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Late-life depression (LLD) is a debilitating condition that is associated with poor

response to antidepressant medications and deficits in cognitive performance. Nicotinic

cholinergic stimulation has emerged as a potentially effective candidate to improve

cognitive performance in patients with cognitive impairment. Previous studies of nicotinic

stimulation in animal models and human populations with cognitive impairment led to

examining potential cognitive and mood effects of nicotinic stimulation in older adults

with LLD. We report results from a pilot study of transdermal nicotine in LLD testing

whether nicotine treatment would enhance cognitive performance and mood. The study

used electroencephalography (EEG) recordings as a tool to test for potential mechanisms

underlying the effect of nicotine. Eight non-smoking participants with LLD completed

EEG recordings at baseline and after 12 weeks of transdermal nicotine treatment

(NCT02816138). Nicotine augmentation treatment was associated with improved

performance on an auditory oddball task. Analysis of event-related oscillations showed

that nicotine treatment was associated with reduced beta desynchronization at week 12

for both standard and target trials. The change in beta power on standard trials was also

correlated with improvement in mood symptoms. This pilot study provides preliminary

evidence for the impact of nicotine in modulating cortical activity and improving mood

in depressed older adults and shows the utility of using EEG as a marker of functional

engagement in nicotinic interventions in clinical geriatric patients.
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INTRODUCTION

Late Life Depression (LLD) or geriatric depression, is the occurrence of major depressive disorder
in adults over 60 years of age (1). LLD is associated with impaired cognitive performance (2).
A major issue for the treatment of adults with LLD is that patients have a poor response
rate to current antidepressants (3). A recent meta-analysis of studies assessing antidepressant
treatment response in the elderly demonstrated a 50.7% response rate of patients with LLD
(4). Poor treatment response has been associated with executive dysfunction (5, 6), as well
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as other cognitive domains including processing speed, language
and episodic memory (7). As a response to these difficulties in
ensuring treatment response in older adults, new strategies are
being developed to address this problem. It is also important to
understand mechanistically how such treatments may contribute
to the clinical response. One of the more promising techniques
for use in rapidly evaluating the cortical effects of potential
treatments in LLD is electroencephalography (EEG), which
has the advantages of being both cost-effective and with high
temporal resolution, which allows for the examination of direct
markers of the cortical activity response to treatment.

EEG has been utilized in adults with LLD to identify the
differences in cortical activity compared to healthy older adults.
Previous research found that patients with LLD display slower
information processing with longer P300 latencies to auditory
stimuli, as well as diminished inhibitory processing compared
to healthy controls (8, 9). LLD patients have also been observed
to exhibit greater slow wave power at rest compared to age-
matched controls (8, 10). As shown in younger adults, EEG
may serve as a predictor of response to antidepressant treatment
(11, 12). A six-week study of paroxetine in men with major
depressive disorder (MDD) showed that in addition to improved
mood symptoms, chronic treatment led to a reduction in alpha
power and an increase in delta, theta and beta power, particularly
at bilateral frontal areas (13). Baseline EEG markers, including
N1 amplitudes to oddball trials and resting frontal theta power
have also been associated with greater subsequent reductions of
depressive symptoms over 8 weeks of treatment (14).

A novel treatment with preliminary evidence for benefit to
both mood and cognitive performance in LLD is nicotine (15).
Both preclinical and clinical trials of nicotine have observed
improvements in mood following nicotinic stimulation (16–
19). Beyond mood, nicotine appears to improve the cognitive
performance of healthy adults, specifically on tasks assessing
attention (20, 21). These results have also been seen in
older cognitively impaired patients, with a 6-month trial of
transdermal nicotine in patients withMild Cognitive Impairment
(MCI) demonstrating improved sustained attention performance
compared to placebo (22).

