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Currently, the development of new effective drugs for cancer therapy is not only hindered
by development costs, drug efficacy, and drug safety but also by the rapid occurrence of
drug resistance in cancer. Hence, new tools are needed to study the underlying mechan-
isms in cancer. Here, we discuss the current use of metabolic modelling approaches to
identify cancer-specific metabolism and find possible new drug targets and drugs for
repurposing. Furthermore, we list valuable resources that are needed for the reconstruc-
tion of cancer-specific models by integrating various available datasets with genome-
scale metabolic reconstructions using model-building algorithms. We also discuss how
new drug targets can be determined by using gene essentiality analysis, an in silico
method to predict essential genes in a given condition such as cancer and how synthetic
lethality studies could greatly benefit cancer patients by suggesting drug combinations
with reduced side effects.

Introduction
Since Otto Warburg, it is known that some cancer cells have an altered metabolism such as preferring
the production of ATP from aerobic glycolysis over oxidative phosphorylation [1]. What was believed
to be the consequence of high mutation rates in cancer cells, is now regarded as required rewiring of
metabolism, tailored by mutations and selection, to meet the high need for energy and cellular build-
ing blocks to sustain rapid proliferation rates [2]. This altered metabolism in cancer cells is an import-
ant research topic, as it potentially allows identifying cancer-specific vulnerabilities that could be
targeted without harming healthy cells and hence are expected to have fewer side effects.
A wide catalogue of mutations across different tumours was gathered by the COSMIC database [3],

as well as large transcriptomic datasets from thousands of cancer cell lines (CCLE [4], NCI-60 [5],
1000 Genomes Project [6,7]) and cancer patients such as TCGA [8] or Metabric [9]. The bottleneck
in the understanding of metabolic rewiring is the integration of huge amounts of cancer data gathered
from different experimental settings and literature. Genome-scale and context-specific models [10],
that have been successfully used for the integration of -omics data, are very promising approaches that
allow, among others, to understand how mutations affect cancer metabolism by mapping them onto
context-specific models to study their metabolism [11] and to determine if the phenotype can be
rescued by alternative pathways.
More interesting applications of genome-scale metabolic models are in silico knockout studies to

discover cancer-specific essential genes [12] that could serve as potential drug targets or to identify
oncometabolites by blocking the flux of the enzyme that consumes these metabolites [13]. A workflow
using these approaches has previously been published [14] and is depicted in Figure 1. Because the
in vitro identification of drug targets and drug screenings is a meticulous task, with drug combination
screenings having endless possibilities, metabolic modelling can be used to narrow down the number
of targets, therefore reducing the time and costs of experiments.
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Furthermore, context-specific models can be used to identify cancer-specific flux distributions using random
sampling [15,16], flux variability analysis [17], FBA [18], parsimonious FBA [19], or cancer-specific sub-
pathway activation patterns by combining metabolic models with machine-learning approaches [14].
In this review article, we will discuss the current advances in metabolic modelling in regards to analysing

cancer metabolic rewiring as well as possible applications in drug discovery.

Cancer and metabolic modelling
Metabolic alteration in cancer and their potential role as drug target
Oncogenes and tumour suppressor genes have, besides their iconic targets, metabolic targets that have been
shown to act as metabolic regulators. For example, the constitutive expression of MYC affects glycolysis [20]
and glutamine metabolism [21], whereas mutations or inactivation of the tumour protein p53 can lead to an
increase in glycolysis while inhibiting gluconeogenesis [22]. Furthermore, mutations in the metabolic enzymes
themselves can be a driving force for cancer such as mutations in the fumarate hydratase [23] and succinate
dehydrogenase [24] have previously been associated with cancer by increasing cellular vascularization, invasion,
and metastasis through the action of HIF-1a [25]. Loss-of-function mutations can cause the accumulation of
fumarate and succinate, that are competitive inhibitors of a-ketoglutarate-dependent dioxygenases, perturbing
histone and DNA demethylation [26]. Other enzymes (IDH1 and IDH2), when mutated, can also affect the
activity of HIF-1a subunits by accumulating 2-hydroxyglutarate, a product of the conversion of a-ketoglutarate,
-ketoglutarate, mainly taking place in cancer cells [27].
Even though metabolic alterations play a lesser role in the contribution to cancer morphology and progres-

sion than mutations, these enzymes, whose deregulation causes the accumulation of sub-products of metabol-
ism, are potential drug targets [28–31]. Other alterations with no transforming power themselves can facilitate

