to rapidly estimate aver-

age PFP values over the top 200 WAPs). The disease/control mixing parameter is now set to

ρ = 1, and 9 × 104 pairs of data sets are sampled. The rationale is to sample approximately 100

data set pairs in each cell of a 30 × 30 uniform grid for MTV p-values between 0 and 1 (Section

8.1 in S1 Text).

Average overlap statistics maxR obtained with all 2 × 105 random partitions of GSE58095

are displayed in Fig 8 as a function of MVT p-values. Panel A indicates that average maxR of

DEG scores never reaches values higher than 0.2. Even when the two data sets of a pair both

have small MVT p-values (lower left corner), DEG reproducibility tends to remain low, and

Fig 7. Differences in overlap statistics between WAP and DEG scores as a function of the average PFP value. A: Differences between maxR values

for WAP and DEG scores. B: Differences between AUC values for WAP and DEG scores. Top 200 WAPs in each data set of a simulated pair are used

to calculate maxR, AUC and PFP. Plots summarize results obtained with 2 × 105 random partitions of GSE58095.

https://doi.org/10.1371/journal.pcbi.1007684.g007
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this occurs with data set pairs extracted from the same study. Fig 8B reveals a stronger effect of

small MVT p-values on reproducibility of WAP findings. Average values of maxR go up to

0.55 (bottom left corner). Increase of average maxR values of WAP scores with small MVT p-

values is larger than that of maxR of DEG scores, as can be seen in Fig 8C. Finally, Fig 8D illus-

trates that small PFP values of WAP scores are better predictors of superior robustness of top

WAP ranks versus top DEG ranks than small MVT p-values.

In summary, robustness of WAP scores across data sets tends to increase when data sets

exhibit significant degree of differential gene expression, as measured for instance by a small

MVT p-value or a large proportion of small FDR values on DEG scores. Most importantly,

higher reproducibility of top WAPs versus top DEGs is more pronounced when differential

Fig 8. Overlap statistic maxR for DEG and WAP scores as a function of MVT p-values. A-B: Overlap statistic maxR for DEG and WAP scores as a

function of MVT p-values in each data set of a simulated pair. C: Difference of maxR statistic (WAP minus DEG) as a function of MVT p-values in each

data set of a simulated pair. D: Difference of maxR statistic (WAP minus DEG) as a function of MVT p-value in one data set and average WAP p-value

in the other. Plots summarize results obtained with 2 × 105 random partitions of GSE58095.

https://doi.org/10.1371/journal.pcbi.1007684.g008
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expression appears to be specifically organized within the protein network, i.e. when WAP

scores yield small PFP values.

Discussion

The importance of interactome annotation for identification and prioritization of targets for

therapeutic strategies [79–81] and disease characterization [82–84] is well established with

growing evidence for distinct properties of network connectivity associated with drug targets

[85, 86] and disease genes [87]. The need for improving reproducibility of the findings from

genome-wide studies characterizing differences between healthy state and disease remains an

important analytical challenge for the field [88].

Results presented in this paper have rigorously demonstrated that utilizing prior biological

knowledge in the form of known protein functional relationships can significantly enhance

reproducibility of the findings from gene expression analysis, at least in the context of charac-

terizing a disease, therefore potentially providing more robust description of the phenomenon

under study. Demonstration was performed with thousands of data set pairs, which were gen-

erated with twenty-two large gene expression data sets representing nine different diseases. By

scoring the same universe of genes with both WAP and DEG scores, comparison of the repro-

ducibility of the findings by these two approaches could be made in a rigorous way. This focus

on making the reproducibility of the findings made with and without prior biological knowl-

edge in the form of the PPI network directly comparable sets it apart from other methodolo-

gies that enable analysis of genome-wide molecular characterization data with pathway

networks (e.g. [23, 24] and others reviewed in [10, 19, 20]).

The method to score gene products for their association to differentially expressed genes,

i.e. the WAP score, is well-conditioned for the total number of interactions of each gene. This

was achieved by combining published methods [37] and novel correction factors (Section 3 in

S1 Text). Besides not requiring to choose a threshold which defines differential expression,

another advantage of the WAP score is that its estimation can be implemented efficiently, i.e.

in OðMÞ where M is the total number of interactions in the protein network. This means that

false discovery rates can be numerically estimated via permutation techniques in reasonable

time. It also implies that several hundred thousand pairs of data sets can be rapidly scored, so

as to provide statistical evidence for higher reproducibility of top WAPs as compared to that of

top DEGs. Throughout this study, for illustration purposes, the DEGs were identified by a

two-sided t-test (disease vs. healthy) for the reasons of clarity and simplicity. However, ranking

of genes in protein interaction network by their WAP scores can be readily obtained for

genome-wide ranking of genes by their statistical significance as estimated by more sophisti-

cated approaches [89–91], when necessary for the studies with more complex designs. Evaluat-

ing the impact of WAP methodology on the reproducibility of the findings from such more

advanced models represents one of the exciting possibilities for follow-up investigations.