EEG may serve as a useful measure for the effects of nicotine
on brain function. Nicotine in healthy adults has been shown to
reduce slow wave power and increase power in both alpha and
beta bands (23–26). Nicotine also reduces the amplitude of the
novelty P3a while increasing the amplitude of the salient P3b
(27, 28). In contrast to healthy adults, acute nicotine treatment
in adolescent females with MDD has been observed to reduce
alpha power over the left hemisphere and increase power over
the right hemisphere and central areas (29). However, there has
been no examination of chronic nicotine treatment effects on
EEG markers in MDD or LLD.

In this study, we evaluated EEG as a marker of treatment
response in a small open-label pilot study of transdermal
nicotine in adults with LLD. Patients with LLD completed
an EEG recording at baseline and following 12 weeks of
nicotine treatment. The present study included a subset of
participants from a larger pilot trial of transdermal nicotine
(30). We examined resting EEG activity pre- and post-nicotine

intervention to assess changes to underlying frequency bands.
Changes in attention were assessed using an auditory oddball
task. We hypothesized that 12 weeks of nicotine treatment would
result in a reduction of resting alpha power, and an increase
in resting beta power over frontal regions. For the oddball
task we examined the behavioral data and the event-related
potentials and hypothesized that nicotine intervention would
improve attention performance, resulting in greater accuracy and
an increased parietal P300 peak for target compared to standard
trials. We also examined event-related oscillations during the
oddball task, to examine whether the nicotine intervention
altered EEG power during attention task performance. Finally, an
exploratory aim of the study was to determine whether changes
in EEG were associated with changes in depressive symptoms.

MATERIALS AND METHODS

Participants
Participants were recruited at Vanderbilt University Medical
Center from clinical referrals and community advertisements
from November 2016 through April 2017, with the study
ending in August 2017. Core entry criteria focused on adults
aged 60 years or older meeting DSM-IV-TR criteria for
Major Depressive Disorder, recurrent or single episode, with
a baseline depression severity measured by the Montgomery-
Åsberg Depression Rating Scale [MADRS, (31)] of ≥15.
Criteria related to cognitive function specified a Montreal
Cognitive Assessment [MoCA, (32)] score of ≥24 but reporting
subjective cognitive impairment, defined as endorsing ≥20% of
items on the Cognitive Complaint Index [CCI, (33)]. Eligible
participants could either be antidepressant-free or currently
taking antidepressant monotherapy, however those taking
antidepressants needed to be on a stable dose for at least 8 weeks.
Additional exclusion criteria included: (1) Current tobacco or
nicotine use in last year; (2) Other psychiatric disorders, except
for anxiety symptoms occurring during a depressive episode;
(3) History of alcohol or drug abuse over last 3 years; (4)
Primary neurological disorders including dementia; (5) Regular
use of drugs with centrally acting cholinergic or anticholinergic
properties in the last 4 weeks; (6) Current psychotherapy.
All participants provided written informed consent. The study
was approved by the Vanderbilt University Medical Center
Institutional Review Board. The study was registered with
ClinicalTrials.gov (NCT02816138).

Study Design
Participants were seen every 3 weeks plus a telephone call
assessing tolerability at week 1. At each study clinic visit: (1)
Depression severity was assessed by the study physician using the
MADRS, (2) Subjective cognitive symptoms were assessed using
the PROMIS (34), (3) Vital signs were assessed including sitting
blood pressure, heart rate and weight, (4) Medication adherence
was assessed using the Medication Adherence Questionnaire
(35), and a patch count. EEG recordings took place at baseline
(week 0) and following the completion of full dose nicotine
treatment and before tapering (week 12).
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Study Drug Administration and Dosing
Transdermal nicotine was administered in a flexible dose
escalation strategy with the ability to reduce to previous or
intermediate doses for tolerability. The dose escalation strategy
was: 3.5mg (half of 7mg patch) in week 1, 7mg in weeks 2 and
3, 14mg in weeks 4 through 6, and 21mg in weeks 7 through
12. The target dose was 21mg; however dose escalation or
reductions were based on tolerability; participants were titrated
to the highest dose that could be tolerated without side effects. If
a participant had tolerability issues while using the 14mg patch,
the dose was initially reduced to an intermediate dose of 10.5mg
(half of 21mg patch) and could be further reduced to 7mg if
needed. Participants were instructed to wear the study patch
during the day and remove it at bedtime (∼16 h daily); they were
also instructed to move the patch location daily. Following trial
completion, doses were tapered and discontinued over 3 weeks.
Participants were seen at week 15 for a final visit.