Fig. 1. Drug repurposing workflow using metabolic modelling and public databases. A context-specific reconstruction

(black network) can be extracted from a generic reconstruction (grey network) using -omics data and context-specific model

reconstruction algorithms such as FASTCORMICS. Circles and lines represent metabolites and reactions, respectively. Genes

that can be targeted by existing drugs and oncometabolites are mapped to the model to obtain a set of targetable reactions

(green lines) or metabolites (green circles). To identify essential genes, reactions, or metabolites, one or more objective

function(s) (red line) can be set and the effect of a drug-induced knockout on the objective function(s) can be simulated by

preventing the targeted reactions to carry a flux. Depending on the network topology, the knockout can either have no effect

on the flux through the objective function(s), or the flux is reduced if alternative pathways are present, or the knockout can

cause a loss of all the flux through the objective function.
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the production of building blocks or maintain the redox state. These enabling alterations are often under the
control of tumour suppressors or oncogenes and could be considered as potential drug targets.

Metabolic models of cancer and context-specific models
Metabolic models are powerful tools to identify metabolic alterations and mechanisms in human diseases such
as Alzheimer’s [32,33], to predict biomarkers for inborn errors of metabolism [34,35], liver metabolism [36,37],
pathogen infection of alveolar macrophages [38], obesity [39], Leigh syndrome fibroblasts [40], diabetes [41],
co-morbidity [42], obesity and diabetes application have been reviewed in [43] as well as drug target prediction
in cancer [12,14,18,44–52].
Two different strategies are being used to study cancer metabolism:
The first approach, a bottom-up approach, aims to reconstruct a cancer core metabolic model, which only

contains reactions present in all cancer samples. The small size of these models enable them to be manually
curated and thoroughly analysed. For example, a model of ATP production showed that the Warburg effect is
dependent on glucose uptake [53], a core model including the main metabolic pathway showed that the black-
cancer phenotype induces metabolic changes [45], or the presence of metabolic differences in three cancer core
models [18].
In the second approach, cancer genome-scale models are reconstructed using context-specific building algo-

rithms such as MBA [37], iMAT [54], INIT [46,47], GIMME [55], PRIME [49], mCADRE [56], RegrEx [57],
CORDA [58], FASTCORE family [14,59,60] using patient transcriptomic data as input. An overview of the
model-building algorithms can be found in Supplementary Table S1. Data from various patients and samples
can be pooled to reconstruct a single cancer type model or subgroup model of different patients. Even though
pooling samples allows building models that are more robust to noise while displaying common alterations, the
creation of patient-specific models without pooling allows detecting less common rewiring strategies [61].
Because metabolic rewiring strategies are tightly related to the identification of novel anticancer drugs, meta-

bolic models were often used to identify potential drug targets.
The first genome-scale metabolic model of cancer was presented by [12] in order to study common meta-

bolic alterations in cancer. The model is based on the manual selection of highly expressed core genes from the
NCI-60 cancer cell lines as well as a minimal set of reactions needed to activate the core genes via an MBA. A
total of 52 cytostatic metabolic drug targets were successfully predicted using in silico gene deletion and vali-
dated using sh-RNA screening data.
In a follow-up paper, [44] further investigated the effects of synthetic lethality in FH1-deficient cells, a defi-

ciency that can lead to renal-cell cancer. The same model building approach was used as in [12] to create one
deficient and one control model for FH1 that showed that the inhibition of Hmox is synthetically lethal in FH1
deficient cells.
More cancer-specific models shortly followed by integrating cancer data with different genome-scale recon-

structions and model-building algorithms for data integration (see Supplementary Table S2) such as models for
each of the cell lines in the NCI-60 to identify metabolic sub-pathways that provide energy and lipids for
cancer growth [62] or HCC models that allow stratifying patients according to acetate utilization [63]
Recently, due to the decrease in computational demands and reconstruction times of context-specific meta-

bolic models, initiated by the publication of FASTCORE [59] and due to the number of published cancer meta-
bolic models, metabolic modelling could be combined with machine learning.
In a pioneer study, Christian Diener and colleagues [19] used regression approaches to predict cancer growth

rates from the TCGA dataset while using the NCI-60 cancer cell line panel and TCGA as a training set. They
showed that patients with a high predicted growth rate have a worse survival expectancy. Furthermore, they
used the predicted growth rates to obtain the flux distributions via parsimonious FBA for more than 3000
samples using already published cancer models and identified pathways that are up-regulated in cancer such as
the pentose phosphate pathway, retinol, branched-chain amino acid metabolism, and ROS detoxification.
In a second study, 10 005 context-specific models for the TCGA dataset were built using an extension of the

