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Abstract: In this paper, quenching effects on silicon nanoparticle growth processes and size distribu-
tions at a typical range of cooling rates in a thermal plasma tail are investigated computationally. We
used a nodal-type model that expresses a size distribution evolving temporally with simultaneous
homogeneous nucleation, heterogeneous condensation, interparticle coagulation, and melting point
depression. The numerically obtained size distributions exhibit similar size ranges and tendencies
to those of experiment results obtained with and without quenching. In a highly supersaturated
state, 40–50% of the vapor atoms are converted rapidly to nanoparticles. After most vapor atoms are
consumed, the nanoparticles grow by coagulation, which occurs much more slowly than conden-
sation. At higher cooling rates, one obtains greater total number density, smaller size, and smaller
standard deviation. Quenching in thermal plasma fabrication is effectual, but it presents limitations
for controlling nanoparticle characteristics.

Keywords: quenching; nanoparticles; growth; plasma; multiscale modeling and simulation

1. Introduction

Nanoparticles offer unique electronic, optical, magnetic, and catalytic properties
that differ from those of larger micrometer-size particles and those of bulk materials [1].
Nanoparticles are therefore highly attractive for use in applications expected to lead to
breakthroughs in biomedical, environmental, and industrial fields. Even pure silicon
nanoparticles are anticipated as promising materials for use in numerous applications such
as lithography [2], electronic devices [3], electron transistors [4,5], floating gate memory
devices [6–9], luminescent thermometers [10], and lithium ion battery electrodes [11–13].
Several Japanese groups have recently used thermal plasmas to achieve high-throughput
production of silicon nanoparticles for lithium ion battery electrodes [14–18].

Thermal plasma, a kind of high-enthalpy plasma, is generated by high-power dis-
charge at around atmospheric pressure. Thermal plasma is a unique fluid with high
temperatures not only of electrons but also of heavy species, with high chemical reactivity,
intensive light emission, and varying transport properties [19]. It is also an electrically con-
ductive fluid. Therefore, it can be controlled by an electromagnetic field [20,21]. The high
temperature of its heavy species, around 10,000 K, can vaporize even materials that have a
high melting point or boiling point. In addition, the steep temperature-decrease gradient at
its tail plays an important role in rapid conversion from material vapor to nanoparticles. By
virtue of these two features, thermal plasma achieves one-step fabrication of nanoparticles
with high yield [22]. Indeed, based on the use of inductively coupled thermal plasma
(ICTP), Tanaka et al. [23] and Kodama et al. [24] synthesized titanium-dioxide nanoparticles
at 6.7–12.3 g min−1 using a pulse modulation technique. Ohta et al. [15] produced silicon
nanoparticles at 17 g min−1 using direct-current plasma jet assistance.
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The number and size of nanoparticles are affected by temperature and flow fields
in and around thermal plasma through growth processes [25]. Strong cross-correlations
between the temperature at an upstream plasma fringe and nanoparticle concentration in a
downstream region have been found for a transferred arc plasma system [26,27] and for a
non-transferred arc plasma jet in two-dimensional [28] and three-dimensional fields [29]
in recent numerical studies using a method suitable for simulating dynamic behaviors of
thermal plasma–nonionized gas coexisting flows [30]. Actually, to control temperature and
flow fields and to control nanoparticle growth processes in ICTP systems, several experi-
mental studies adopted quenching strategies using a water-cooled coil [31], a water-cooled
ball [15,32], direct plasma control by pulse modulation [33], counterflow injection [18,34],
and radial gas injection [35,36]. Effects of those quenching methods were also investi-
gated using two-dimensional simulations for practical conditions [37–47]. From a more
fundamental perspective, specific effects of quenching on nanoparticle size distributions
were investigated numerically using time-dependent models [48–51]. Although those
works explicitly presented results obtained for spatial distributions or size distributions of
nanoparticles, none clearly presented an implicit mechanism that dominates nanoparticle
growth processes.

This study investigated quenching effects on the growth processes and size distri-
butions of nanoparticles at a typical range of cooling rates at a thermal plasma tail. The
investigative method is numerical, using a nodal-type model that expresses a size distri-
bution evolving temporally with simultaneous homogeneous nucleation, heterogeneous
condensation, interparticle coagulation, and melting point depression. To validate the
present numerical calculations, silicon nanoparticle fabrication is demonstrated experimen-
tally with and without quenching. Results of the study reveal the implicit mechanisms of
processes related to conversion from vapor atoms to nanoparticles. Moreover, results clearly
illustrate cooling rate effects on the total number, size, and dispersion of the produced
nanoparticles.