EEG Recording
EEG activity was recorded using a 128-channel Geodesic sensor
net [EGI, Inc., Eugene, OR; (36–38)]. The EEG was sampled
at 250Hz with filters set at 0.1–100Hz. During data collection,
all electrodes were referenced to vertex (Cz). During the resting
state recording participants had their eyes open and focused on
a gray-fixation cross placed on a black screen. The resting state
recording lasted for 3 min.

An auditory oddball task was performed to assess auditory
attention (39, 40). A pair of two pure tones (single formant)
at 1,000 and 1,500Hz were the stimuli. Tones were equated in
duration (300ms) and rise/decay times. Tones were presented at
75 dB SPL (measured at the ear) through a speaker positioned
1 meter in front of the participant. A total of 200 trials were
presented with the inter-stimulus interval varying randomly
between 1,000 and 1,300ms to prevent habituation to stimulus
onset. The assignment of stimuli (high or low frequency) to
standard and target conditions (70 and 30% of the trials,
respectively) was counterbalanced across participants. Each
participant was asked to press a different button using their
preferred hand upon presentation of the standard and the target.
On average, the auditory task lasted 6–7 min.

EEG Processing
EEG data were processed using MATLAB (MATLAB, 2020)
through a pipeline utilizing Fieldtrip (41), EEGLab (42), and
CSD Toolbox (43) and in-house functions (A. Conley). Pre-
processing was performed using Fieldtrip as follows. After being
imported, EEG data was filtered using a high pass and notch
filter to remove line noise and low-frequency drift (high pass:
0.1Hz, forward phase; 60Hz notch: zero phase). Excessively noisy
channels were identified with visual inspection and excluded.
For each oddball trial type (standard and target) epochs were
extracted from −500 to 1,500ms with respect to stimulus onset.
For the resting state recording, the recorded data was broken
up into 2,000ms epochs. To remove blink and vertical eye-
movement artifact, independent components analysis (ICA) was
performed using the fastICA algorithm (44). This produces a set
of components, 1 less than the number of available electrodes.

Based on visual inspection by a trained observer, an average
of 2.9 ± 0.5 components were removed that corresponded to
ocular artifact (i.e., a deflection consistent with the time course
of an eyeblink coupled with a frontal topographical distribution).
The remaining components were projected back into sensor
(electrode) space. The data were low pass filtered (30Hz, zero-
phase) to remove high frequency noise including muscular
artifacts. Trials that contained residual artifact larger than ±150
µV were deleted. After artifact rejection, the surface Laplacian
transformation of the EEG data was computed. For the surface
Laplacian, a spherical spline function was applied across all scalp
electrode locations, with the spline flexibility parameter, m = 4,
for increased rigidness (45).

ERP Analysis
Evoked potentials were extracted for standard and target trials
in the oddball task over the midline parietal cortex. ERPs were
baselined between−250 and−50ms prior to stimulus onset. For
the P300 waveform mean amplitude was extracted between 250
and 500ms post-stimulus onset. The peak latency was extracted
over this time window.