FASTCORMICS workflow [60] for RNA-seq data [14]. A reverse feature selection approach was used to extract
gene and reactions signatures that allow segregating between cancerous and control samples for 13 different
cancer types. Furthermore, cancer models were shown to be smaller than their healthy counterparts and reac-
tions from the cancer core metabolism were enriched for essential genes. Generic cancer-type models were also
reconstructed to predict drug targets and propose drugs for repurposing in cancer. For colorectal cancer, three
of the predicted drugs have been successfully validated in vitro.
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Personalized modelling and stratification of cancer patients
A future application of context-specific algorithms is the reconstruction and analysis of patient-specific meta-
bolic models towards personalized treatment. This calls for algorithms that are robust to noise but nevertheless
able to capture metabolic variations between different patients that result from inter-tumour variability. In
some cancers, such as colon or breast cancer, numerous cancer subtypes were identified, each showing a differ-
ent prognosis and drug response [64,65]. Being able to accurately model the inter-tumour heterogeneity would
allow identifying subtype or even patient-specific drugs and biomarkers. The challenge resides in the distinction
between real metabolic variations and noise or algorithm-related bias.
In recent years, benchmarking methods have been proposed to increase the quality of context-specific algo-

rithms [66–68] and their generic reconstructions from which context-specific models are extracted from [69].
Standardizing the benchmarking workflows as well as eliminating any heuristic thresholds during the model
reconstruction will improve the quality of the context-specific models so that they could eventually be used in
personalised medicine.
Another hurdle that needs to be overcome is the intra-tumour heterogeneity. As tumours can be composed

of different clones carrying different mutations, the reconstruction of models based on these biopsies might
miss some of the clones and modellers risk to predict drugs that only select for clones that were captured by
the biopsy. Furthermore, the use of bulk RNA-seq data might mask the intra-cellular variation. The next
logical step would be to take biopsies at different locations of a tumour and to build single-cell models.

In silico gene deletions are used to predict drug targets
The possibility to reconstruct context-specific models based on genomic and transcriptomic data allows for the
exploration and comparison between the metabolism of different tissues, conditions, and patients. Thus, the
metabolism of cancer cells can be compared with their healthy counterpart tissue (structural analysis) and
alternative pathways can be elucidated. Furthermore, new potential drug targets with low toxicity can be pre-
dicted using in silico gene deletions or essentiality analysis [70] by focussing on cancer-specific vulnerabilities.
During gene essentiality analysis, the flux controlled by the knockout genes are set to zero (according to the

gene–protein–reaction rules) and flux balance analysis [71] is run to determine the maximum flux through an
objective function before and after the gene knockout [72]. In general, essential genes are defined as genes
whose knockout affects the growth or survival of a cell, therefore, they are often used as a surrogate for poten-
tial drug targets. Conventionally, the objective function is defined as biomass production and often used to
determine the growth rate of a cell [73]. This might be true for fast proliferating cells such as cancer but not
for non-proliferating cells such as neurons. It is therefore important to choose the correct objective function
(which differs between cell types, tissues and species) for the model [74] and to define a cancer and tissue-
specific biomass instead of relying on the Escherichia coli biomass, currently used in most metabolic models.
Even though one could take the ATP demand reaction as an objective for these cells, it would be more suitable
to have a well-defined set of metabolic tasks that a cell needs to fulfil [46].
Similar to gene essentiality analysis, synthetic lethality analysis knocks down two genes simultaneously and

the flux through the objective function is measured. Whereas the knockout of one gene might not have a sig-
nificant effect on the cell, the knock-down of two genes can result in lethality or significantly reduced cell func-
tioning. Synthetic lethality studies have already shown promising results in E. coli [72,75] and can be used in
anticancer therapy [12,76]. Because cancer cells have high mutation rates and thus some genes are shut down a
priori, synthetic lethality takes advantage of these non-lethal mutations in cancer to specifically kill malignant
cells without harming healthy cells. Therefore, patients can also benefit from synthetic lethality studies because
drug combinations that target multiple genes of a synergistic lethal couple are less likely to cause resistance as
it is more difficult for cancer cells to simultaneously develop resistance to two targets [77]. Moreover, the use
of drug combinations allows reducing the dosage which is in turn likely to reduce the toxicity of each com-
pound [78–80].
Several algorithms can perform single, double, and multiple knockouts on genes as well as on reactions and