2. Experiment Setup

Figure 1 portrays schematic illustrations of the nanoparticle fabrication systems (TP-
40020NPS; JEOL Ltd., Tokyo, Japan) consisting of an ICTP torch and a chamber without
or with a quenching portion. After argon gas (G1 grade, less than 0.1 ppm oxygen) was
filled in the main chamber at 100 kPa, argon gas was injected continuously at 35 L min−1

from the torch top to sustain the plasma. Using a powder feeding system (TP-99010FDR;
JEOL Ltd., Tokyo, Japan), coarse silicon powder (approx. 7 µm particle size, 99.99% purity;
Kojundo Chemical Lab. Co., Ltd., Saitama, Japan) was then introduced through the feeder
nozzle into the plasma torch at a 0.048 g min−1 feed rate, with carrier argon gas added
at a flow rate of 3 L min−1. When the flow was quenched, additional argon gas was
injected from the lower part of the torch toward the central axis at 80 L min−1. Details of
the system geometries and discharge parameters were identical to those described for an
earlier study [52,53].

Observation was achieved by using scanning electron microscopy (SEM: JSM-7800F;
JEOL Co., Ltd., Tokyo, Japan). Size distributions for approximately 1200 nanoparticles
were measured from SEM micrographs.
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Figure 1. Schematic illustrations of nanoparticle fabrication in ICTP systems (a) without and (b) 
with quenching. 

Observation was achieved by using scanning electron microscopy (SEM: JSM-7800F; 
JEOL Co., Ltd., Tokyo, Japan). Size distributions for approximately 1200 nanoparticles 
were measured from SEM micrographs. 

3. Numerical Model Description 
3.1. Model Outline and Assumptions 

Following evaporation in the plasma, the material vapor is transported through the 
plasma to the chamber. Vapor reaching the plasma tail experiences a rapid temperature 
decrease. There, the vapor becomes supersaturated. Numerous nuclei are generated (ho-
mogeneous nucleation). Once nucleation occurs, the vapor condenses on the nuclei (het-
erogeneous condensation). Through these processes, nanoparticles grow. Simultaneously, 
the nanoparticles mutually collide and merge to form larger nanoparticles (interparticle 
coagulation) if they are still liquid and exist at temperatures higher than their melting 
points. 

Those nanoparticle diameters vary widely from sub-nanometer scale to a few 
hundred nanometers, which correspond to monomer numbers in a single particle from 
101 to 108. Furthermore, the spatial number density of the nanoparticles reaches 1018 m−3. 
Therefore, molecular dynamics calculations for every nanoparticle’s growth are 
impossible in a practical sense. Aerosol dynamics modelling makes it possible to calculate 
the collective and simultaneous growth processes of the numerous nanoparticles. Based 
on the aerosol representation, nanoparticle growth processes at thermal plasma tails have 
been predicted numerically using several computational models with different features 
summarized in Table 1. The models are classified in four types. Type A is a sophisticated 
model with a simple mathematical description treating nanoparticles’ growth by 
simultaneous homogeneous nucleation and heterogeneous condensation; however, it 
does not take interparticle coagulation into account [51,54–56]. It can express a size 
distribution with any shape so that it needs high costs of computational resources and 
time. Type B describes collective nanoparticles’ growth by simultaneous nucleation, 
condensation, and coagulation by a simple set of two aerosol equations and one vapor 

Figure 1. Schematic illustrations of nanoparticle fabrication in ICTP systems (a) without and (b) with
quenching.

3. Numerical Model Description
3.1. Model Outline and Assumptions

Following evaporation in the plasma, the material vapor is transported through the
plasma to the chamber. Vapor reaching the plasma tail experiences a rapid temperature
decrease. There, the vapor becomes supersaturated. Numerous nuclei are generated
(homogeneous nucleation). Once nucleation occurs, the vapor condenses on the nuclei (het-
erogeneous condensation). Through these processes, nanoparticles grow. Simultaneously,
the nanoparticles mutually collide and merge to form larger nanoparticles (interparticle co-
agulation) if they are still liquid and exist at temperatures higher than their melting points.