EEG Power Analyses
EEG power was obtained by calculating the average of all
decomposed single-trial time-frequency data using complex
Morlet wavelets with 80 logarithmically scaled bins from 2 to
50Hz (46). For the oddball task, power was calculated as a
difference in respect to pre-stimulus baseline activity, which was
defined as −250 to −50ms prior to stimulus onset. No baseline
correction was used to calculate the evoked power during the
resting state recording. Significant changes in EEG power were
identified using a process outlined by Cooper et al. (47). To
identify significant and common changes in power from the
pre-stimulus baseline, we combined data from both pre- and
post-intervention sessions into a single task average for midline
clusters at frontal, central and parietal locations [corresponding
to Fz, Cz, and Pz according to the 10-10 system; (48)]. Following
this, we performed one-sample t-tests at each frequency × time
point for the three midline clusters for each of the tasks, with
multiple comparison correction applied [false discovery rate,
FDR p = 0.01; (49)]. Based on this analysis, we were able to
identify common power processes associated with the tasks (see
Figure 1). Next, we used these significant frequency × time
clusters as masks and extracted average power for each of the four
frequencies of interest (i.e., delta, theta, alpha, and beta) for each
of the tasks (oddball and resting state) that were entered into the
statistical analyses.

Statistical Analyses
Changes in vital signs from Baseline to Week 12 were assessed
using paired t-tests. Measurements of accuracy, response time,
ERP and evoked oscillations derived from the oddball task were
analyzed using a 2 × 2 repeated measures analysis of variance
(ANOVA), with within-subjects’ factors of time (baseline vs. week
12) and trial type (standard vs. target). Analysis of the different
clusters (frontal, central, and parietal) of evoked EEG power
were performed separately. Measures of resting EEG power were
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FIGURE 1 | Significant target average data for the parietal cluster for the

auditory oddball task. Data within the black lines represent frequency × time

points that remain significant following false discovery rate correction of p <

0.01. All other data that does not survive the correction has been set to 0.

Power differences are in dB.

assessed by a 2 × 3 repeated measures ANOVA with within-
subjects’ factors of session and site (frontal, central, and parietal).
Relation of evoked EEG activity to depressed symptoms (MADRS
score) was completed by Pearson correlation. Statistical analyses
were performed in jamovi stats version 1.2 (50).

RESULTS

Participants
Fifteen participants were enrolled in the study, and 10 completed
the EEG recordings. Markers of the safety and tolerability, as
well as the clinical effectiveness of the nicotine treatment are
reported in detail in Gandelman et al. (30). One participant did
not complete their follow-up visit, and one participant had to
be excluded due to EEG artifacts. Average trial numbers for the
participants that were included in the analysis for the oddball
task were for Baseline: 62.9 ± 26.7 standards and 24.8 ± 12.6
targets, and for Week 12: 68.4 ± 25.9 standards and 31.5 ± 5.3
targets. The demographic information of the final sample of 8
participants is described in Table 1. All 8 participants in the final
sample were Caucasian.

Tolerability of Nicotine Intervention
No changes in blood pressure or pulse were reported across the
12 weeks of treatment. There was a significant decrease in body
weight (mean decrease: 3.57 kg, t = 3.2, p = 0.015, d = 1.14),
and BMI (mean decrease: 1.04, t = 3.25, p = 0.014, d = 1.15) for
participants from Baseline toWeek 12. Themean final patch dose
was 16.63mg (SD= 6.1mg, range 7–21mg) with 5 achieving the
maximum 21mg dose. Participants exhibited >90% medication
adherence on average with study patches.

TABLE 1 | Demographic information.

Measure Total group Augmentation Monotherapy

(n = 8) (n = 5) (n = 3)

Age (yrs) 64.8 (5) 66.4 (5.9) 62 (1)

Sex, women, N (%) 5 (62.5%) 4 (80%) 1 (33%)

Education (yrs) 17.13 (1.4) 16.8 (1.5) 17.7 (1.2)

Past smoker, N (%) 6 (75%) 4 (80%) 2 (67%)

Age at first depressive episode (yrs) 29.3 (20) 35.4 (23.6) 19 (5.3)

Duration of current episode (days) 891 (698) 1,184 (710) 401 (350)