metabolites to simulate the effect of oncometabolites (Table 1). Oncometabolites are competitors for the access
to the catalytic site of an enzyme, therefore inhibiting the normal conversion of a metabolite. Reactions con-
suming these metabolites are regarded as inactive during the simulations. Besides the usual brute force
approaches, several algorithms were proposed that used a more targeted approach to reduce computational
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demands. Notably, an algorithm for the study of synergistic lethality was proposed that allows impairing
undesired functions while guaranteeing the production of key metabolites [81].
Another strategy to identify synergistic lethality has been proposed in 2017 and is based on genetic minimal

cut sets or gMCSs [82]. Their framework finds the minimal number of genes that have to be knocked out in
order to block a metabolic task such as the biomass production. The analysis is performed on the generic
reconstruction to avoid any bias linked to heuristic thresholds in the -omics data during the context-specific
model reconstruction. The -omics data is only used to drive the selection.
Consequently, in silico knockouts are promising to find drug targets in cancer as has already been demon-

strated in several publications [12,14,44–49,87]. Notably, [87] and [14] performed in silico drug predictions and
found Ifenprodil as a potential repurposed drug for the prostate cancer and Naftifine, Mimosine and
Ketoconazole for colon cancer, respectively. Both groups validated their respective targets in vitro.
However, robust validation methods need to be established for the predicted drug targets. One possibility is

to compare the predictions to an essential gene screenings [88]. Even though there exist different high-
throughput screenings that used shRNA [89], RNAi [90], or CRISPR/Cas9 on cell lines [91–93] and patient-
derived glioblastoma cells [94] to experimentally determine essential genes, their application is still limited:
Screenings cannot be performed for every condition and cell type and they only allow targeting one gene at the
time. Thus, complete (synthetic) lethality screenings for all cancer and cell types targeting two genes at the
same time would be practically impossible due to the sheer number of possibilities.
However, the Cancer Dependency Map Project made an effort to gather information about gene and drug

screenings while combining the data in a comprehensive and regularly updated website (https://depmap.org).
The aim of this project is to characterize as many cell lines as possible and identify potential genetic vulnerabil-
ities and drug targets in cancer. The Cancer Dependency Map was created by combining genetics screens, cell
line characterization data and drug sensitivity data from Achilles [89,95], DRIVE [96], Score [97], CCLE [4],
CCLF [98], PRISM [99], CTRP [100–102], GDSC [103], and CTD2 [104].

From potential candidate gene to drug target validation
Even though the process of finding appropriate drugs for candidate genes is straightforward, some pitfalls will
need to be overcome. This can be achieved by using the databases and tools described in the following section.

Challenges
The first challenge is the inconsistency of nomenclature used by the creators of metabolic models and the
second is database updates that might significantly alter results between two releases.

Table 1. Knockout tools

Deletion type Tools and algorithms

Single gene deletion singleGeneDeletion of the Cobra toolbox [83]) (Flux Balance Analysis, MOMA, linear MOMA)

Fast-SL [84]

FastMM_singleGeneKO_multi [85] (Flux Balance Analysis)

Double gene deletion doubleGeneDeletion of the Cobra toolbox (Flux Balance Analysis, MOMA, linear MOMA)

Fast-SL

FastMM_doubleGeneKO_multi (Flux Balance Analysis)

gMCSs [82]

OptKnock [86]

Multiple gene deletion Fast-SL

gMCSs [82]

OptKnock

Single reaction deletion singleRxnDeletion of the Cobra toolbox (Flux Balance Analysis, MOMA, linear MOMA)

Single metabolite deletion singleMetKO from fastMM toolbox

Double metabolite deletion doubleMetKO, from the fastMM toolbox
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Nomenclature
In the metabolic modelling community, there exist different genome-scale metabolic reconstructions for
humans (and other organisms) that can in themselves already be seen as a primary database [105–112].
A genome-scale metabolic reconstruction is a collection of all the known genes, reactions, metabolites, and
their interactions that are present or can take place in any given cell at the time of reconstruction.
First off, there is no consensus for the identifiers that should be used in a reconstruction. For example,