Those nanoparticle diameters vary widely from sub-nanometer scale to a few hun-
dred nanometers, which correspond to monomer numbers in a single particle from 101

to 108. Furthermore, the spatial number density of the nanoparticles reaches 1018 m−3.
Therefore, molecular dynamics calculations for every nanoparticle’s growth are impos-
sible in a practical sense. Aerosol dynamics modelling makes it possible to calculate the
collective and simultaneous growth processes of the numerous nanoparticles. Based on
the aerosol representation, nanoparticle growth processes at thermal plasma tails have
been predicted numerically using several computational models with different features
summarized in Table 1. The models are classified in four types. Type A is a sophisticated
model with a simple mathematical description treating nanoparticles’ growth by simul-
taneous homogeneous nucleation and heterogeneous condensation; however, it does not
take interparticle coagulation into account [51,54–56]. It can express a size distribution
with any shape so that it needs high costs of computational resources and time. Type
B describes collective nanoparticles’ growth by simultaneous nucleation, condensation,
and coagulation by a simple set of two aerosol equations and one vapor equation so that
the computational costs are low [26–29,57,58]. However, it does not express a dispersed
size distribution because it calculates physical quantities by averaged size approximation.
Type C has been an often-used model which deals with collective nanoparticles’ growth
by simultaneous nucleation, condensation and coagulation as well [39,40,42–47,59–62].
Although its computational costs are low, its mathematical formulation is more complex;
nevertheless, it still requires an assumption of a lognormal size distribution. Type D can
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express a size distribution with any shape during collective nanoparticles’ growth through
simultaneous processes of nucleation, condensation, and coagulation [37,48,49,53,63–73].
Its mathematical description is more complex; furthermore, its computational costs are
higher because the equations as many as the nodes discretizing the size distribution.

Table 1. Computational growth models based on aerosol representation.

Model Type A
[51,54–56]

Model Type B
[26–29,57,58]

Model Type C
[39,40,42–47,59–62]

Model Type D
[37,48,49,53,63–73]

Nucleation considered considered considered considered
Condensation considered considered considered considered
Coagulation not considered considered considered considered
Size distribution any mono-disperse lognormal any
Mathematical description simpler simpler more complex more complex
Computational costs higher lower lower higher

This study adopts Type D with several assumptions: (i) spherical nanoparticles;
(ii) negligible nanoparticle inertia; (iii) identical transport velocity and temperature of
nanoparticles to those of the bulk gas flow; (iv) negligible heat generation caused by
condensation; (v) negligible electric charge of nanoparticles; (vi) material vapor regarded
as an ideal gas; and (vii) atmospheric pressure in the reaction chamber. Actually, Model
type D discretizes the size distribution in the space of particle sizes expressed by particle
volume. The discretized volumes are assigned as

vk+1 = fqvk (k = 1, 2, ..., kmax) (1)

where v represents the particle volume, k stands for the discrete point number for the
particle size, and fq is a coefficient to determine the interval. fq = 1.16 and kmax = 161 are
set for this study. The minimum volume of a “particle” is chosen as v2 = 10v1, where v1
denotes the volume of a monomer, which is equivalent to a vapor atom. In this size space,
the net production rate of particles with volume vk is written as

∆N1

∆t
=

.
N

(nucl)
k +

.
N

(cond)
k +

.
N

(coag)
k (k = 2, ..., kmax) (2)

where Nk represents the number density of particles at node k,
.

N signifies the increment per
unit time, and superscripts (nucl), (cond), and (coag) stand for the contributions of homoge-
neous nucleation, heterogeneous condensation, and interparticle coagulation, respectively.

3.2. Homogeneous Nucleation

Figure 2a portrays a schematic image showing calculations for homogeneous nucle-
ation. When material vapor is transported to the plasma tail, its temperature decreases
along with decreased saturation pressure of the material. Consequently, the material
vapor becomes supersaturated, which engenders homogeneous nucleation. Therein, the
production rate of particles having volume vk by homogeneous nucleation is written as

.
N

(nucl)
k = Iξ

(nucl)
k (k = 2, ..., kmax) (3)

here, I is the homogeneous nucleation rate [74] obtained as

I = N2
s S

√
2σ

πm1
exp

[
Θ− 4Θ3

27(ln S)2

]
(4)

where Ns signifies the number density of the vapor atoms in the equilibrium state, σ stands
for the surface tension, and m1 denotes the mass of a monomer. Additionally, S expresses
the supersaturation ratio defined as
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S =
N1

NS
=

p1

pS
(5)

where N1 and p1 respectively represent the number density and pressure of vapor monomers,
and pS denotes the saturation pressure. Furthermore, Θ stands for the dimensionless sur-
face tension, which is given as

Θ =
σs1

kBT
(6)

where s1 represents the monomer surface area, kB is Boltzmann’s constant, and T stands for
the temperature. In Equation (3), ξ

(nucl)
k represents the partition coefficient for discretized

size nodes written as

ξ
(nucl)
k =


v∗
vk

(vk ≤ v∗ < vk+1)
v∗
v1

(v∗ < v1)

0 (other)

(7)

here, v∗ represents the volume of a nucleus that is regarded as a particle having the critical
diameter given as described in an earlier report [74],

v∗ =
π

6

(
4σv1

kBT ln S

)3
(8)Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 22 

 

 

 
Figure 2. Illustrations depicting computations of (a) homogeneous nucleation, (b) heterogeneous 
condensation, and (c) interparticle coagulation. 