MoCA at Baseline 27.8 (0.9) 27.8 (1.1) 27.7 (0.6)

MADRS at Baseline 28.1 (7.1) 28.8 (5.5) 27 (3.6)

MADRS at Week 12 11.1 (9.6) 10.6 (10.7) 12 (9.5)

Maximum Nicotine Dosage (mg) 16.63 (6.1) 21 (0) 9.33 (2)

Psychotropic Medication, N

Sertraline 2 2 0

Venlafaxine 2 2 0

Duloxetine 1 1 0

Trazadone 1 1 0

Lorazepam 1 1 0

Data presented as mean (SD) unless specified. Past smoker is defined as having

smoked a cigarette daily for at least 6 months over the participant’s lifetime. MADRS,

Montgomery-Asberg Depression Rating Scale; MoCA, Montreal Cognitive Assessment.

Auditory Oddball Results
Behavioral Results

The results of participants on the auditory oddball task
are reported in Table 2. Participants’ accuracy performance
on the oddball task remained stable across the 12-week
intervention (Baseline: 81 ± 16.1%; Week 12: 84 ± 11.1%),
and there was no effect of either time or trial type (all
p > 0.3). However, participants responded significantly faster
after nicotine treatment compared to baseline [488 ± 28.6 vs.
434 ± 20.4ms, F(1,7) = 12.5, p < 0.005, η

2
p = 0.64], with

the greatest improvement from baseline to post-intervention
being in response to targets compared to non-target standards
[Standard: 474 ± 82.4 vs. 434 ± 64.6ms; Target: 502 ± 79.4 vs.
434± 50.9ms; Trial× Session: F(1,7) = 6.4, p= 0.04, η2

p = 0.48].

Event-Related Potentials

As shown in Table 2, the P300 amplitudes decreased for both
oddball and standard trials after the 12-week intervention,
however the decline in amplitude was larger for standard trials
(1.6 vs. 1.4 µV). The latency of the P300 evoked by participants
decreased for both trial types by between 20 and 30ms (29 vs.
25ms) following treatment. Analysis of the ERPmarkers of mean
amplitude and the peak latency of the parietal P300 showed no
effect of time, trial type or an interaction between the two factors
(all p > 0.05).

Event-Related Power

The results of the analysis of the task-averaged power evoked
at the frontal cluster revealed a mask of significant time ×

frequency values in the delta band between 400 and 800ms and
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TABLE 2 | Auditory oddball results.

Baseline Week 12

Overall Standard Target Overall Standard Target

Accuracy (%) 81.3 (16.1) 83.8 (15.7) 78.9 (17.9) 84.4 (11.1) 84 (15.1) 84.8 (8.6)

Response time (ms) 488 (80.4) 474 (82.4) 502 (79.4) 434 (55.7) 434 (64.6) 434 (50.9)

P300 amplitude (µV) 1.8 (2.2) 1.2 (1.8) 2.4 (2.5) 0.3 (3.1) −0.5 (2.7) 0.99 (3.6)

P300 peak latency (ms) 412 (54) 402 (50) 421 (58) 385 (61) 373 (61) 396 (62)

Delta Power (dB)

Frontal 1.5 (1.2) 0.76 (0.77) 2.17 (1.9) 1.02 (0.9) 0.28 (1.1) 1.77 (1.3)

Central 1.4 (0.7) 0.46 (0.56) 2.3 (1.2) 1.2 (1) 0.78 (1.2) 1.7 (1.2)

Alpha Power (dB)

Central −1.05 (0.7) −0.4 (0.17) −1.7 (1.2) −1.1 (0.65) −0.37 (0.2) −1.9 (1.1)

Parietal −1.1 (0.84) −0.4 (0.26) −1.7 (1.5) −1.1 (0.64) −0.35 (0.24) −1.8 (1.1)

Beta Power (dB)

Frontal −0.46 (0.3) −0.35 (0.2) −0.57 (0.45) −0.54 (0.4) −0.5 (0.3) −0.58 (0.5)