Recon 1 [105] and Recon 2 [108] use Entrez Gene identifiers [113], whereas HMR [110] and Recon 2.2 [111]
use Ensembl gene identifiers [114] and HGNC identifiers [115], respectively. The same goes for metabolite
identifiers which can be in the BiGG [116], SEED [117], or BioCyc [118] format, but might also have more
common identifiers such as the CAS number, ChEBI ID, PubChem ID, or KEGG ID associated. In some ver-
sions of some reconstruction, there is sometimes a mix of different identifiers, which makes matching identi-
fiers between the models difficult. Similar problems arise with the names of the proteins, interacting drugs,
chemicals, and diseases as many databases associate internal identifiers to them.
The problem of a non-standardized vocabulary is well known in the scientific community [119] and makes

data retrieval and integration challenging [120].

Data retrieval and update intervals
Even though many databases offer online tools to the user that are useful for looking up a few genes or drugs
but with big data appearing, more holistic approaches are being used and the user wants a whole overview of
the data. Unfortunately, not all databases offer direct and free access to downloadable files, making data
retrieval unnecessarily difficult.
Another challenge with online databases is maintenance and update intervals. Some databases have sched-

uled updates, which is per se good practice, but it also requires re-downloading, updating, or adjusting a user-
defined script. With updates, besides the addition of content, some entries in a database might be changes or
be withdrawn such as for some genes. Unfortunately, other databases are not updated on a regular basis and
they are left with outdated information that needs to be revised. It is therefore important to mark the version
number of a database.

Resources and databases
In general, for drug target prediction in cancer (and other diseases), the most important databases are inter-
action databases, which link a gene or mutation to a specific disease, or a drug to a protein. Interaction data-
bases are vital to interconnect the different pieces of information and to create a more global and focussed view
on the disease and its treatment strategies.
In their publication, [121], described different approaches for data integration at a systems level and some of

the available data repositories. In the following subsection, we will shortly describe the most important data-
bases for gene information, proteins, interactions and simply list others for further information. More informa-
tion can also be found in the review from [122] that describe drug-related data types, and web-based drug
repositioning tools.

Gene databases
After retrieving a list of essential genes, more information about these genes needs to be gathered.
The best-known databases for gene information are Ensembl [114], NCBI Entrez Gene [113], and HGNC

[115]. It is useful to download a text file to convert the different identifiers (http://www.genenames.org/cgi-bin/
download), Biomart (https://www.ensembl.org/biomart/martview/), David (https://david.ncifcrf.gov/conversion.
jsp), or bioDBnet (https://biodbnet-abcc.ncifcrf.gov/db/db2db.php) to give some examples. If one is working
with microarray data, the probe IDs should also be converted to the correct genes by downloading the gene
annotation files for the used platform (https://www.ncbi.nlm.nih.gov/ for example).
Whereas some databases focus more on the expression of genes across specific tissues or conditions, such as

the Human Protein Atlas [123] or CCLE [4], other databases collect information about gene mutations and
their associated diseases such as ClinVar [124] or COSMIC [125], which can be useful tools for model
validation.
A brief overview of these databases can be found in the Supplementary Tables S3, 43, and S5.
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Table 2. Drug and interaction databases Part 1 of 2

Name Description URL Citation

BindingDB Protein binding database https://www.bindingdb.org [134]

CancerDR: Cancer Drug Resistance
Database

Collection of 148 anticancer drugs, their targets
and effectiveness

http://crdd.osdd.net/raghava/
cancerdr/

[135]

CancerResource Drug-target interactions in cancer http://data-analysis.charite.de/
care/

[136]

CGP: Cancer Genome Project Screening of cancer cell lines with drug response
data (now included in COSMIC)

http://www.sanger.ac.uk/
genetics/CGP/CellLines/

[137]

ChEMBL Drug bioactivity data https://www.ebi.ac.uk/chembl/ [138]

Connectivity Map Drug screenings https://clue.io/ [139]

CTD: Comparative Toxicogenomics
Database

Gene-Drug-Disease interactions http://ctdbase.org/ [140]

CTRP: Cancer Therapeutics
Response Portal

Drug Sensitivity in Cancer, 860 cell lines and 481
compounds

https://portals.broadinstitute.org/
ctrp/

[100]

DGIdb: The Drug Gene Interaction
Database

Gene-Drug interactions http://dgidb.genome.wustl.edu/ [141]