3.3. Heterogeneous Condensation 
Figure 2b represents a schematic image of calculation for heterogeneous condensa-

tion. When nuclei are generated by homogeneous nucleation, the material vapor is still 
supersaturated, which causes heterogeneous condensation. Therein, the net production 
rate of particles having volume ݒ௞ by heterogeneous condensation can be written as 

ܰ̇௞
(௖௢௡ௗ) = ෍

௜,௞ߦ)
(௖௢௡ௗ) − (௜,௞ߜ ௜ܰ

ݐ∆

௞೘ೌೣ

௜ୀଶ

    (݇ = 2, . . . , ݇௠௔௫) (9)

here, ߦ௜,௞
(௖௢௡ௗ) is the partition coefficient for heterogeneous condensation, which is given as 

௜,௞ߦ
(௖௢௡ௗ) =

⎩
⎪
⎨

⎪
⎧

  

௞ାଵݒ − ௜ݒ) + (௜ݒ∆
௞ାଵݒ − ௞ݒ

௞ݒ)     ≤ ௜ݒ∆+௜ݒ < (௞ାଵݒ

௜ݒ) + ௞ିଵݒ−(௜ݒ∆

௞ݒ − ௞ିଵݒ
௞ିଵݒ)     ≤ ௜ݒ∆+௜ݒ < (௞ݒ

(ݎℎ݁ݐ݋)           0

 (10)

In Equation (9), ߜ௜,௞ is Kronecker’s delta, and 

௜,௞ߜ = ൜1   (݅ = ݇)
0   (݅ ≠ ݇) (11)

The growth rate of particles having diameter ݀௜ is given as the following equation 
[64] modified from a general description as [75] 

௜ݒ∆

ݐ∆
= )ଵݒଵܦ௜݀ߨ2 ଵܰ − ௌܰ೔

ᇱ ) ቈ
1)ߙ0.75 + Kn௜)

(ߙ0.75) + Kn௜ߙ0.2832 + Kn௜ + Kn௜
ଶ቉ (12)

*

(a) Homogeneous nucleation

(c) Interparticle coagulation

from vapor

(b) Heterogeneous condensation

Figure 2. Illustrations depicting computations of (a) homogeneous nucleation, (b) heterogeneous
condensation, and (c) interparticle coagulation.

Therefore, the critical diameter is equivalent to the diameter of a nucleus generated by
homogeneous nucleation in this model.
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3.3. Heterogeneous Condensation

Figure 2b represents a schematic image of calculation for heterogeneous condensation.
When nuclei are generated by homogeneous nucleation, the material vapor is still super-
saturated, which causes heterogeneous condensation. Therein, the net production rate of
particles having volume vk by heterogeneous condensation can be written as

.
N

(cond)
k =

kmax

∑
i=2

(ξ
(cond)
i,k − δi,k)Ni

∆t
(k = 2, ..., kmax) (9)

here, ξ
(cond)
i,k is the partition coefficient for heterogeneous condensation, which is given as

ξ
(cond)
i,k =


vk+1−(vi+∆vi)

vk+1−vk
(vk ≤ vi + ∆vi < vk+1)

(vi+∆vi)−vk−1
vk−vk−1

(vk−1 ≤ vi + ∆vi < vk)

0 (other)

(10)

In Equation (9), δi,k is Kronecker’s delta, and

δi,k =

{
1 (i = k)
0 (i 6= k)

(11)

The growth rate of particles having diameter di is given as the following equation [64]
modified from a general description as [75]

∆vi
∆t

= 2πdiD1v1

(
N1 − N′Si

)[ 0.75α(1 + Kni)

(0.75α) + 0.2832αKni + Kni + Kn2
i

]
(12)

where D1 is the diffusion coefficient of monomers [76], Kn is the Knudsen number defined
as the ratio of the mean free path of gas to the particle radius, and α is the accommodation
coefficient, which is set as 1.0 for this study. Additionally, N′Si

denotes the number density
of equilibrium vapor atoms corrected considering the surface curvature for node i as [77]

N′Si
= NS exp

(
4σv1

dikBT

)
(13)

Particles with volume vi gain volume ∆vi. Consequently, they form new particles
having volume vi + ∆vi. The new particles are split into adjacent nodes under the mass
conserving condition by Equation (10).