Central −1.7 (0.8) −1.1 (0.6) −2.4 (1.2) −1.95 (1.1) −1.4 (0.7) −2.6 (1.5)

Parietal −0.85 (0.5) −0.48 (0.3) −1.23 (0.74) −0.6 (0.43) −0.34 (0.24) −0.86 (0.7)

Data presented as mean (SD). Frontal, central and parietal refer to midline clusters. P300 amplitude and latency are from the parietal cluster. Power statistics refer to the magnitude

change post-stimulus compared to pre-stimulus baseline. Overall refers to task average performance of standard and target trials.

the beta bands between 200 and 500ms. For the central cluster,
the mask showed significant time× frequency values in the delta
band between 400 and 600ms, in the alpha band between 200
and 400ms, and in the beta band between 200 and 600ms. In
the parietal cluster, the task-averaged data showed significant
differences from zero in the alpha and the beta bands between
200 and 500 ms post-stimulus.

The results of the repeated measures ANOVA for the frontal
cluster identified a significant main effect of the trial type in the
delta band, with greater evoked delta power for targets compared
to standards [0.52 ± 0.9 vs. 1.97 ± 1.6 dB; F(1,7) = 8.5, p =

0.02, η2
p = 0.55]. However, there was no difference in the evoked

delta power between baseline and Week 12 (F < 1). There
was also no difference in the evoked beta power at the frontal
cluster (all p > 0.2).

As with the frontal cluster, the ANOVA of the central
cluster revealed large differences between trial types in all
frequency bands (all p < 0.005). This trial effect evoked greater
synchronization of delta power, and greater desynchronization of
alpha and beta power to targets compared to standards. However,
there was no impact of the nicotine treatment on power in the
delta, alpha or beta bands.

The analysis of the parietal cluster (see Figure 2) showed a
significant main effect of the trial type in the alpha band, with
greater desynchronization of alpha power for targets compared
to standards [−0.39± 0.25 vs.−1.77± 1.3 dB; F(1,7) = 14.2, p <

0.005, η2
p = 0.67]. There was however no difference in the evoked

alpha power between baseline andWeek 12 (F < 1). The analysis
of the beta band showed that following 12 weeks of nicotine
treatment, there was a reduction in the desynchronization of beta
over the parietal cluster [Baseline:−0.85± 0.5 vs. Week 12:−0.6
± 0.45 dB; F(1,7) = 11.1, p = 0.013, η2

p = 0.61]. This shift in beta
power across the 12-week treatment period was greater for target
trials compared to standard trials [mean difference 0.37 vs. 0.14
dB; Trial× Session: F(1,7) = 5.4, p= 0.05, η2

p = 0.44].

Resting State EEG Results
The mean resting power at baseline and at week 12 is displayed
in Table 3. The results of the session average resting data revealed
significant time × frequency differences from 0 for all frequency
bands at each of the three midline clusters. However, the analysis
of the midline clusters did not show any change in resting power
following nicotine intervention for any of the frequency bands
(all p > 0.1). There was a significant difference in resting beta
power across the sites, which showed a reduction in beta power
from frontal to central clusters, with the lowest power at the
parietal cluster [F(2,14) = 3.96, p = 0.044, η2

p = 0.36]. However,
this difference in resting power across the scalp did not change
with nicotine treatment (p= 0.3).

Relationship to Depressive
Symptomatology
Analysis of the relationship of improvement in depression score
and EEG/ERP signals following nicotine treatment showed that
the reduction in MADRS scores after nicotine treatment was
significantly correlated with the post-intervention parietal beta
power for standard tones (Figure 3; r = 0.8, p < 0.02). This
relationship reflected that greater improvement in MADRS
scores following nicotine treatment were associated with a greater
reduction of parietal desynchronization to standard trials. The
reaction time performance of the oddball task or the resting beta
power did not correlate with the change in depressive symptoms
across the nicotine treatment period (all p > 0.1).