DrugBank Gene-Drug interactions and drug information https://www.drugbank.ca/ [142]

gCSI: The Genentech Cell Line
Screening Initiative

Independent screening of 410 cancer cell lines to
16 agents of CCLE and GDSC data

http://research-pub.gene.com/
gCSI-cellline-data/

[143]

GDSC: Genomics of Drug Sensitivity
in Cancer

Drug response data and drug sensitivity in cancer https://www.cancerrxgene.org/ [103]

Growth rate inhibition metrics Dose-response data for breast cancer (from
LINCS)

http://www.grcalculator.org/
grtutorial/Home.html

GSK: GlaxoSmithKline cell line
collection

Response profiles of 19 compounds in 311 cell
lines

[144]

Hetionet Combination of 29 public databases on genes,
disease, drugs, side effects,…

https://het.io/ [145]

IDG: Illuminating the Druggable
Genome

Drug-targeted protein families https://druggablegenome.net/ [146]

Kegg Drug Information on drugs and their targets https://www.genome.jp/kegg/
drug/

[129]

LINCS: Library of Integrated
Network-Based Cellular Signatures

Gene expression and drugs http://www.lincsproject.org/ [147]

NPC: NCGC Pharmaceutical
Collection

Drug screening data & https://tripod.nih.gov/npc/ [148]

Orphanet Rare diseases and orphan drugs http://www.orpha.net [149]

Pharmacodb Collection of anticancer drug screenings http://pharmacodb.ca/ [150]

Pharos Knowledgebase for the druggable genome https://pharos.nih.gov/idg/index [151]

PubChem Chemical database https://pubchem.ncbi.nlm.nih.
gov/

[152]

repoDB Clinical trial and repositioning database http://apps.chiragjpgroup.org/
repoDB/

[153]

SIDER: Side Effect Resource Side effect database for drugs http://sideeffects.embl.de/ [154]

STITCH Drug Target Discovery http://stitch.embl.de/ [133]

SuperTarget Drug targets, side effects http://insilico.charite.de/
supertarget/

[155]

T3DB Gene-toxin database http://www.t3db.ca/ [156]

TCM Database in silico drug screenings of Traditional Chinese
medicine

http://tcm.cmu.edu.tw/ [157]

Continued

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 961

Biochemical Society Transactions (2020) 48 955–969
https://doi.org/10.1042/BST20190867

https://www.bindingdb.org
https://www.bindingdb.org
http://crdd.osdd.net/raghava/cancerdr/
http://crdd.osdd.net/raghava/cancerdr/
http://crdd.osdd.net/raghava/cancerdr/
http://data-analysis.charite.de/care/
http://data-analysis.charite.de/care/
http://data-analysis.charite.de/care/
http://data-analysis.charite.de/care/
http://www.sanger.ac.uk/genetics/CGP/CellLines/
http://www.sanger.ac.uk/genetics/CGP/CellLines/
http://www.sanger.ac.uk/genetics/CGP/CellLines/
https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
https://clue.io/
https://clue.io/
http://ctdbase.org/
http://ctdbase.org/
https://portals.broadinstitute.org/ctrp/
https://portals.broadinstitute.org/ctrp/
https://portals.broadinstitute.org/ctrp/
http://dgidb.genome.wustl.edu/
http://dgidb.genome.wustl.edu/
https://www.drugbank.ca/
https://www.drugbank.ca/
http://research-pub.gene.com/gCSI-cellline-data/
http://research-pub.gene.com/gCSI-cellline-data/
http://research-pub.gene.com/gCSI-cellline-data/
http://research-pub.gene.com/gCSI-cellline-data/
http://research-pub.gene.com/gCSI-cellline-data/
http://research-pub.gene.com/gCSI-cellline-data/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
http://www.grcalculator.org/grtutorial/Home.html
http://www.grcalculator.org/grtutorial/Home.html
http://www.grcalculator.org/grtutorial/Home.html
https://het.io/
https://het.io/
https://druggablegenome.net/
https://druggablegenome.net/
https://www.genome.jp/kegg/drug/
https://www.genome.jp/kegg/drug/
https://www.genome.jp/kegg/drug/
http://www.lincsproject.org/
http://www.lincsproject.org/
https://tripod.nih.gov/npc/
https://tripod.nih.gov/npc/
http://www.orpha.net
http://www.orpha.net
http://pharmacodb.ca/
http://pharmacodb.ca/
https://pharos.nih.gov/idg/index
https://pharos.nih.gov/idg/index
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://apps.chiragjpgroup.org/repoDB/
http://apps.chiragjpgroup.org/repoDB/
http://apps.chiragjpgroup.org/repoDB/
http://sideeffects.embl.de/
http://sideeffects.embl.de/
http://stitch.embl.de/
http://stitch.embl.de/
http://insilico.charite.de/supertarget/
http://insilico.charite.de/supertarget/
http://insilico.charite.de/supertarget/
http://www.t3db.ca/
http://www.t3db.ca/
http://tcm.cmu.edu.tw/
http://tcm.cmu.edu.tw/
https://creativecommons.org/licenses/by/4.0/