3.4. Interparticle Coagulation

Figure 2c portrays a schematic image of calculation for interparticle coagulation. The
growing nanoparticles mutually collide and coagulate. When their temperature becomes
higher than their melting point, the particles merge and form larger particles, thereby
decreasing their own numbers. The net production rate of the particles at node k by
interparticle coagulation can therefore be expressed as

.
N

(coag)
k =

1
2

kmax

∑
i=2

kmax

∑
j=2

ξ
(coag)
i,j,k βi,jNi Nj − Nk

kmax

∑
i=2

βi,k Ni (k = 2, ..., kmax) (14)

where βi,j represents the collision frequency function between two particles having volumes
vi and vj covering a wide size range from the free molecular regime to the continuum
regime [64]. The first term and the second term of the right-hand side in Equation (14)
express the gain of node k by the collision between the particles at the other nodes i and
j, and the loss of node k by the collision between the particles at node k and the particles
at the other nodes, respectively. Particles with volume vi and vj collide and coagulate.
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They consequently form new particles with volume vi + vj. Figure 2c shows that the new
particles are split into the adjacent nodes under the mass conserving condition presented
in Figure 2. The partition coefficient for coagulation of size ξ(coag) is given as

ξ
(coag)
i,j,k =


vk+1−(vi+vj)

vk+1−vk
(vk ≤ vi + vj < vk+1)

(vi+vj)−vk−1
vk−vk−1

(vk−1 ≤ vi + vj < vk)

0 (other)

(15)

3.5. Vapor Consumption

The total number of material atoms is conserved through conversion from vapor to par-
ticles. The population balance equation of the material vapor is calculated simultaneously
considering vapor atom consumption by nucleation and condensation:

∆N1

∆t
= −

kmax

∑
k=2

Iξ
(nucl)
k n∗ −

kmax

∑
i=2

Ni∆vi
v1∆t

(16)

In Equation (16), n∗ represents the number of monomers composing a thermodynami-
cally neutrally stable nucleus. The number density of vapor atoms directly affects the rates
of nucleation and condensation.

3.6. Melting Point Depression

Melting points of nanoscale particles are lower than those of bulk materials [78]. This
melting point depression is considered in the present model. The melting point Tmelt, k of
particles with diameter dk can be estimated as

Tmelt, k = Tmelt, bulk ×
(

1− ε

dk

)
(k = 2, ..., kmax) (17)

Therein, Tmelt, bulk denotes the melting point of a bulk material. Parameter ε is a charac-
teristic property determined by the solid and liquid surface energies and the bulk melting
enthalpy. This study adopts the value of ε = 1.16 nm for silicon spherical particles [78].
Figure 3 depicts the melting points of bulk silicon and nanoscale spherical silicon estimated
by Equation (17). The present model treats a particle with temperature lower than this
depressed melting point as a solid body and does not calculate the interparticle coagulation
if both particles are solid in computation.
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3.7. Computational Conditions

Computations were performed under typical conditions at a small-type ICTP’s tail
where the temperature decreases monotonically at 18 cooling rates ranging from
2.0 × 103 K s−1 to 6.4 × 104 K s−1. In response to these cooling rates, the time incre-
ment ∆t for computations was set as 5.0 µs to 0.15625 µs, which gave sufficient resolution
for the processes. Corresponding to the silicon feed rate of the experiment, it is assumed
that, after complete evaporation by the plasma, the silicon vapor atoms are transported
with the argon carrier gas. Therein, the molar fraction of silicon to argon is set to 1.257%
at 2700 K as the starting condition of the computations. The material properties of silicon
were referred from a textbook used for this field [79].