Higher reproducibility of WAPs rankings as compared to those of DEGs is obviously not a

given fact. Such robustness relies upon sound biological knowledge in the protein network, as

attested by the fact that WAPs computed with randomly rewired networks are less reproduc-

ible than DEGs. Significant coverage of the interactome is potentially an important factor,

even though reducing interactions down to a few tens of thousands having the highest confi-

dence levels [41] can still yield robust WAP findings in the case of systemic sclerosis data sets

(Section 4.2 in S1 Text). Evaluation of the impact of edge confidence score on the robustness

of WAP score rankings did not yield compelling evidence for choosing a specific threshold for

using a subset of STRING network for the analysis of these datasets. This in combination with

the observed higher sensitivity of WAP procedure to false negatives than false positives and its
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tendency to result in greater gain of reproducibility for larger networks among those evaluated

in [52], calls for a generic recommendation of using larger compendiums of PPI data when

possible. However, when the size of gene expression data enables evaluation of its intra-study

reproducibility by random partitioning, it could be worthwhile verifying the lack of drastic

sensitivity of the reproducibility of the findings on the edge confidence threshold if/when

available by following a procedure demonstrated in Section 4.4 in S1 Text.

Similar to the recent report [52] that surveyed available genome-wide interaction networks

for their ability to recover known disease gene sets, and concluded that the larger PPI networks

perform better in this context, greater gain in the reproducibility of WAP findings for larger

networks was also observed here as well (Section 6 in S1 Text). Additionally, it could be

instructive to evaluate relative contributions of different types and/or source of interactome

annotation to WAP score robustness in the future. Preliminary work suggests that, while

including co-expression knowledge in interactions is beneficial to the robustness of WAPs ver-

sus DEGs, it is unlikely to be the critical element (Section 4.3 in S1 Text). Furthermore, com-

parison of the rankings of the significant WAPs and DEGs by a recently introduced DE prior

[77] across NCBI-GEO datasets evaluated in this study did not detect increased enrichment of

WAPs for the genes that are more likely to be differentially expressed across large compen-

dium of transcriptional profiling studies (Section 7 in S1 Text). Finally, the observed tendency

of WAP scores to yield more reproducible ranking of genes as compared to that by their DEG

scores has been shown to be robust to moderate amounts of random noise introduced in the

protein interaction network, especially to false positives (Sections 4.4 and 5 in S1 Text) and to

hold for multiple PPI networks evaluated and/or derived by [52] (Section 6 in S1 Text).

Besides being dependent on quality of protein interactions, the robustness of WAP findings

also relies upon the signal encoded in gene expression data. Top WAPs are more robust when

differential expression is significantly high, e.g. when it yields a large proportion of DEGs with

small FDR values. More importantly, it was shown that robustness requires differential expres-

sion to be specifically organized within the protein network, i.e. it must yield small PFP values

on WAP scores. When this easily-testable condition is satisfied, identified WAPs with small

PFP values have the potential to be more robust than top DEGs across data sets, and this can

be valuable in the case of small studies, as was demonstrated with a psoriasis data set.

Such an increase in the reproducibility of the findings from gene expression studies with

smaller sample sizes by utilizing PPI information with the WAP framework may provide an

appealing and cost-effective alternative to increasing reproducibility of DEGs by increasing

the number of samples characterized by gene expression. The positive impact of the increase

of sample size on the reproducibility of the DEGs observed in gene expression studies is well-

recognized and has been extensively studied in the context of microarray and RNA-seq tech-

nology (e.g. [92, 93] and references therein). More detailed evaluation of the gains in reproduc-

ibility of the findings from gene expression findings due to the use of PPI data and WAP

methodology and comparing it to that solely due to the increase in the sample size of gene

expression datasets across broad number of biological phenomena and experimental designs

represents another promising area of future research.

Limiting gene expression data used by WAP methodology to that for the genes represented

in PPI network is an inherent source of information loss for this approach. In the light of

observed lower impact of false positive interactions on the robustness of WAP findings and its

tendency to yield more robust findings (as compared to those of DEGs) for larger networks,

this shortcoming could be partly alleviated by using larger compendiums of PPI data for WAP

analyses. Additionally, the analyses reported herein were purposely limited to the overlap of

genes represented both in the gene expression data and PPI network for the reasons of clarity

and direct comparability of the robustness of WAP and DEG rankings that was the main focus
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of this study. It is straightforward to extend WAP calculation to score nodes in pathway net-

work that are not in gene expression data themselves and/or are not reliably detected due to

low levels of expression, cross-hybridization, etc., but their network neighbors are. Such an

extension, that is technically trivial, would further advance the potential of WAP methodology

to reveal important biological aspects of phenomena studied in a manner complementary to

the conventional differential expression analysis.

Although the comparison of disease vs. lack thereof was employed in the examples used in

this study, the same methodology can be readily applied to characterization of a broader vari-

ety of biological systems for which genome-wide measurements of gene expression data and

corresponding interactome information are available. For instance, it would be interesting to

apply this approach to the data sets characterizing chemosensitivity of cancer cell lines [94] as

recent publication by [95] suggests relevance of interactome information in this context. Find-

ings from this type of analysis might be particularly amenable for experimental follow-up to

directly test the hypothesis of high pertinence of top WAPs for the phenomenon studied.

Extending WAP methodology to the generation of the predictions about individual patient

outcomes, similarly to the approach presented in [24], represents another promising direction

of future research.

In conclusion, this paper has rigorously demonstrated that utilizing systems-level knowl-

edge about protein functional relationships can significantly enhance reproducibility of disease

description via gene expression analysis. Such enhanced reproducibility, which soundly makes

use of accumulated prior biological knowledge of diverse types, is likely to be beneficial to

devise targeted therapeutic interventions, drug repurposing and potentially to benefit preci-

sion medicine investigations.

Supporting information

S1 Text. Supplementary material. Algorithmic details and numerical results further charac-

terizing comparative reproducibility of WAPs and DEGs.

(PDF)

Acknowledgments

The authors are grateful to Vlado Dančı́k and James J. Collins for their comments.

Author Contributions
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