Essential gene screenings
To this date, there exist several large-scale collections of essential gene screenings for human and cancer cell
lines that can be used to validate predicted essential genes (Supplementary Table S6). As different methods are
used to determine essential genes in a given cell line or tissue, the results are not always comparable and
finding a core set of essential genes in cancer is still ongoing. The Cancer Dependency Map (https://depmap.
org) is currently gathering and harmonizing several essential gene screenings into one comprehensible
platform.
As stated in the beginning, gene essentiality analysis is often performed in metabolic modelling studies in

order to predict essential genes that could be considered as drug targets. Here, in vitro performed essential
gene screenings can be used to validate the predicted essential genes using statistical test, e.g. a hypergeometric
test. This is especially useful to predict drug targets because one could directly assess the effect of the gene dele-
tion in a cancer cell compared with a healthy cell.

Proteins, drug targets, and protein-drug interactions
Besides genes, protein databases have become increasingly important as they include information on the
protein sequence, structure, and biological function(s), which are relevant for drug target prediction and
validation.
The first available protein database was The Protein Data Bank [126] (https://www.wwpdb.org/), which cur-

rently stores more than 150 000 entries on the protein structure. Whereas some databases, such as PDB, focus
more on the 3D structure of a protein, other databases such as UniProt [127] focus more on the sequence of a
protein. These can be useful to determine new drug binding sites. There also exist databases that focus more on
the biological functions and pathways of a protein such as Gene Ontology [128] and KEGG [129]. Extensive
lists on protein databases with their advantages and drawbacks have already been discussed elsewhere [130],
here we will focus more on protein interaction databases for drug discovery.
By linking the predicted essential genes with their respective proteins, protein interaction or protein binding

databases can be used to retrieve a list of known drugs or chemicals that interact with these proteins/genes.
Examples of such databases are the Binding Database [131], which mainly gives information on the binding
affinity between a protein and a ligand but also pharmacokinetics, 3D structures, and links to other databases,
the DrugBank [132], which focusses more on the drugs themselves and its pharmacokinetics but also provides
information on the protein targets and the type of interaction (i.e. inhibitor, activator, substrate,…) and the
Stitch [133] database, which is a collection of chemical and protein interaction networks with biological evi-
dence that also focuses on the interactions between chemicals. There also exist other protein and drug inter-
action databases which are listed in Table 2.

Drugs and side effects
Not only the development of new drugs is greatly hampered by drug efficacy and safety [162], severe side
effects are responsible for fails during clinical trials, therefore, minimizing the toxicity of the drugs is necessary.
Chemotherapeutic agents, for example, target proteins that are present in all rapidly proliferating cells, cancer

Table 2. Drug and interaction databases Part 2 of 2

Name Description URL Citation

The Drug Repurposing Hub Drug repurposing https://clue.io/repurposing [158]

Transformer (former SuperCYP) Cytochrome-drug interactions http://bioinformatics.charite.de/
transformer/

[159]

TTD: Therapeutic Target Database Drug targets http://bidd.nus.edu.sg/group/
cjttd/

[160]

UniProt Protein database www.uniprot.org/ [127]

YaTCM Linking traditional Chinese medicine to targets and
diseases

http://cadd.pharmacy.nankai.
edu.cn/yatcm/home

[161]
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cells as well as healthy cells causing the side effect. Targeted cancer drugs, on the other hand, are more selective
but also come with side effects and are not always able to eradicate all cancer cells due to cancer heterogeneity.
The appearance of side effects of these more targeted drugs can be explained by the drug’s affinity for similar
binding sites on another protein also called off-targets [163].
Moreover, using available data on drugs and their interactions, side effects of a drug have already been pre-

dicted solely based on in silico modelling [164–166]. By combining metabolic modelling with a drug repurpos-
ing workflow, the risk of severe side effects can be reduced by suggesting a combination of two or more lower
dosed drugs than one single highly dosed drug based on the metabolic modelling results. For example, one
could find drug synergies between currently used anti-cancer drugs and other drugs that might allow lowering
the dose of the anti-cancer drug.