4. Results and Discussion
4.1. Experiment Results and Model Validation

Figure 4 depicts SEM images of silicon particles obtained with and without quench-
ing. The primary particles are spherical particles having nanometer-range diameters.
Apparently, the particles obtained with quenching are much smaller than those without
quenching. Figure 5 shows the primary particle size distributions, which quantitatively
indicate the same tendency in the experiments and the computations. With quenching, the
size distributions exhibit smaller and narrower ranges. The experiment without quenching
obtained mean diameter of 150 nm and standard deviation of 82 nm. The experiment with
quenching obtained the mean diameter of 27 nm and standard deviation of 9 nm. On the
other hand, computation with the cooling rate of 3.1 × 103 K s−1 obtained mean diameter
of 149.5 nm and standard deviation of 39.7 nm. Computation with the cooling rate of
6.2 × 104 K s−1 obtained mean diameter of 26.8 nm and standard deviation of 9.98 nm.
Those computation results agree to an acceptable degree with the experimentally obtained
results. Therefore, in this report, the processes with the cooling rates of 6.2 × 104 K s−1 and
3.1 × 103 K s−1 are discussed as conditions with and without quenching, respectively.
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In spite of that agreement, the results include some differences among them. The
causes of the differences are discussed hereinafter. In general, experiments of practical
material processing by thermal plasmas inherently include errors because of temporal fluc-
tuations and spatial non-uniformity of temperature and flow fields, as reported from exper-
imental studies [80,81] and earlier computational studies [26,30,82–85]. Such turbulent-like
fluid-dynamic behaviors affect not only the evaporation of precursory particles [85,86]
but also nanoparticle formation and transport [21,28,29]. Indeed, in the experiment re-
ported herein, some large unvaporized precursor particles were found. On the other
hand, the present numerical demonstrations were conducted under ideal conditions as-
suming complete evaporation of the precursor particles and nanoparticle growth at linear
cooling rates. The electric charge might also affect the nanoparticle growth, even in the
region downstream from the plasma tail [73]. However, that effect was neglected in the
present computation. Recent studies conducted by computation [87,88] and experimen-
tation [89,90] have demonstrated that ion transport by cataphoresis affected the material
vapor distribution in and around plasma.

In addition, the surface tension of bulk silicon was used to calculate homogeneous
nucleation by Equation (4) and the critical size by Equation (8). The diameters of major
nuclei generated in this study were estimated as below a few nanometers, for which the
surface tension of the bulk material might have not been valid. Validated data for such
small sizes were unavailable. Therefore, bulk silicon data were used. It is noteworthy that
numerical calculations of homogeneous nucleation rates and critical sizes inherently lead
to errors because of this limitation. Nevertheless, Equations (4) and (8) are still accepted as
the most reliable equations available.

It is noteworthy that nodal discretization of the size space introduces errors. To reduce
error accumulation, the large number of nodes with small geometric spacing factor fq in
Equation (1) should be used, as discussed in an earlier report of the relevant literature [66].
In the present study, several combinations of the node number and geometric spacing
factor were tested. For instance, double the number of nodes led to changes of less than
1.5% in the particle size distribution. The set of an adequately large number of nodes and
small geometric spacing factor was chosen to restrain error accumulation.

Heat generation by condensation was neglected. If all the vapor would be condensed,
then the heat generation would be estimated as 1.1 W, which would heat the surrounding
argon gas by approximately 24 K. Condensation occurred at 2500–2600 K. Therefore,
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the temperature increase effect was negligible. Even if no heat were transferred from
silicon nanoparticles to argon gas, the temperature increase could be considerable and
the temperature difference between them could be large. Actually, the condensation heat
would be transferred to both and both temperatures would increase. If their temperature
difference was large, then it would affect the growth rate. An additional model should be
implemented to elucidate that point.

It might be significant to discuss about agglomerates as secondary larger particles
as shown in SEM images of Figure 4. The rietveld analysis was performed from the
X-ray diffraction (XRD) results. Calculated by the Halder-Wagner plot, the crystallite
sizes were 73 nm with quenching and 74 nm without quenching. None of them were
significantly smaller than the particle size obtained from the images. With quenching,
the crystallite size is considered to be larger than the particle size due to the presence
of unvaporized precursor particles. Meawhile, without quenching, the crystallite size
is about half that of the particle size, but the effect of twinning during the solidification
process from droplets cannot be ruled out. Therefore, in order to confirm these things
experimentally, it is necessary to analyze the microstructure by Electron Back Scattered
Diffraction (EBSD) measurements. A computational work treating aggregation was also
reported using a different-type model [46], whereas the main scope of this study is more
fundamental clarification of the vapor-to-particle conversion stage in quenching processes.
The implementation of an aggregation model would be addressed in a further investigation.

The present model still has room for improvement. Nevertheless, the discussion
presented above reinforces the assertion that the present computation validly predicts
silicon nanoparticle growth processes in an ICTP system.

4.2. Implicit Mechanism of Collective Nanoparticle Growth

Figure 6 presents evolutions of molar densities of silicon vapor atoms and of the
saturated state with and without quenching. The horizontal axes showing temperature are
reversed corresponding to time progress with the temperature decrease. Both with and
without quenching, the molar densities of the vapor atoms increase with the decrease in
temperature. Then they exceed that of the saturated state. When the supersaturation ratios
defined as Equation (5) reach the maximum values of 1.63 at 2586 K without quenching
and 1.87 at 2567 K with quenching, the vapor atoms begin to decrease drastically. These
decreases are caused by rapid conversion of the vapor atoms to nanoparticles.
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Figure 6. Evolutions of molar densities of vapor atoms and saturated states.