DISCUSSION

This pilot study showed that 12-week treatment of open-label
transdermal nicotine produced improved attention performance
in patients with LLD. This functional engagement of the nicotinic
system was evident in reduced reaction time and the reduction
of beta desynchronization during the oddball task following
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FIGURE 2 | Event-related power (dB) at both Baseline and Week 12 following standard (top row) and target (bottom row) trials over the parietal cluster. Changes in

power reflect increases or decreased magnitude compared to the pre-stimulus baseline.

nicotine treatment. The change in parietal beta power was
correlated with mood improvements on the MADRS.

Twelve weeks of transdermal nicotine resulted in improved
performance on the oddball task, although not as we had
hypothesized. While we had predicted improved accuracy and
increased amplitude of the target P300, however compared
to baseline, neither of these measures changed across the
intervention period. Instead, participants exhibited faster
reaction time, with the enhancement being greater for targets
compared to standards. Consistent with the reaction time
changes, desynchronization of beta power over the parietal
cortex was reduced for both target and standard trials following
nicotine intervention, with greater desynchronization for target

trials. Moreover, the changes in beta oscillations for the standard
trials was also correlated with the change in MADRS scores,
with greater beta power corresponding to a greater reduction
in depressive symptoms. While this was an open-label trial, and
therefore we cannot rule out the change in oddball performance
to be related to time or practice, the finding that the changes
in evoked oscillations were associated with a positive change
in MADRS scores across the intervention period suggests that
we observed functional engagement of the cholinergic system,
resulting in improved attention performance which correlated
with improved mood. Beta oscillations are commonly associated
with visual attention and motor performance (51). In addition,
cholinergic stimulation, in this case through transdermal
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TABLE 3 | Resting EEG power at baseline and week 12 at midline clusters.

Power (dB) Baseline Week 12

Frontal Central Parietal Frontal Central Parietal

Delta 57.8 (2.4) 56 (1.8) 55.1 (2.5) 57.5 (1.6) 56 (2.6) 56.9 (3.5)

Theta 51.7 (2.2) 50.9 (2.2) 49.9 (3.1) 51 (1.7) 50.3 (2.7) 50.6 (3.7)

Alpha 47.9 (2.5) 47.9 (3.6) 50 (4.3) 47.1 (2.0) 47.9 (3.6) 49.5 (4.5)

Beta 44.4 (3.7) 43 (3.0) 42.5 (2.7) 43.6 (2.3) 43.6 (3.8) 42.6 (2.95)

Data presented as mean (SD). Power represented in the table is absolute power at each cluster.

FIGURE 3 | Association between change in MADRS scores across the

nicotine treatment period and beta power for standard trials over the parietal

cluster (r = 0.8, p < 0.02). Beta values reflect decreases compared to the

pre-stimulus baseline.

nicotine, is known to modulate arousal and attention (20, 52).
Therefore, this finding suggests that observed a reduction of
parietal beta band desynchronization following nicotine is
related to an improvement of attention performance, through
the reduction of task-irrelevant activity, resulting in improved
performance on the oddball task. In contrast to prior studies
and to our results from the oddball task, we did not see a
significant change in resting EEG power across the nicotine
treatment period.

We did not see changes in the alpha band. Attention in healthy
adults has been also related to oscillations in the alpha band,
and specifically a desynchronization over the parietal cortex
(53). Alpha synchronization is associated with inhibition of
activity (54, 55), and also mental fatigue and drowsiness (56, 57).
Desynchronization of the alpha band is associated with temporal
attention and sensory gating (58, 59). Specifically in auditory
tasks, alpha oscillations are thought to drive attention allocation
in the cortex (60, 61). Therefore, the fact that task-relevant alpha
desynchronization was not substantially altered across treatment
may reflect efficient processing or may be a result of the age-
related slowing of the EEG spectra, whereby across healthy aging,
the power of faster frequency bands decreases, while the slower
power bands increase in power (62). Slowing of the spectra is
increased in clinical populations including those with MCI (63).
Thus, a change in beta power following treatment may be more
noticeable in older adults, due to reduced power compared to the
slower frequency bands.