Databases and datasets for cancer
There exist many different datasets of varying sizes, quality, and research focus that are stored on platforms
and repositories such as NCBI Gene Expression Omnibus (GEO) [167] and ArrayExpress [168] but more spe-
cific datasets such as The Cancer Genome Atlas with more than 11000 patient samples across 33 different
tumour types [8], NCI-60 [5], 1000 Genomes Project [6,7] or the Cancer Cell Line Encyclopedia [4] also exist.
For a more exhaustive list of cancer datasets, see Supplementary Table S7.

Discussion
To study metabolic rewiring, two different strategies were adopted: the first focuses mostly on manually
curated models of the core metabolism that were built from scratch or were extracted via model-building
algorithms from already published models that were then extensively curated. The first strategy is very time
consuming and only permits to capture more generic rewiring strategies. The second strategy takes advan-
tage of the capacity of model building algorithms to reconstruct a large number of context-specific models
to perform statistically relevant analysis. Whereas this approach is more subjected to noise and algorithm-
related bias, it enables to capture metabolic rewiring strategies in different samples, tissues, cancers, and
sub-populations.
Although context-specific metabolic models were successfully used to integrate patient data, their application

to study tumour samples is still dependent of the accuracy of the model-building algorithm, the quality of the
input reconstruction and the discretization/integration function used [66,67]. If the algorithm is too conserva-
tive, it will wrongly exclude lowly expressed reactions, mark alternative pathways as inactive and therefore over-
estimate the number of essential genes. The inverse is equally true, a model that falsely calls alternative
pathways as active due to relaxed thresholds will underestimate the number of essential genes. Even though the
remaining process of finding a matching drug in a database for a predicted candidate gene is straightforward,
huge improvements can still be done on the modelling side, notably of the biomass composition. Currently, a
very reduced number of biomass functions is published that are often used regardless of the tissue type and
proliferation speed. The prediction power of a model could be improved by using more adapted biomass for-
mulation, which considers fast and slowly proliferating cells.
Furthermore, the reaction to a drug can vary drastically from one patient to another where one might not be

responding at all and another will suffer adverse effects. Therefore, patient stratification and tailored drug treat-
ments are going to be a major challenge to find the most efficient drug or drug combination with the least side
effects.
Here, metabolic modelling could be applied to predict patient-specific groups by using classifiers such as bio-

markers or gene signatures that allow assigning patients into different metabolic groups or by using the meta-
bolic variation captured by the metabolic models. These models could then be used to predict personalized
drug targets and, eventually, treatments. Another important aim is to find drug combinations, which allow us
to lower the overall dose and consequently reducing drug toxicity. But more importantly, cancer cells are less
likely to simultaneously develop resistance to two (or more) different drugs and therefore drug combination
treatments could show a higher success rate in killing cancer cells. Even though double and triple knockouts
are possible, they cannot be performed experimentally for all drug combinations. As the development of a new
drug is very risky and time-consuming, proposing drugs for repurposing using metabolic modelling could dras-
tically help to develop new treatments.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 963

Biochemical Society Transactions (2020) 48 955–969
https://doi.org/10.1042/BST20190867

https://creativecommons.org/licenses/by/4.0/


Perspectives
• Highlight the importance of the field: In this review, we describe a roadmap about how

metabolic modelling can be used for drug discovery. We also cite the most important
resources (databases and datasets) that can be used to determine novel drug targets and
drugs.

• A summary of the current thinking: Current cancer therapies often fail due to the appear-
ance of resistance inside the tumour. Metabolic rewiring is a known hallmark of cancer, thus
using metabolic modelling can be used to identify cancer-specific vulnerabilities and predict
novel drug targets.

• A comment on future directions: For the future, using personalized medicine, the creation of
patient-specific models that capture inter-tumour heterogeneity as well as single-cell RNA-seq
model that capture intra-tumour heterogeneity will greatly improve the drug response of a
patient by increasing the effectiveness of a drug and reducing its side effect.
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