Figure 7 portrays evolutions of the conversion ratios, which represent how many
vapor atoms have changed into nanoparticles. Approximately 40% and 50% of the vapor
atoms are converted to nanoparticles at those rapid conversions. When the molar densities
of the vapor atoms become slightly higher than that of the saturated state, as depicted in
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Figure 6, the conversions proceed moderately. For both conditions, 99% of the vapor atoms
complete the conversions at 2100 K.
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Figure 7. Evolutions of conversion ratios.

Figure 8 portrays the evolutions of vapor consumption rates by homogeneous nu-
cleation and heterogeneous condensation. Without and with quenching, the rates of
nucleation and condensation increase remarkably below 2600 K. When the number of
nuclei increases and consequently the total surface area increases, vapor consumption by
condensation becomes overwhelming. The consumption rate of condensation is approx-
imately 4.0× 105 times as large as that of nucleation without quenching. On the other
hand, that of condensation is approximately 340 times as large as that of nucleation with
quenching. After the number densities of the vapor atoms decrease to that of the saturated
state, the gradients of the consumption rates of condensation become more moderate,
thereby leading to the moderately increasing curves in Figure 7.
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Figure 8. Evolutions of vapor consumption rates by homogeneous nucleation and heterogeneous
condensation.

Figure 9 depicts the evolutions of the homogeneous nucleation rates. As the vapor
atoms become highly supersaturated, the nucleation rates increase and reach the highest
values of 1.4× 1017 m−3s−1 at 2586 K without quenching and 4.8× 1021 m−3s−1 at 2567 K
with quenching. After these moments, the nucleation rates decrease drastically.
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Figure 9. Evolutions of homogeneous nucleation rates.

Figure 10 displays the nucleus diameter evolution. The nucleus diameters take mini-
mum values of 1.15 nm without quenching and 0.916 nm with quenching. The temperatures
of those minimum values coincide with temperatures at which the homogeneous nucle-
ation rates reach the highest values. Those results of Figures 9 and 10 indicate that a
larger number of smaller nuclei are generated under the quenching condition where the
cooling rate is simply higher. The total numbers of the vapor atoms are the same with and
without quenching. Then they are consumed mainly by heterogeneous condensation on
the nuclei as presented in Figure 8. Therefore, because a larger number of the nuclei share
the vapor atoms with quenching, fewer vapor atoms condense on a nucleus. As a result,
the quenching condition will yield a larger number of smaller nanoparticles.
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Figure 10. Evolutions of nucleus diameters.

Figure 11 portrays the instantaneous growth rates by condensation for 1 K decrease for
particle diameters around the nucleus diameters when the homogeneous nucleation rates
reach the highest values. The growth rate without quenching is 0.16–4.15 nm K−1, which
is much higher than that with quenching of 0.03–0.33 nm K−1. Moreover, the condition
without quenching takes 323 µs, which is much longer than that with quenching of 16.1 µs
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for a 1 K decrease. Therefore, under the condition without quenching, the particles grow
larger, whereas smaller nuclei are generated continuously over a longer period. Therefore,
the condition without quenching produces a more dispersed size distribution with a larger
standard deviation.
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4.3. Evolution of Particle Size Distribution and Cooling Rate Dependency

The evolutions of particle size distributions with and without quenching are presented
from Figures 12–16 for representative temperatures. The corresponding movies are also
presented in Video S1 as supplementary data. Therein, τ denotes the time elapsed after the
homogeneous nucleation rate exceeded 1.0× 106 m−3s−1. It is noteworthy that one text [77]
states that “particle formation can be conveniently observed experimentally” for this value.
The conditions with and without quenching have different τ at the same temperature
because the rates of temperature decrease differ.