Depression is associated with deficits in attention processes
(64, 65). These deficits in attention have downstream effects
on several higher order cognitive processes including executive
functions (66). Attention itself has been characterized as having
four hierarchical subdomains, including intrinsic alertness,
sustained attention, focused or selective attention and behavioral
inhibition (67, 68). Compared to healthy controls, adults with
MDD show deficits on selective attention (69, 70), and sustained
attention (71, 72). Within the context of the present study,
the results indicate that nicotine may be enhancing sustained
attention. While there was not a substantial change in accuracy
across the 12 weeks, responses were faster following treatment.
There may also be an impact of the improvedmood, as evidenced
by a decline in MADRS scores, on attention. Positive mood
has previously been reported as an enhancer of other cognitive
processes (73–75). For auditory attention, recent studies have
shown that in healthy controls improving mood through music
or mindfulness enhances performance to auditory stimuli (76,
77). As such, the improvement of attention by cholinergic
stimulation, and the enhancement of mood may be additive
factors for cognitive processing.

The finding of significant oscillatory changes in the parietal
cortex may indicate that the cholinergic stimulation is improving
frontoparietal connections in adults with LLD. Healthy aging
is associated with a shift in functional activity from parietal
to frontal regions (78, 79), but this shift is exacerbated in the
presence of Alzheimer’s pathology (80, 81) and also depressive
symptoms (82, 83). As the parietal cortex is important for both
auditory and visual attention (53, 84–86), the posterior-anterior
shift in processing results in a reorganization of cortical activation
for attention tasks (78). This is observed in healthy older adults,
with P300 amplitudes shifting from parietal to frontal areas
(87, 88). Adults with MDD show a reduction in frontoparietal
connectivity during both visual and auditory attention tasks (89–
91). In the context of the present study, cholinergic stimulation
through nicotine treatment may be stimulating activity in the less
functionally active areas of the parietal cortex during attention
tasks. This activation during attention tasks may promote
increased connectivity within the frontoparietal control network,
and lead to downstream improvements in cognitive control in
adults with LLD.

In contrast to previous studies, we did not find changes in
resting oscillatory activity following nicotine treatment. This may
be due to the differences in age or the focus of the analysis on
midline clusters rather than looking at hemispheric differences.
As discussed above, Jaworska et al. found an increase in global
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alpha power over the right hemisphere in young women with
MDD following acute transdermal nicotine (29). Lateralization of
brain activity have been reported consistently in younger adults
with MDD (92) however, this finding has not been reliably found
in adults with LLD (93). Future investigation would be needed
to confirm whether functional lateralization is seen following
nicotinic treatment in adults with LLD.

A limitation of this pilot study is that the nicotine was
administered to patients in an open-label design, and as such
there was not a placebo group to compare the effects across
the 12-week period. The sample of participants was uniformly
Caucasian, which does limit the generalizability of the results.
The sample size of the trial was also small, which limits the
ability to test for dose effects, and reduced overall power to detect
changes in ERP or resting state activity. Despite this, the pilot
study identifies EEG markers of activity that are both indicative
of treatment effect and relate to a change in depressive symptoms.

CONCLUSION

In this pilot study we show that 12 weeks of transdermal nicotine
treatment can enhance event-related oscillations associate with
auditory attention in adults with LLD. Moreover, this change in
cortical activity was related to the magnitude of improvement
in mood symptoms over the course of the nicotine treatment,
which highlights the potential use of EEG marker for predicting
treatment response in adults with LLD. Future studies should
aim to confirm this finding in larger, placebo-controlled trials
which would be able to conclusively show the efficacy of an
investigational treatment.
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