Figure 12a shows that, at 2586 K, when the condition without quenching exhibits the
highest nucleation rate, particles smaller than 5 nm present the largest number, whereas
particles larger than 100 nm have already grown. On the other hand, the condition with
quenching has only particles smaller than 5 nm as presented in Figure 12b.
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Figure 13a shows that, at 2583 K, when the homogeneous nucleation rate is decreasing
drastically, the particles have a bimodal distribution with two peaks under the condition
without quenching because the particle growth changes from the nucleation dominant
mode to the condensation dominant mode as indicated in Figures 8 and 9. For Figure 13b,
the particle growth is still in the nucleation dominant mode under the condition with
quenching.
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Figure 14b shows that, at 2567 K, when the condition with quenching offers the highest
nucleation rate, the particles are still smaller than 30 nm. Particles smaller than 5 nm have
the largest number. On the other hand, in Figure 14a, most particles have grown to larger
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particles under the condition without quenching. Particles smaller than 5 nm remain
because the growth rate by heterogeneous condensation is lower for smaller particles
because of their larger Knudsen numbers as indicated by Equation (12) and depicted in
Figure 11. Those smaller nanoparticles will collide and merge with larger nanoparticles
more frequently, thereby decreasing their numbers slowly.
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Figure 15a,b show unimodal size distributions without and with quenching at τ =
163.75 ms and τ = 8.1873 ms, respectively. At these moments, the temperatures are 2100 K
identically and 99% of the vapor atoms have already been converted into nanoparticles as
shown in Figure 7. Therefore, after these moments, the nanoparticles grow by interparticle
coagulation.
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Figure 16a,b show size distributions obtained without and with quenching at 1700 K
which is the melting point of bulk silicon. As depicted in Figure 3, the melting point of
silicon nanoparticles are lower than bulk silicon. Therefore, the nanoparticles are still liquid
and keep growing by interparticle coagulation. Without quenching, the product consists
of particles large than 40 nm as shown in Figure 16a. Those nanoparticles will solidify
and finish coagulation growth soon because the melting points for large nanoparticles
are slightly lower than bulk silicon. On the other hand, with quenching, the product still
includes many particles smaller than 40 nm as shown in Figure 16b. Due to the considerable
depression of the melting points, their coagulation growth will progress longer. In addition,
Figure 3 tells that the growing particles will start to solidify from large ones to small
ones and eventually reach their final states. It is noteworthy that these size distributions
in Figure 16 at 1700 K are not much different from those in Figure 15 at 2100 K, which
means that growth by interparticle coagulation is much slower than that by heterogeneous
condensation.
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Figures 17–19 depict the cooling rate dependence on the total number density, the
number mean diameter, and the standard deviation of the finally obtained silicon nanopar-
ticles, respectively. A higher cooling rate can lead to higher total number density, smaller
size, and smaller standard deviation. In an actual fabrication process, attention must be de-
voted to the fact that cooling rate control changes those obtained quantities simultaneously.
It is therefore interesting that those quantities have no linear dependence on the cooling
rate. These results suggest that quenching in thermal plasma fabrication is effectual, but it
has limitations for controlling nanoparticle characteristics.
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5. Conclusions

Quenching effects on the growth process and size distribution of silicon nanoparticles
in the typical range of cooling rates at a thermal plasma tail were investigated computation-
ally using a nodal-type model. Results suggest that the size distribution evolves temporally
with simultaneous homogeneous nucleation, heterogeneous condensation, interparticle
coagulation, and melting point depression. Furthermore, silicon nanoparticle fabrication
was demonstrated experimentally with and without quenching. Those experiment results
support the validity of the numerically obtained size distributions.

The implicit mechanism of the collective growth processes of silicon nanoparticles was
revealed. When the vapor atoms became highly supersaturated, they decreased drastically
by rapid conversion of the vapor atoms to nanoparticles. At these rapid conversions,
approximately 40% and 50% of the vapor atoms were converted to nanoparticles. When
the number of nuclei increased by nucleation and the total surface area consequently
increased, vapor consumption by condensation became overwhelming. A larger number of
smaller nuclei were generated under the quenching condition where the cooling rate was
higher. Therein, fewer vapor atoms condensed on a nucleus because more nuclei shared
the vapor atoms. As a result, the quenching condition yielded a larger number of smaller
nanoparticles. After most of the vapor atoms were converted into particles, the particles
grew by interparticle coagulation much more slowly than heterogeneous condensation.

As the cooling rate was increased, the total number density increased, the size de-
creased, and the standard deviation increased. Control of the cooling rate changed those
quantities simultaneously. Furthermore, those quantities were found to have no linear
dependence with the cooling rate. These results suggest that quenching in thermal plasma
fabrication was effectual but that it had limitations for controlling nanoparticle characteris-
tics. A sensitivity analysis for the individual effects on those quantities in respect to the
cooling rate would be further exploration of the observed “no linear dependence”.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11061370/s1, Video S1: Evolutions of size distributions of silicon nanoparticles (a)
without and (b) with quenching. t0 denotes the time at which the homogeneous nucleation rate
exceeded 1.0× 106 m−3s−1: t0 = 29.8032 ms without quenching and t0 = 1.4902 ms with quenching.
τ is defined as the time elapsed after t0.
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